
Spatial Damping Identification

Thesis submitted in accordance with the requirements of
the University of Liverpool

for the degree of Doctor in Philosophy

by
Marco Prandina

February 2010





To Didona

i



ii



Abstract

This dissertation reports a study on the identification of damping in multiple

degree-of-freedom systems with particular attention to the spatial location of the

sources of energy dissipation. The main focus is in developing practical tools

which can be used in real problems to obtain valuable information about the

amplitude, the location and the way energy is dissipated in a structure.

The physical phenomena involved in the energy dissipation of real vibrating struc-

tures are various. All these mechanisms have been studied separately with success

by several authors, but there is still considerable doubt on how the damping be-

haviour should be represented in a suitable manner for engineering applications.

Despite viscous damping being widely utilised in software and applications, it is

a mathematical approximation of reality and therefore has to be used with an

awareness of this limitation.

The initial research focuses on the analysis of the existing damping models and

identification methods. From the knowledge gained, a new and improved method

is developed. The advantages and limitations of each method identified in the

literature are considered and used to develop a new method based on the balance

between the energy input by external forces and the energy dissipated by damp-

ing. This method is able to spatially identify different sources of damping and

does not require any information about the inertial and elastic properties of the

system provided the full set of measurements is available. This new method has

been tested and validated by numerical simulations and by two different experi-

ments on real structures.
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Nessuno vuole la realtà

(No one wants reality)

Gareth A. Vio
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Chapter 1

Introduction

1.1 Historical background

The dynamic behaviour of vibrating mechanical systems is mainly governed by

the cyclic transformation between kinetic and potential energy which is associated

with inertia and elastic properties [1]. These properties have been well known

since the 17th century; inertia forces were formally defined in Newton’s second

law of motion in 1687 [2] whereas elastic forces were described by Hooke’s law in

1679 [3]. Mass and stiffness discrete elements are normally used to represent these

properties in mathematical models which allow the explanation and estimation

of important characteristics of vibrating systems, such as natural frequencies

and mode shapes. Several methods are already well established for modelling

or identifying these elements and they are used everyday in various applications

with a relatively small level of uncertainty.

There are other aspects of vibration, such as the limited response of a vibratory

system excited at resonance or the decay of free vibrations, which can be explained

only by accounting for mechanisms which remove energy from the system [4],

i.e. the damping. Since in the majority of mechanical systems the damping is

considered light and the dynamical behaviour is principally determined by the

relatively large elastic or inertial forces [5], it is often oversimplified or totally

neglected in many engineering designs. However, damping can be very important

in systems where the dynamic behaviour is dominated by the energy dissipation.

If a model is to be used to predict transient responses, dynamic instabilities or

decay times, a good understanding of damping is necessary. Defining an accurate

damping model requires an higher degree of complexity than a mass and stiffness
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system. The difficulty lies in representing all the sources of damping, which are

very different in terms of nature, extent and distribution within the structure.

Even if each physical energy dissipation phenomenon had been studied separately

with success, there still remains many different theories on how damping should

be represented by mathematical models for engineering applications.

The first attempt to study damping was probably made by Poisson in 1831 while

analysing the theory of friction for the case of a compressible fluid [6]. In 1851,

Stokes derived an equation for the motion of pendulums which considers the vis

viva (from the Latin for living force) lost by internal friction [7]; Maxwell mea-

sured the coefficient of viscosity or fluid internal friction of air and other gasses in

1866 [8]. The first important and famous model of damping is the linear viscous

damping, introduced by Lord Rayleigh [9] in 1878 by grouping the coefficients of a

quadratic energy dissipation function into a symmetric matrix called the damping

matrix. Lord Rayleigh also developed the so-called proportional damping which

considers the damping matrix as a linear combination of the stiffness and mass

matrices. A large number of theories and models of damping have been developed

since Lord Rayleigh, but in a large number of standard applications his model

is still used to approximate the energy dissipated in a system. This approxima-

tion is attractive computationally because it results in systems of second order

differential equations with solutions that are readily available by well-understood

techniques.

The modern engineering design of structures demands a damping model which

is capable of accurately reproducing the response of large structures within the

frequency range of interest and this is not always possible by using the viscous

damping model only. At the same time, the model should not be too complex

since the analysis must be performed in a reasonable computational time. Con-

sequently, the various physical damping mechanisms must be approximated to

a mathematical representation which takes into consideration the predominant

sources of damping which affect a particular structure subjected to a certain type

of excitation within a specific range of frequencies. For this reason, a reasonably

good damping model for one application could give completely unreliable results

for a different system. Moreover, spatial agreement between the mathematical
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model and the real system is also important, since it could help the implementa-

tion of the model in the Finite Element Model (FEM) approach.

Damping could be a significant factor in many different fields: the instabilities in

aircraft wings, the design of buildings in seismic areas, bridges in windy regions,

the dynamic behaviour of rotors, acoustics, geophysics and astronomy, the design

of musical instruments and audio systems or the prediction of earthquake effects

are just a few examples. Damping can also be deliberately introduced in a system

to reduce the amplitude of vibration at frequencies close to resonance: vehicles

or simpler structures like washing machines usually contain damping mechanisms

in order to increase the comfort of passengers, to reduce the acoustic noise or to

avoid unwanted movements. These damping devices can be divided into passive

and active mechanisms. The passive mechanisms include applying layers of high

damping materials (usually viscoelastic polymers, synthetic rubbers) over the

surface of the structure, or within the core of a sandwich-type structure [10],

the attachment of mechanical vibration absorbers such as viscous fluid dampers

or magnetic eddy current dashpots [11, 12, 13] in strategic locations, applying

piezoelectric materials shunted with passive electric circuits [14, 15] or tuned mass

dampers [16, 17]. It is also theoretically possible to increase the initial structural

damping by appropriate heat treatment (of metallic copper-manganese alloys

typically) to modify the material damping, but this inevitably changes other

important mechanical properties and so may not be totally advantageous [10].

Acoustic (or radiation) damping can also be increased by changing the surround-

ing medium (e.g. immersing the structure in water) or varying the shape or size

of the structure itself. In these cases there will be obvious changes in the inertial

and elastic properties too. The influence of damping on the performance of pas-

sive vibration isolation were discussed by Ruzicka [5] including several idealized

isolators (viscous, Coulomb friction, quadratic, velocity-nth power and hysteretic

damping) and their effect on transmissibilities. Active and semi-active methods

usually include the use of actuators along with sensors and feedback controllers

(analog or digital) to produce an actuation with the right timing to counteract the

resonant oscillation. These techniques comprise active constrained-layer damp-

ing [18], the use of controlled circuits with piezoelectric materials [19] as well as
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traditional actuators or shakers [20, 21].

1.2 Classification of damping

Separating and evaluating all the sources of damping in a structure is practically

impossible but it can be interesting to classify them into categories in order to

understand which kinds of damping can be the most relevant and which ones can

be neglected in a particular application. Damping phenomena can be initially

divided into two main categories: material and non-material damping.

1.2.1 Material damping

Material damping can be found in the literature under various different names:

internal or hysteretic damping and internal friction are the most common. Mate-

rial damping is related to the energy dissipated in a volume of continuous media;

Lazan [22] used the term macro-continuous media to exclude the damping gener-

ated at interfaces between separated recognizable parts of a structure, yet include

the damping originated at interfaces between internal micro and sub-micro struc-

tures.

Muszynska [23] listed several types of internal energy dissipation mechanisms by

classifying the different internal structure reorganizations which are associated

with these mechanisms and separating between linear and non-linear sources.

Without going into the details of each mechanism, it could be useful to name

some of these phenomena in order to have an idea of the complexity of the

problem. Included are electronic mechanisms (electronic absorption of ultra-

sounds, phonon and phonoelectronic mechanisms), damping depending on solvent

atoms (Snoek’s damping, ordering in solid solutions, Koester’s damping, damp-

ing caused by phase processed in solid solutions), relaxation on point defects,

damping from dislocations (relaxation of dislocations, dislocation resonance, dis-

location hysteresis, damping depending on history of deformation, deformation

hysteresis), relaxation on grain boundaries, irreversible intercrystal heat flux,

viscoelastic delay micro-creep, thermoelastic damping, thermal hysteresis, mag-

netoelastic relaxation, eddy currents and ferromagnetic hysteresis.
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For practical reasons it is not possible to account for all the precise physical

mechanisms but it is important to know that they exist and that all materials

dissipate a certain amount of energy during cyclic deformations. Generally these

behaviours in engineering problems are experimentally estimated by measuring

the energy dissipated per unit volume per cycle for a number of samples of each

material or by extracting information from the hysteresis loops, again from ex-

perimental measurements [24, 25]. Bert [26] described some of the mathematical

models and experimental techniques for the rheological behaviour of a solid. Rhe-

ology is defined as “the science dealing with the deformation and flow of matter”

[27, 25]. The term rheological has been used by Lazan and then by others to in-

clude deformation, flow and all stress-strain-time properties of material systems.

The mathematical models for material damping include the Maxwell model (a

spring and a dashpot in series), the Kelvin-Voigt model (a spring in parallel with

a dashpot) and the Kimball-Lovell complex stiffness model. Koeller [28] mod-

elled the viscoelastic behaviour of polymers including fractional or viscoelastic

elements called springpots, which constitute an intermediate device between a

spring and a dashpot. Schmidt and Gaul [29] provided a finite element formu-

lation of the viscoelastic constitutive equations using fractional time derivatives.

There are also models which combines the Kelvin-Voigt and Maxwell model in

different ways to obtain three-parameter models [30] or add even more elements

to obtain the so-called Kelvin chain or the generalized Maxwell model [31].

1.2.2 Non-material damping

Non-material damping includes all the energy dissipation mechanisms acting on

the interfaces between parts of the structure and the interactions with the sur-

rounding medium. The main sources of non-material damping include the effects

of friction in joints, radiation into surrounding fluid, air pumping and squeeze

film damping. A series of experiments by Beards [32] showed that the energy

dissipated in joints is generally much larger than the dissipations due to material

damping; bolted, riveted and welded connections are often the main source of

damping in a structure. Two papers by Ungar [33, 34] offer a comprehensive and

exhaustive overview of the mechanisms involved, the magnitudes and the status
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of the engineering knowledge.

The physical phenomena experienced in joints are described in an article by Good-

man [35], which focus on interfacial slip damping: the friction in joints dissipates

energy in two different ways, known as microslip and macroslip. Since friction

forces depend on the normal force, and since the actual normal pressure distri-

bution is not uniform when the structure is loaded dynamically, there could be

an initial behaviour when the shearing forces are not sufficient to create global

sliding and some of the surfaces in contact are sticking and some others have

local slip: i.e. the microslip [36, 37]. When loads and the relative displacements

increase, slip takes place over the entire surface and the so-called macroslip hap-

pens [38]. An approach to the mathematical modelling of frictional joints is the

Iwan network model [39] which consists of springs and sliders in a parallel-series

or series-parallel configuration. A slider is a dissipation element which follows

Coulomb friction properties when the excitation is greater than a break-free force

[40]. Other approaches includes the Valanis model [41], based on a first order dif-

ferential equation originally intended for plasticity in order to unify the isotropic

hardening models and kinematic [42] and the Bouc-Wen model [43].

A different non-material form of damping is the acoustic radiation damping,

which is due to the coupling of the response of a structure with the surrounding

fluid medium, normally the air, which reduces vibrations and produces noise and

sounds [9, 33]. This kind of damping depends both on the characteristic of the

fluid (density, etc.) and on the properties of the structure (mass, stiffness, shape,

size, etc.). Its order of magnitude is usually too small to be considered in most

engineering structures, but can be important for specific applications (i.e. mu-

sical instruments). However, the amount of acoustic damping can be in theory

estimated by fluid-structure equations [24].

Another mechanism involving the fluid surrounding the structure is the air pump-

ing damping. Air can be entrapped inside some parts of the structure or in joints;

when the structure vibrates, the air can be compressed and rarefied and forced

to flow through leaks by laminar or turbulent motion, depending on a multitude

of factors [33]. This kind of damping can have a small effect at low frequencies

but generally appears to be negligible in most cases.
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1.3 Scope of the thesis

The scope of this thesis is to provide a brief but comprehensive survey on the main

spatial damping identification techniques currently available and to develop and

validate a new improved method. The main interest is in the location and iden-

tification of the main sources of damping in multiple degree-of-freedom systems

using a practical method supported by engineering knowledge. Traditional modal

damping identification methods normally used in standard vibration problems are

certainly well-established techniques which are easier to apply and reliable but

they provide information which are more difficult to link to a specific region of

the structure or to a specific physical phenomenon. Having an idea of the spatial

distribution and amplitude of damping sources in a structure gives several advan-

tages: for example, if the equivalent viscous damping coefficient of a particular

joint is known, it can be used as an element of the damping matrix of a larger

structure and, if the location of these joints is known, it can easily be imple-

mented in FEM. Accurate information on the location of the sources of energy

dissipation could also help the solution of local problems that cannot be properly

addressed by knowing the modal damping ratio only as well as detecting other

kinds of malfunctions in a particular region.

In chapter 2, basic notions on modal analysis and on the effect of damping in

vibrations are given in order to provide the necessary knowledge to understand

the methods presented afterward; the effect of viscous damping on the frequency

response function, time response, hysteresis loop, energy dissipation and Nyquist

plot of a single degree-of-freedom system is discussed together with other forms of

damping as hysteretic damping or Coulomb friction. The effect on the eigenvalues

and the eigenvectors of multiple degree-of-freedom systems and considerations on

classical or proportional damping are addressed.

In chapter 3 some modal damping and single degree-of-freedom identification

techniques are explained and a literature review of the main spatial multiple

degree-of-freedom damping identification techniques is presented, with some crit-

ical observations on some aspects of the philosophy and performance of different

approaches. The different techniques have been classified into three main groups:
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methods based on the inversion of the receptance matrix, methods based on modal

parameters and methods based on time histories. The survey includes the works

of several authors with different approaches and a numerical simulation in order

to compare the performance of the methods when dealing with the problem of

modal incompleteness; a common issue in experiments on real structures.

In chapter 4 the theory and details of the proposed identification method based

on the balance between the energy input in the system by external forces and the

energy dissipated by damping is presented. After deriving the energy equation,

some techniques are proposed in order to improve the identification by address-

ing issues such as the damping matrix parameterisation, the spatial and modal

incompleteness of measurements and the underdetermination of the system of

equations. How to solve the energy equation in order to obtain sensitive pa-

rameters with physical meaning is considered, with particular attention to the

non-negative definiteness of the identified viscous damping matrix.

In chapter 5 the results of numerical simulations on a finite element model of

a cantilever beam is presented to validate the theory, to show how the energy

method deals with spatial and modal incompleteness and to illustrate the meaning

of “energy-equivalent viscous damping”. A simulation on the beam damped with

a Coulomb friction device and a larger structure (the Goland wing) are also

presented in order to demonstrate the versatility of the method.

In chapter 6 the design and the results of two different experiments are presented

and discussed. The first one consists of an aluminium cantilever beam with several

different sources of damping attached to it. These sources are magnetic dashpots,

air dashpots and friction devices located between the different degrees of freedom

of the beam and the ground. The aim of the experiment is to locate and estimate

the value of damping using the measurements of ten accelerometers equally spaced

along the length of the beam when exciting it by a set of single frequency harmonic

forces. In this case the sources of damping are called “absolute” and they dissipate

the energy of the system to the ground directly. The second experiment is a

five degree-of-freedom system with “relative” sources of damping between two

or more degrees of freedom of the structure. The results of the identification

method and some practical issues on the integration of measurements are given
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and considerations on the viscous equivalent damping and the physical meaning

of this approximation are discussed.

Chapter 7 summarises the main outcomes of the research with particular attention

to the practical aspects of the study from an engineering point of view. Some

new ideas on future work and possible extensions of the method proposed are

also given.

1.4 Closure

It appears from this introduction why damping remains one of the most un-

predictable and difficult aspects of mechanical vibrations. Being aware of the

complexity of the problem is the first step in trying to develop a simple proce-

dure or a model in order to obtain the necessary amount of information from

standard measurements. The difficulty lies in choosing a priori the sufficient level

of accuracy for each application, in deciding when damping can be neglected or

when efforts must be spent to estimate certain parameters which can be crucial

in the dynamic behaviour of the system in the range of frequency of interest. In

the next chapter, basic notions on modal analysis and on the effect of damping in

vibrations are given in order to provide the necessary knowledge to understand

the methods presented afterward.
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Chapter 2

Models for damping in vibrating

systems

2.1 Dynamics of mechanical systems

Modelling the dynamics of a real mechanical system does not mean describing

how all the features of the system interact with one another. In most cases, it is

sufficient to consider the basic properties separated into simple discrete elements

which can represent the dynamic properties of the system to desired accuracy.

These properties are mass, stiffness and damping which are responsible for in-

ertia, elastic and dissipative forces respectively [44]. Depending on the number

of degrees of freedom (DOF) of the discretised model, systems can be classified

into single degree-of-freedom (SDOF) and multiple degree-of-freedom (MDOF)

systems.

2.2 Single degree-of-freedom systems

2.2.1 Undamped systems

In an undamped SDOF system, the dynamic properties are usually represented

in the first place by an infinitely rigid constant mass m and an ideal massless

spring of constant stiffness k. The equation of motion is written as

mẍ(t) + kx(t) = f(t) (2.1)

where x(t), ẍ(t) are respectively the displacement and the acceleration response

of the system induced by the time dependent excitation force f(t). The free
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vibration solution is obtained considering the system with no external forcing

mẍ(t) + kx(t) = 0. (2.2)

Excluding the trivial solution where x(t) = 0, which corresponds to no motion at

all, it is known that the solution of eq. (2.2) is of the form

x(t) = x0e
iωt (2.3)

where i is the imaginary unit (
√

-1), x0 represents the amplitude of the displace-

ment and ω the frequency of vibration. By substituting eq. (2.3) into eq. (2.2)

and solving for ω, the natural frequency ωn is obtained

ωn =

√

k

m
(2.4)

which represents the frequency at which the system naturally vibrates once it has

been set into motion. In the case of forced vibration, considering an harmonic

excitation of the form

f(t) = f0e
iωt (2.5)

where f0 represents the amplitude of the force, it is a common procedure to study

the behaviour of the system by looking at the Frequency Response Function

(FRF) which relates the output (displacement, velocity or acceleration) to the

input f(t). For an undamped system excited with an harmonic force, the FRF

can be calculated as

h(ω) =
x0

f0

=
1

k − ω2m
(2.6)

where h(ω) is the receptance of the system. Alternative forms of FRF can be

obtained by relating velocity or acceleration to the excitation force, called re-

spectively mobility and accelerance.

2.2.2 Viscously damped systems

The simplest and commonest approach to modelling damping in SDOF systems

is representing the dissipative forces by an ideal massless dashpot with constant

viscous damping coefficient c. A viscous dashpot is a linear device which produces

12



a force Fd proportional to the relative instantaneous velocity ẋ(t) across the

damper, as

Fd = cẋ(t) (2.7)

which, in a physical sense, corresponds to the force obtainable by certain types

of laminar flow of a fluid through a restriction [5]. The system is schematically

represented in figure 2.1. The equation of motion of the viscously damped SDOF

Figure 2.1: Single degree-of-freedom system

system becomes

mẍ(t) + cẋ(t) + kx(t) = f(t) (2.8)

whose solution is of the form

x(t) = x0e
st (2.9)

where s is a complex quantity, sometimes referred as the Laplace variable [44].

Considering the free vibration

mẍ(t) + cẋ(t) + kx(t) = 0 (2.10)

by substituting eq. (2.9) in eq. (2.10), the characteristic equation is obtained

ms2 + cs + k = 0 (2.11)
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and solving for s

s1,2 = − c

2m
±
√

( c

2m

)2

− k

m
(2.12)

two roots are obtained. When the term inside the square root is equal to zero,

the system is said to be critically damped and the critical damping coefficient ccr

is defined as

ccr = 2
√

km. (2.13)

The viscous damping present in the system c divided by ccr gives the damping

ratio ζ

ζ =
c

ccr

(2.14)

which can be used to determine if a system is critically damped (ζ = 1), under-

damped (ζ < 1) or overdamped (ζ > 1). Substituting eq. (2.4) and eq. (2.14)

into eq. (2.10), the equation of motion can be expressed in the form

ẍ(t) + 2ζωnẋ(t) + ωn
2x(t) = 0 (2.15)

and the two roots becomes

s1,2 = −ωnζ ± iωn

√

ζ2 − 1. (2.16)

It can be seen from eq. (2.16) that the roots of the characteristic equation are

real and equal if the system is critically damped, real and distinct if it is over-

damped and complex conjugate if it is underdamped. Figure 2.2 shows the time

responses of a SDOF system to an initial unitary displacement: the critically

damped system converges to zero faster than any other, and without oscillating;

the overdamped system will take longer to return to the equilibrium position,

again without oscillating, whereas the underdamped system will oscillate at a

frequency which is lower than the natural frequency of the system, defined as the

damped natural frequency ωd,

ωd = ωn

√

1− ζ2 (2.17)

for a certain number of cycles until it converges to zero. The undamped system (ζ

= 0) will instead vibrates at its natural frequency forever since the initial energy

cannot be dissipated in any way.
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Figure 2.2: Free vibration time response to an initial unitary displacement
for different values of ζ. ωn = 10 rad/s.

Effect of viscous damping on the FRF

The receptance of a viscously damped system excited by a harmonic force as

eq. (2.5) is given by

h(ω) =
1

k + iωc− ω2m
(2.18)

and it is generally a complex quantity. The FRF is normally plotted in two

distinct figures showing the magnitude and the phase angle of h(ω) versus the

frequency, also know as the Bode plot. The phase angle φ of the FRF is defined

as

φ = tan−1

(= (h(ω))

< (h(ω))

)

(2.19)

where = and < respectively indicates the imaginary and real part. The effect

of viscous damping is shown in figure 2.3: the FRF of the undamped system

(ζ = 0) presents a high peak when ω =ωn since the denominator of eq. (2.18)

is zero and the amplitude of the response is infinite. This will never happen in

real systems since a small source of damping is always present in practice, but

the amplitude of the response can be very large. The term resonance is used to

indicate when a structure is excited with a harmonic force at a frequency close
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Figure 2.3: Amplitude and phase of the FRF (receptance) of a viscously
damped SDOF system for different values of ζ. m = 2 kg, k =
1000 N/m.

to the natural frequency; in normal structures, this situation is usually avoided

since large displacements can lead to destructive events. The effect of viscous

damping is much more visible in the proximity of resonance: from the amplitude

plot it can be seen that the magnitude of the resonance peak is reduced when the

amount of damping is increased. Moreover, the maximum amplitude occurs now

at ωd and not at ωn. The phase shift of the response, which in the theoretical

undamped case happens from 0◦ to −180◦ instantaneously when the frequency

of the excitation passes through resonance, becomes gradual when damping is

present, with a value of −90◦ at resonance.

The way the FRF is displayed can help the identification of damping. The Bode

plot is only one of the possibilities to plot a complex value versus frequency using

two separate figures; another way is to plot the real part and the imaginary

part versus frequency, again in two separate figures, or plotting the real part

versus the imaginary part in the Argand plane [45]. The latter case is also known

as the Nyquist plot and it can be particularly helpful to visualize the damping

properties.
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Effect of viscous damping on the Nyquist plot

The Nyquist plot consists of displaying the real part versus the imaginary part of

the FRF in the Argand plane. One of the advantages of this plot is the fact that
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Figure 2.4: Nyquist plot of the receptance of a viscously damped SDOF
system for different values of ζ. The numbers appearing in the
plot indicate the ω/ωn ratio. m = 2 kg, k = 1000 N/m.

the frequencies close to resonance are clearly identified and well separated on the

plot and the size of the curves obtained is related to damping. Depending on the

type of damping, the choice of which FRF (receptance, mobility or accelerance)

is displayed in the Nyquist plot is important. The Nyquist plot of the receptance

of a viscously damped system showed in figure 2.4 can be related to the viscous

damping coefficient but it is difficult to extract precise values from the plot. The

plot of mobility (figure 2.5) is instead the right choice if the interest is in viscous

damping: the mobility of a viscously damped system excited by a harmonic force

as eq. (2.5) is given by

b(ω) =
iω

k + iωc− ω2m
(2.20)

its real and imaginary part are respectively

<(b(ω)) =
ω2c

(k − ω2m)2 + (ωc)2
(2.21)

17



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

< (b (ω))

=
(b

(ω
))

 

 
ζ = 0.1
ζ = 0.2
ζ = 0.4
ζ = 1

Figure 2.5: Nyquist plot of the mobility of a viscously damped SDOF sys-
tem for different values of ζ. m = 2 kg, k = 1000 N/m.

=(b(ω)) =
ω(k − ω2m)

(k − ω2m)2 + (ωc)2
(2.22)

The two equations can be arranged in the following equation

(

<(b(ω))− 1

2c

)2

+ (=(b(ω)))2 =

(

1

2c

)2

(2.23)

which is the equation of a circle in the Argand plane centred at point (1/2c, 0)

with a radius of 1/2c allowing an easy estimation of the damping simply by

measuring the diameter of the circle of the mobility plot.

Effect of viscous damping on the hysteresis loop

The hysteresis loop is a plot of instantaneous force versus instantaneous displace-

ment of a system during steady state forced vibration [24] often used to display

the viscoelastic behaviour of materials (in that case, stress versus strain is a more

common version). In an undamped system this plot is simply a line segment in

the first and third quadrant and the slope depends on the mass and the stiffness

of the system. Lazan [25] showed that the hysteresis loop of a viscously damped

system (figure 2.6) is elliptical and the area enclosed by the ellipse represents

the energy dissipated per cycle. This property make it a valid instrument to

experimentally estimate the global energy dissipated in a system.
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Figure 2.6: Hysteresis loop of a viscously damped SDOF system for differ-
ent values of ζ. f0 = 1 N, ω = 10 rad/s, m = 1 kg, k = 1000
N/m.

Energy dissipated by viscous damping

The energy lost per cycle Ed by a general damping force Fd can be calculated by

Ed =

∮

Fd dx (2.24)

and it might depend on multiple factors, such as amplitude, frequency or temper-

ature [46]. Considering a viscously damped SDOF system, substituting eq. (2.7)

in eq. (2.24) it becomes

Ed =

∮

cẋ dx =

∮

cẋ2 dt (2.25)

If the system is excited by a single frequency harmonic force in the form

f(t) = f0sin (ωt) (2.26)

the steady state velocity will assume the form

ẋ(t) = ωx0cos (ωt− φ) (2.27)

Substituting eq. (2.27) in eq. (2.25)

Ed =

∮

cẋ2 dt =

∮

c (ωx0cos (ωt− φ))2 dt (2.28)
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The period T of the response is the same as that of the excitation force

T =
2π

ω
(2.29)

so the energy dissipated per cycle becomes

Ed = cω2x2
0

T
∫

0

cos2 (ωt− φ) dt = πcωx2
0 (2.30)

Crandall [4] defined the loss factor η by dividing the energy lost in a cycle by the

peak potential energy V stored in the system during that cycle

η =
Ed

2πV
(2.31)

giving a convenient measure of the structural damping. In real structures, the

values for η typically vary in a range from 10−5 to 10−1 but it can be larger for

specific applications. For an ideal viscous dashpot, the loss factor becomes

η =
cω

k
(2.32)

It can be seen from eq. (2.30) and eq. (2.32) that the energy dissipated per cy-

cle by viscous damping and the loss factor are proportional to the frequency of

the vibration. It is observed in experiments that this frequency dependence is

not so pronounced in most common materials and real structures [44, 4]. The

actual behaviour is closer to a frequency independent or weakly dependent dis-

sipation mechanism. This fact suggests that other models of damping, different

from viscous, could be more suitable to represent damping in a real structure.

Jacobsen [47] introduced an approximation, known as equivalent viscous damp-

ing, based on the energy dissipated per cycle within a system. If the frequencies

at which damping is important are known and the damping can be considered

light, which is the case in most engineering applications, it is a common assump-

tion to consider an ideal equivalent viscous dashpot by equating eq. (2.30) to the

actual energy dissipated by the real, and probably non-viscous, system at those

frequencies (usually at resonances) and calculating an equivalent viscous damp-

ing coefficient ceq. This coefficient is used to represent the energy dissipated at

a specific frequency only, but it can be considered an acceptable approximation
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in a wider range of frequencies. If a more reliable model is required or if critical

instabilities and frequencies are not known in advance then a different and more

accurate model becomes necessary.

2.2.3 Non-viscously damped systems

As stated previously, viscous damping is just one of the possible models for en-

ergy dissipation in vibrating systems which is often chosen for mathematical rea-

sons rather than for accurate representation of the physical system. Potentially,

any model which guarantees that the energy dissipation rate is non-negative can

represent the damping of a given system [48]. The most common models of non-

viscous damping include hysteretic damping, Coulomb friction and velocity nth

power damping.

Hysteretic damping

The idea of hysteretic damping was introduced with the aim of describing the

material damping properties of solids by Kimball and Lovell [49]. Theodorsen

and Garrick [50] introduced a linear structural friction model of damping with

frequency independent dissipated energy per cycle to obtain results closer to the

experimental behaviour of real structures while studying the flutter problem. This

model provides a damping force “proportional to the displacement, but in phase

with the velocity” and was labelled hysteretic damper by Bishop and Johnson

[51]. Crandall [52] points out that the behaviour of the hysteretic damper model

can be described by a transfer function in the frequency domain, but deriving the

differential equation linking the physical variables is not so straightforward as for

the viscous damping. Using the same notation used by Crandall [4], a frequency

dependent dashpot parameter can be defined as

c(ω) =
kη(ω)

|ω| (2.33)

which leads to the frequency domain equation of motion for the SDOF system

[

−mω2 + ic(ω)ω + k
]

x(ω) = f(ω) (2.34)

or
[

−mω2 + k (1 + iη(ω)sgn(ω))
]

x(ω) = f(ω) (2.35)
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where x(ω) and f(ω) are the Fourier transforms of the response and excitation

respectively. Many authors have then wrongly derived time domain equations

from eq. (2.34) such as

mẍ(t) + c(ω)ẋ(t) + kx(t) = f(t) (2.36)

and used it directly to calculate transient motions. Crandall [4] calls eq. (2.36)

“non-equation” since it mixes time-domain and frequency-domain operations

without properly inverting the frequency dependent damping.

Eq.(2.33) is a general expression for the frequency dependent dashpot. If the loss

factor is assumed to be a constant η0 independent of frequency, it becomes

c(ω) =
kη0

|ω| (2.37)

known as the ideal hysteretic damper [52]. The unit impulse response function

for a SDOF system with ideal hysteretic damping has been derived [53, 54, 55]

as

h(t) =
1

πkη0t
(−∞ < t <∞) (2.38)

showing a non-physical behaviour since it violates causality. This means that the
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Figure 2.7: Amplitude and phase of the FRF (receptance) of a SDOF sys-
tem with ideal hysteretic damper for different values of η0. m
= 2 kg, k = 1000 N/m.

state of the system at a given point of time is affected not only by the events
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in the past but also by the events in the future [56] so that the response may

anticipate the excitation. This flaw put some limitation to this model, which can

be anyway used in some common applications such as steady state oscillation in

instability analysis or stationary random vibration. For a harmonically excited

(ω > 0) SDOF system with an ideal hysteretic damper, the receptance becomes

h(ω) =
1

−mω2 + k (1 + iη0)
(2.39)

and the effect on the FRF is shown in figure 2.7. An important aspect which

can be noticed in comparison with figure 2.3 for the viscous damper, is that

the maximum amplitude of the FRF now is always obtained when ω = ωn,

regardless of the amount of damping. This behaviour is in contrast with real

structures experiments, showing again how it is difficult to accurately represent

real damping mechanisms using a mathematical model. Another difference is the

presence of a non-zero phase angle when ω approaches zero [44]. If the damping is
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Figure 2.8: Nyquist plot of the receptance of a SDOF system with ideal
hysteretic damper for different values of η0. m = 2 kg, k = 1000
N/m.

low, however, the two models (viscous and hysteretic) at resonance are sufficiently

close to be assumed equivalent and it can be proven that the constant loss factor

of the ideal hysteretic damper η0 and the damping ratio ζ of the viscous dashpot
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at resonance are related by

η0 ≈ 2ζ (2.40)

On the Nyquist plot, following a similar procedure to the one used to derive

eq. (2.23), the equation of a circle can now be obtained on the receptance plot as

< (h(ω))2 +

(

=(h(ω)) +
1

2η0k

)2

=

(

1

2η0k

)2

(2.41)

The circle, shown in figure 2.8, is now centred at point (0,−1/2η0k) with a radius

of 1/2η0k. The hysteresis loop (figure 2.9) is still elliptical and, as it is plotted

in this case, it cannot actually give any useful information about the nature of

damping, since it shows the loop for a harmonic excitation at a certain fixed

frequency so that the frequency dependence of c(ω) is not visible. If equation
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Figure 2.9: Hysteresis loop of a hysteretically damped SDOF system for
different values of η0. f0 = 1 N, ω = 10 rad/s, m = 1 kg,
k = 1000 N/m.

eq.(2.40) holds and the hysteresis plot of the two equivalent systems is plotted

for an exciting force at a frequency close to resonance, then the size of the loops

will be approximately the same. Away from resonance, the size of the two loops

will be considerably different.
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Other forms of non-ideal hysteretic damping can be found in literature as, for

example, the band-limited hysteretic damper suggested by Bishop and Price [57],

which is defined by transfer functions within certain frequencies which vanish

outside these bands, or combinations of hysteretic dampers with springs like the

modified hysteretic model and the quasi hysteretic model introduced by Muravskii

[58, 59].

Coulomb friction

Coulomb friction is a non-linear damping mechanism attainable from the relative

motion of two contacting dry surfaces which slide relatively to each other with a

normal force Fn holding them together [5], so that

Fd = µFnsgn(ẋ) (2.42)

where µ is the coefficient of friction, which is mainly a function of the material and

of the roughness of the two surfaces. The damping force described by eq. (2.42) is

shown in figure 2.10. This model of friction presents two main problems: firstly,
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Figure 2.10: Coulomb friction force. Fn = 1 N, µ = 1.

nonlinearity and discontinuity cause numerical stiffness when the change in the

direction of relative velocity occurs. This results in very small integration time

steps in simulations and high computational costs. It is also possible, with certain

time-integration methods, for numerical instabilities to develop [60]. Second,
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the actual behaviour of the friction forces is not as simple as the one shown in

figure 2.10.
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Figure 2.11: Coulomb friction force with stiction. Fn = 1 N, µ = 1. µs =
1.5.

Morin [61] suggested the existence of a static friction force Fs at rest which is

larger than the Coulomb friction of eq. (2.42) when there is motion. In trying

to represent this force, a slightly more elaborate model includes two different

coefficients: the kinetic coefficient of friction, which is used exactly as in eq. (2.42)

for all velocities different from zero, and the static coefficient of friction µs which

is used to represent the equilibrium force during static friction or stiction. The

two parameters model produces the force shown in figure 2.11.

Stribeck [62] showed that the static friction force does not decrease discontinu-

ously as in figure 2.11, but that there is a velocity dependence which is continuous.

A common model for this behaviour is shown in figure 2.12. The latter model

is fairly representative of the actual behaviour but it still contains an important

discontinuity when the velocity changes direction. Several authors have tried to

reduce this discontuinity by considering a small region close to the zero velocity

where the change from negative to positive force is not a vertical line but it is

replaced by a slope or by a hyperbolic tangent or logarithmic curve [60].

A common way of dealing with Coulomb friction in complex structures is to define

an energy equivalent viscous model as explained in section 2.2.2. By assuming

that under forced harmonic excitation the velocity is sinusoidal in the form of
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Figure 2.12: Coulomb friction force with Stribeck friction. Fn = 1 N,
µ = 1. µs = 1.5.
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Figure 2.13: Hysteresis loop of a SDOF system with Coulomb friction for
different values of µ. f0 = 15 N, Fn = 1 N, ω = 13 rad/s,
m = 1 kg, k = 1000 N/m.

eq. (2.27), the energy dissipated per cycle [46] by the Coulomb friction force of

eq. (2.42) is given by

Ed =

∮

Fd dx =

∮

Fd ẋ dt = 4µFnx0 (2.43)
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By equating eq. (2.43) and eq. (2.30)

πceqωx2
0 = 4µFnx0 (2.44)

the equivalent viscous damping coefficient ceq can be estimated as

ceq =
4µFn

πωx0

(2.45)

This approximation means that the equivalent system with a viscous dashpot

with damping coefficient ceq dissipates the same amount of energy per cycle of

the original system with Coulomb friction as eq. (2.42), but only at the specific

frequency ω. Since usually the importance of damping is visible only in the

proximity of resonance, this method allows a simpler calculation of the resonant

amplitude of a Coulomb friction damped system using well known linear solutions

used for viscous damping. The hysteresis loop for a SDOF system with Coulomb

friction (figure 2.13) is no longer an ellipse and shows the non-linear behaviour

of this type of energy dissipation.

Velocity nth power damping

In a more general sense, the damping force can be assumed to be proportional to

the nth power of the relative velocity as

Fd = cnẋ |ẋ|n−1 (2.46)

Eq. (2.46) includes viscous damping (n = 1) and Coulomb friction (n = 0) as

special cases but also quadratic damping (n = 2) obtainable from the turbulent

flow of a fluid through an orifice [5], cubic damping (n = 3) and other kinds

of damping, included fractional values for n too. Whereas for some value of n

there is a corresponding physical phenomenon, the nth power damping model can

be used as an abstract mathematical model in inverse problems where cn and n

becomes the identification parameters [63].

Fractional time derivatives models

Fractional derivatives have been formally and mathematically defined by sev-

eral authors in different ways; the most common definitions are known as the
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Riemann-Liouville and the Grünwald–Letnikov derivatives [64]. Practically speak-

ing, a fractional derivative is a derivative of order n for n being a fraction. The

physical meaning of such an operator is not straightforward: for example, it is

known that velocity is the order 1 derivative of displacement with respect to time

but the meaning of order 1/2 derivative of displacement is quite obscure. A de-

tailed geometric and physical interpretation of several fractional derivatives has

been suggested by Podlubny [65].

Fractional time derivatives offer a powerful and versatile instrument in dynamics,

especially for the curve-fitting of experimental data. One of the first applications

of fractional derivatives to mechanics was the modelling of stress relaxation of

some materials by Nutting [66] in 1921. Koeller [28] modelled the viscoelastic

behaviour of polymers including fractional or viscoelastic elements called spring-

pots, which constitute an intermediate device between a spring and a dashpot.

Schmidt and Gaul [29] provided a finite element formulation of the viscoelastic

constitutive equations using fractional time derivatives.

2.3 Multiple degree-of-freedom systems

Normally the behaviour of a real structure cannot be represented by a SDOF

model, unless it is a very simple system. However, even if a real structure is

a continuous system and has an infinite number of degrees of freedom, a good

approximation of the real structure can be a model with a finite number of ele-

ments representative of the most important properties from a dynamic point of

view. Most commonly, models consider discretised masses (known as lumped-

mass model) connected with springs and dashpots similarly to the SDOF system.

2.3.1 Undamped systems

The equations of motion of a MDOF system are usually written in a matrix

form. Considering, for example, the system shown in figure 2.14, the equilibrium
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Figure 2.14: Undamped multi degree-of-freedom system

equations can be written as

m1ẍ1(t) + (k1 + k2)x1(t)− k2x2(t) = 0

m2ẍ2(t)− k2x1(t) + (k2 + k3)x2(t)− k3x3(t) = 0 (2.47)

m3ẍ3(t)− k3x2(t) + k3x3(t) = f(t)

or, in a more compact form

Mẍ(t) + Kx(t) = f(t) (2.48)

where M ∈ R
n×n is the mass matrix, K ∈ R

n×n is the stiffness matrix, x(t) and

ẍ(t) ∈ R
n×1 respectively represent the vector of displacements and accelerations

and f(t) ∈ R
n×1 is the forces vector. n represents the number of degrees of

freedom. The mass and stiffness matrices are symmetric and positive definite. In

this example:

M =





m1 0 0
0 m2 0
0 0 m3



 K =





k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3





x(t) =







x1(t)
x2(t)
x3(t)







ẍ(t) =







ẍ1(t)
ẍ2(t)
ẍ3(t)







f(t) =







0
0

f(t)







Similarly to the SDOF system, the solution of eq.(2.48) when exciting the system

with a harmonic force is in the form

x(t) = x0e
iωt (2.49)
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where x0 ∈ R
n×1 is the vector of displacement amplitudes. Substituting eq.(2.49)

into eq.(2.48) and considering the free motion, an eigenvalue problem is obtained:

(

K− ω2M
)

x0 = 0 (2.50)

The non-trivial solution can be calculated when

det
(

K− ω2M
)

= 0 (2.51)

yielding n solutions ω2
1, ω2

2, . . ., ω2
n which are the eigenvalues of eq.(2.50) whose

square roots represents the natural frequencies of the MDOF system. By solving

eq.(2.50) for each natural frequency, n vector solutions φ1, . . ., φn are obtained,

known as the eigenvectors of eq.(2.50), representing the mode shapes of the dy-

namic system. Mode shapes are usually grouped into the modal matrix Φ

Φ = [φ1 . . . φn] (2.52)

A mode shape φp describes the way the system vibrates for a particular nat-

ural frequency ωp and it is useful for visualizing the dynamic behaviour of the

structure. The absolute magnitude of a mode shape is not definite since it only

describes the shape of the vibration and the relative quantities between the differ-

ent degrees of freedom. For this reason it can be arbitrarily scaled by multiplying

it by any constant. For example, figure 2.15 shows the first 6 mode shapes of a

cantilever beam scaled so that the maximum value is equal to 1. The eigenvectors

of the undamped system possess orthogonality properties so that for two distinct

modes p and q where p 6= q
φT

p Mφq = 0

φT
p Kφq = 0

(2.53)

whereas if q = p
φT

p Mφp = mp

φT
p Kφp = kp

(2.54)

where mp and kp are respectively the modal mass and the modal stiffness of mode

φp and T indicates the transpose. The orthogonality properties of the undamped

mode shapes can be summarised by the two equations

ΦTMΦ = diag(m1, . . . ,mn)

ΦTKΦ = diag(k1, . . . , kn)
(2.55)
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Figure 2.15: Mode shapes of a cantilever beam

where diag() indicates a matrix ∈ R
n×n with the modal quantities on the diagonal

and zero elsewhere. These orthogonality properties are important since they

allow the uncoupling of the equations of motion so that they can be solved as n

uncoupled SDOF equations. A common way to normalize the eigenvectors is

Φ̃
T
MΦ̃ = I

Φ̃
T
KΦ̃ = diag(ω2

1, . . . , ω
2
n)

(2.56)

where Φ̃ is now the mass-normalised modal matrix and I is the identity matrix.

To uncouple the equations of motion, define the coordinate transformation

x(t) = Φ̃u(t) (2.57)

where u(t) is the vector of modal coordinates. Substituting eq.(2.57) into eq.(2.48),

premultiplying by Φ̃
T
, using the orthogonality properties and considering the free

vibration

ü(t) + Ω2u(t) = 0 (2.58)
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where Ω is defined as

Ω = diag(ω1, . . . , ωn) (2.59)

obtaining n uncoupled SDOF equations for each modal coordinate up in the form

üp(t) + ω2
pup(t) = 0 (2.60)

Natural frequencies, mode shapes and orthogonality properties represent the basis

of modal analysis which is at the present time one of the most powerful tools in

vibration engineering.

2.3.2 Viscously damped systems

Figure 2.16: Viscously damped multi degree-of-freedom system

Considering the system in figure 2.16, the equations of motion become

m1ẍ1 + (k1 + k2)x1 + (c1 + c2)ẋ1 − k2x2 − c2ẋ2 = 0

m2ẍ2 − k2x1 − c2ẋ1 + (k2 + k3)x2 + (c2 + c3)ẋ2 − k3x3 − c3ẋ3 = 0

m3ẍ3 − k3x2 − c3ẋ2 + k3x3 + c3ẋ3 = f (2.61)

which can be written in the matrix form

Mẍ(t) + Cẋ(t) + Kx(t) = f(t) (2.62)

where ẋ(t) ∈ R
n×1 represents the vector of velocities and C ∈ R

n×n is the viscous

damping matrix. In this example

C =





c1 + c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3



 ẋ(t) =







ẋ1(t)
ẋ2(t)
ẋ3(t)






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The viscous damping matrix is symmetric and non-negative definite. Considering

the free vibration

Mẍ(t) + Cẋ(t) + Kx(t) = 0 (2.63)

the solution [44] can be found in the form

x(t) = x0e
st (2.64)

The dynamics of the system is governed by the second-order matrix pencil P (s)

as

P (s) = Ms2 + Cs + K (2.65)

the eigenvalues and eigenvectors of which satisfy

P (λp)ψp = 0 (2.66)

or

(Mλ2
p + Cλp + K)ψp = 0 (2.67)

This is a complex eigenproblem so the solution is usually found using a different

approach. Adding the equation

Mẋ(t)−Mẋ(t) = 0 (2.68)

to eq.(2.63) and using the symmetric state-space arrangement [67] by defining

A =

[

0 M

M C

]

B =

[

−M 0

0 K

]

y(t) =

{

ẋ(t)
x(t)

}

where A and B ∈ R
2n×2n and y(t) ∈ R

2n×1, another matrix equation is obtained

Aẏ(t) + By(t) = 0 (2.69)

The size of the problem is doubled but eq.(2.69) is a first order differential equa-

tion leading to a simpler eigenvalue problem

(Aλ + B)y0 = 0 (2.70)

The eigenvalues λp and the eigenvectors ξp ∈ C
2n×1 of eq.(2.70) are generally

complex quantities and they are related to the eigenvectorsψp ∈ C
n×1 of eq.(2.66)

by

ξp =

{

ψpλp

ψp

}

(2.71)
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In case of underdamped systems, the eigenvectors of eq.(2.70) appear in complex

conjugate pairs and so do the eigenvalues, so that

ξ∗p =

{

ψ∗
pλ

∗
p

ψ∗
p

}

(2.72)

where ∗ indicates the complex conjugate, is also an eigenvector of the problem.

The eigenvectors still have orthogonality properties as in the undamped case but

with respect to the matrices A and B. If the state-space modal matrix Ξ is

defined as

Ξ = [ξ1 ξ2 . . . ξ2n] (2.73)

and the coordinate transformation as

y(t) = Ξu(t) (2.74)

the orthogonality properties can be expressed by

ΞTAΞ = diag(a1, . . . , a2n)

ΞTBΞ = diag(b1, . . . , b2n)
(2.75)

where ap and bp ∈ C, leading to 2n SDOF equations for each modal coordinate

up in the form

apu̇p(t) + bpup(t) = 0 (2.76)

whose solution can be found in the form

up(t) = ūpe
λpt (2.77)

where

λp = − bp

ap

(2.78)

and ūp represents the amplitude of the modal coordinate and depends on the

initial conditions. The free vibration response can be calculated considering the

separate contributions of each mode as

u(t) =
2n
∑

p=1

ξpūpe
λpt (2.79)

Taking as analogy the SDOF case, each eigenvalue λp can be written in the form

λp = −ωpζp ± iωp

√

1− ζ2
p (2.80)
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which allows the calculation of the modal damping ratio of each mode by

ζp =
−<(λp)

|λp|
(2.81)

From an engineering point of view, the state-space analysis presents several draw-

backs when compared to the classical modal analysis used for the undamped sys-

tem. The doubled size of the eigenvalue problem results, especially in the case

of large structure, in high computational effort to solve it; the physical meaning

of complex mode shapes is less straightforward than the classical normal modes.

Plots like figure 2.15 are meaningless for the damped system, since the complex

nature of eigenvectors introduces a phase shift which causes the maximum dis-

placement for each DOF to be reached at different instants [44] so that a static

mode shape is not representative of the dynamic behaviour and an animated

mode shape is required. In order to apply classic modal analysis to damped sys-

tems, the modal matrix Ψ of the eigenproblem in eq.(2.66) should be real and

able to diagonalise simultaneously M, K and C. The real eigenvectors obtained

from the undamped system do not necessarily diagonalize the damping matrix,

i.e. ΦTCΦ does not yield a diagonal matrix. The additional coupling due to

damping does not allow a direct use of the modal analysis theory to the damped

system unless approximations or constraints on the viscous damping matrix are

introduced. A common procedure, when damping is considered small, simply

consists in neglecting the off-diagonal terms of ΦTCΦ, known as the decoupling

approximation [56]. Several studies were focused on understanding the effects of

this approximation on the dynamic behaviour [68, 69] and on the best way for

obtaining the optimal diagonal matrix from the non-diagonal matrix [70].

A different strategy can be applied to the normalization of the mode shapes

measured in real experiments, since it causes a transfer of information between the

real and imaginary parts of eigenvectors. Ibrahim and Sestieri [71] proposed a way

to normalize the eigenvectors so that the real part holds most of the information;

by doing so, the error produced by using the real part of the mode shape in place

of the full complex mode shape is minimized. The normalization is obtained using

the equations

ΨTMΨΛ + ΛΨTMΨ + ΨTCΨ = 2iΛI (2.82)
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and

ΛΨTMΨΛ + ΨTKΨ = 2iΛIΛ (2.83)

where Λ is defined as

Λ = diag(λ1, . . . , λn) = ΛR + iΛI (2.84)

and ΛR and ΛI respectively represent the real and imaginary part of Λ. This

normalization can be useful, for example, in the identification of the real modes

of an undamped FEM model associated with the complex modes of experiments.

The classical approach, however, is to select a damping matrix C which is diag-

onalisable by the normal modes of the undamped system.

Classical viscous damping

Lord Rayleigh [9] introduced proportional damping (or Rayleigh damping) in

order to apply the concept of classical modal analysis of undamped systems to

damped systems. The damping matrix is assumed to be proportional to the

stiffness and mass matrix and becomes

C = αK + βM (2.85)

where α and β are constants. From a physical point of view there are no reasons

for the damping matrix to have this kind of relation with the other two matrices,

but from a mathematical point of view this formulation offers two important

advantages: the mode shapes are always real and they uncouple the equations

of motion by simultaneously diagonalizing the three matrices M, C and K. By

substituting eq.(2.85) into eq.(2.63) using the coordinate transformation (2.57),

previously applied to the undamped system, and premultiplying by Φ̃
T

Φ̃
T
MΦ̃ü(t) + Φ̃

T
(αK + βM) Φ̃u̇(t) + Φ̃

T
KΦ̃u(t) = 0 (2.86)

remembering the normalization (2.56)

ü(t) + diag(αω2
1 + β, . . . , αω2

n + β)u̇(t) + diag(ω2
1, . . . , ω

2
n)u(t) = 0 (2.87)

leading to n uncoupled equations

üp(t) + (αω2
p + β)u̇p(t) + ω2

pu(t) = 0 (2.88)
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By analogy with eq.(2.15) for the viscously damped SDOF system, it is possible

to write eq.(2.88) in the form

üp(t) + 2ζpωpẋp(t) + ωp
2up(t) = 0 (2.89)

where ζp is the modal damping ratio of mode p

ζp =
αωp

2
+

β

2ωp

(2.90)

Using this formulation, each mode can be studied separately from the other ones

as a simple SDOF system. Proportional damping is widely used in simulations

since it is computationally efficient and it reduces the number of identification

parameters for the damping matrix to two (α and β) in inverse problems. Pro-

portional damping is only a special case of classical viscous damping. Necessary

and sufficient conditions for a viscously damped linear system to possess classical

normal modes were established by Caughey [72] and Caughey and O’Kelly [73]

and can be expressed by the equation

KM−1C = CM−1K (2.91)

Unfortunately, real systems normally possess complex modes so proportional

damping, despite the unquestionable advantages just mentioned, is not always

accurate enough to represent damping in certain applications. Different strate-

gies were developed in order to obtain forms of damping which allow complex

modes but are still affordable from a computational point of view. Link [74] pro-

posed an interesting parameterisation applied to model updating. His idea is to

use a proportional damping matrix for each substructure, reducing considerably

the number of parameters compared to a fully populated viscous matrix, and

then assemble the global damping matrices as

C =

q
∑

i

αiKi +

q
∑

i

βiMi (2.92)

where q is the number of substructures considered and Mi and Ki are the mass

and stiffness matrices of the ith substructure. In this way the updating parameters

are reduced to 2q and the global viscous matrix C is not classical and can possess

complex modes.
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Effect of viscous damping on the FRF

The FRF of a MDOF system subjected to a harmonic input force can be calcu-

lated by

H(ω) =
[

K + iωC− ω2M
]−1

(2.93)

where H(ω) ∈ C
n×n is the receptance matrix of the system. The element Hp,q
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Figure 2.17: Receptance of an undamped MDOF system. m1 = 3 kg, m2

= 5 kg, m3 = 8 kg, k1 = 5000 N/m, k2 = 2000 N/m, k3 =
1000 N/m.

of the receptance matrix represents the response of the system at the degree of

freedom p when the system is excited at the degree of freedom q. The amplitude

and phase of the receptance H1,3 of the undamped system in figure 2.14 are

displayed in figure 2.17. The three peaks in the amplitude plot correspond to the

three natural frequencies of the system, where a 180◦ phase shift occurs as for

the SDOF system. Depending on the location and on the type of damping, the

effect on the FRF can be different for each mode. For example, in figure 2.18

the effect of adding a viscous dashpot between DOF 1 and DOF 2 (figure 2.16)

with three different damping coefficient is shown. The dashpot in this particular

location does not seem to affect too much mode 1 and mode 2 whereas it seems
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Figure 2.18: Receptance of a viscously damped system varying c2. m1 = 3
kg, m2 = 5 kg, m3 = 8 kg, k1 = 5000 N/m, k2 = 2000 N/m,
k3 = 1000 N/m.
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Figure 2.19: Receptance of a viscously damped system varying c3. m1 = 3
kg, m2 = 5 kg, m3 = 8 kg, k1 = 5000 N/m, k2 = 2000 N/m,
k3 = 1000 N/m.
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to be very important for the amplitude of the response at frequencies close to the

natural frequency of mode 3. Figure 2.19 shows the effect of adding a viscous

dashpot between DOF 2 and DOF 3. In this case, mode 1 and mode 3 seems

unaffected whereas mode 2 is highly affected by the dashpot. The same results

can be obtained by comparing the values of the modal damping ratios calculated

using eq.(2.81). Considering the most damped configuration in figure 2.19, with

c1 = 0 Ns/m, c2 = 0 Ns/m and c3 = 9 Ns/m, we obtain the modal damping

ratios for the three modes respectively ζ1 = 0.0028, ζ2 = 0.0571 and ζ3 = 0.0009

confirming that the second mode is the most affected by the dashpot in DOF 3.

These results can be justified by looking at the mode shapes of the system, since

the viscous damping force is proportional to the relative velocities between the

DOFs where the dashpot is connected. If the dashpot is located between two

DOFs which do not have relative displacement for a particular mode shape, it

will not dissipate any energy so the effect on the FRF at the frequency of that

mode will be very small.

2.4 Closure

The basic notions on modal analysis and on the effect of damping in vibrations

have been provided in order to give the necessary grounding for a better under-

standing of the rest of the dissertation. In the next chapter, some modal damp-

ing and SDOF identification techniques are explained and a literature review

of the main MDOF damping identification techniques is presented, with some

critical observations on aspects of the philosophy and performance of different

approaches.
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Chapter 3

Damping identification

3.1 The inverse problem

Damping identification is a typical engineering inverse problem. The aim is to

use the information collected by experiments in order to infer the values of the

parameters of the model characterizing the system under investigation. This kind

of problems can be very difficult to solve for many reasons; firstly, the identified

model parameters could be wrong or insufficiently detailed, resulting in mean-

ingless values which cannot be used to represent the real system in simulations.

Secondly, the inverse problem can be underdetermined, so that different values

for the parameters could be consistent with the data but not necessarily with

the physical system. The inverse problem could also be overdetermined, so that

a least squares approximation would be necessary and the parameters identified

by the solution are a sort of equivalent average of the values of the real system

under certain conditions.

Given the complexity of the damping mechanism listed in chapter 1, the methods

considered have been restricted to linear damping models and specifically viscous

damping. However, some of the analysed methods are capable of identifying

other kinds of linear and non-linear damping too. The techniques presented in

this chapter can be divided into two main categories: the identification of modal

damping, which estimates the values of the damping ratio ζ for each mode or the

loss factor η, and the spatial identification of damping, which aims to identify the

location and the value of the coefficients of the damping matrix. In this thesis

the main interest is in the location and the identification of the main sources of

damping in a MDOF system, so most of the work has been done on the spatial
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identification. In engineering problems, however, the value of ζ is often sufficient

for the analysis of most structures, especially when the damping is considered

light.

In this chapter, after a short description of some modal damping and SDOF

identification techniques, a literature review of the main MDOF damping identi-

fication techniques is presented, with some critical observations on some aspects

of the philosophy and performance of different approaches.

3.2 SDOF and modal identification

The identification of damping in SDOF systems can be performed in several

different ways; the most famous are the logarithmic decrement method and the

half-power bandwidth method which are used to identify the damping ratio ζ or

the loss factor η. Other methods include the energy method, whose modification

leads to the MDOF improved method proposed in chapter 4, and the estimation of

damping from the Nyquist plot and from the hysteresis loop as already mentioned

in chapter 2. All these method can be adapted to the identification of the modal

damping ratio in MDOF systems when the modes are well separated and can be

treated as separate SDOF systems.

3.2.1 Logarithmic decrement

The logarithmic decrement technique is based on the measurement of the rate of

decay of free oscillations [46]. Starting from the general solution of eq. (2.11),

given by

x(t) = a1e
s1t + a2e

s2t (3.1)

where a1 and a2 are constants determined by the initial conditions, and remem-

bering eq. (2.16), the solution can be written in the form

x(t) = e−ωnζt
(

a1e
iωnt
√

1−ζ2
+ a2e

−iωnt
√

1−ζ2
)

(3.2)

or

x(t) = x0e
−ωnζt sin

(

ωnt
√

1− ζ2 + φ
)

(3.3)

The logarithmic decrement δ is defined as
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Figure 3.1: Free vibration response. ζ = 0.2.

δ = ln
x(t1)

x(t1 + τ)
(3.4)

where x(t1) is the amplitude of the peak of the free vibration at a certain instant

t1 and τ is an integer multiple of the damped period τd defined as

τd =
2π

ωd

=
2π

ωn

√

1− ζ2
(3.5)

The values of x(t1) and x(t1 +τ) can be easily extracted from the plot of a simple

free vibration test as in figure 3.1 and δ can be directly estimated. Assuming

τ = nτd, where n is an integer, and substituting eq. (3.3) into eq. (3.4) the

expression for the logarithmic decrement becomes

δ = ln
e−ωnζt1 sin

(

ωnt1
√

1− ζ2 + φ
)

e−ωnζ(t1+nτd) sin
(

ωn(t1 + nτd)
√

1− ζ2 + φ
) (3.6)

The values of the sines are equal after each period τd, then

δ = ln
e−ωnζt1

e−ωnζ(t1+nτd)
= ζωnnτd (3.7)

Substituting eq. (3.5) into eq. (3.7) leads to

δ =
2nπζ
√

1− ζ2
(3.8)
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which can be used to estimate the value of ζ knowing n and δ. For lightly damped

systems, eq. (3.8) is often simplified as

δ = 2nπζ (3.9)

so that the damping ratio is simply obtained by

ζ =
δ

2nπ
(3.10)

3.2.2 Half-power bandwidth method

The half-power bandwidth method is based on the data obtainable from the plot

of the FRF of a SDOF system, but it can be used in MDOF systems too, provided

that the modes are well separated in the FRF plot. Theoretically, the value of

damping could be extracted directly from the receptance plot without using the

half-power bandwidth method [44]; defining the amplification factor Q for the

SDOF system as

Q =
x0

xs

(3.11)

where x0 is the amplitude of the displacement under dynamic load and xs is

the amplitude of the displacement under static load, equal to f0/k. From the

definition of receptance

|h(ω)| = Q

k
(3.12)

which leads to

log(Q) = log |h(ω)| − log

(

1

k

)

(3.13)

The amplification factor Q on the FRF is represented by the distance between

a point of the FRF and the horizontal stiffness line. If the value of Qmax at

resonance can be measured and the damping is light, the value of the damping

ratio ζ can be derived directly from

log(Qmax) = log

(

1

2kζ

)

− log

(

1

k

)

= − log (2ζ) (3.14)

or

Qmax =
1

2ζ
(3.15)

Unfortunately, the precise value of the resonance peak amplitude is very diffi-

cult to measure so the half-power bandwidth method is usually preferred. As
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previously stated damping is mainly effective at the resonance frequency, but

also in the proximity where the amplitude is easier to measure. Consider a hys-

teretically damped SDOF system under steady-state harmonic vibration [44], the

energy dissipated per cycle of oscillation at resonance is

Ed(max) = πx2
0(max)kη = π |h(ω)|2max f0kη (3.16)

the half-power points are defined at frequencies where the energy dissipated per

cycle is half of the maximum energy dissipated at the resonance frequency ωd.

Since the energy is proportional to the square power of the amplitude of the

receptance, the half-power frequencies are found where

|h(ω)|1,2 =
|h(ω)|max√

2
(3.17)

and are indicated with ω1 and ω2. It can be demonstrated [45] that the loss factor

can be calculated by

η =
ω2

2 − ω2
1

2ωd

(3.18)

Recalling eq. (2.40), at resonance it is possible to write

ζ ≈ ω2
2 − ω2

1

4ωd

(3.19)
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since the peak at resonance down to the half-power points is quite symmetric, a

reasonable approximation is to consider

ω2 + ω1 ≈ 2ωd (3.20)

and therefore the damping ratio ζ can be calculated as

ζ ≈ ω2 − ω1

2ωd

(3.21)

3.2.3 Energy-dissipation method

The energy-dissipation method or energy-balance method in SDOF was proposed

and experimentally validated by Liang and Feeny [75] in 2006. The method is

based on the balance between the energy input by an external force and the

energy dissipated by damping and results in the “equivalent viscous and Coulomb

damping” parameters identification. Consider the SDOF system

mẍ + kx + d(x, ẋ, ẍ) = f(t) (3.22)

where d(x, ẋ, ẍ) represents a generic damping function of displacements, velocities

and accelerations. The energy-balance equation is obtained by an integration

along a motion path C as
∫

C

(mẍ + kx + d(x, ẋ, ẍ)) dx =

∫

C

f(t)dx (3.23)

or, changing the integration variable to time

t+T1
∫

t

(mẍ + kx + d(x, ẋ, ẍ)) ẋdt =

t+T1
∫

t

f(t)ẋdt (3.24)

where T1 is a finite time interval. Defining

Ec =

t+T1
∫

t

(mẍ + kx) ẋdt

Ed =

t+T1
∫

t

d(x, ẋ, ẍ)ẋdt (3.25)

Ef =

t+T1
∫

t

f(t)ẋdt
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where Ec is the energy contribution of the conservative components of the system,

Ed is the energy dissipated by damping and Ef is the energy input by the external

force f(t). Eq. (3.24) can be now expressed as

Ed = Ef − Ec (3.26)

In case of a periodic excitation f(t) and a response x(t) of the same period T , if

the integration is performed over a cycle of periodic motion or an integer multiple

of that period, Ec is equal to zero from the definition of conservative force. The

energy-balance equation in this case becomes

T
∫

0

d(x, ẋ, ẍ)ẋdt =

T
∫

0

f(t)ẋdt (3.27)

which represents the base of the identification method: the energy dissipated by

damping in a cycle of periodic motion equals the energy input by the external

force. Viscous damping is a special case where

d(x, ẋ, ẍ) = cẋ (3.28)

In this case, eq. (3.27) is reduced to

c

T
∫

0

ẋ2dt =

T
∫

0

f(t)ẋdt (3.29)

By measuring the input force and the response, the viscous damping coefficient

c can be estimated by

c =

T
∫

0

f(t)ẋdt

T
∫

0

ẋ2dt

(3.30)

In order to obtain the “equivalent viscous and Coulomb damping” parameters,

Liang and Feeny [75] apply this method to a system with a damping function of

the type

d(x, ẋ, ẍ) = cẋ + µFnsgn(ẋ) (3.31)

so that the energy equation becomes

c

T
∫

0

ẋ2dt + µFn

T
∫

0

sgn(ẋ)ẋdt =

T
∫

0

f(t)ẋdt (3.32)
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In order to identify the two parameters (c and the product µFn), at least two

different excitations are necessary. Multiple tests measurements will lead to a

least-squares version of eq. (3.32) which provides the equivalent parameters which

are representative of the system in the frequency range and force amplitude used

in the tests. A more detailed study of this method will be given in chapter 4

leading to the improved MDOF method proposed.

3.2.4 Other methods

Besides the three techniques just described, there is a large amount of literature

on the identification of damping in SDOF systems or modal damping ratios. It

has already been mentioned how to extract information about damping from

the Nyquist plot and from the hysteresis loop; other techniques, which will not

be treated in this dissertation, include different methods based on free decay

vibrations measurements [76, 77], other energy-related methods [78] and method

based on modulations of responses [79] and wavelets [80, 81, 82]. The present

study is more concerned with the spatial identification of damping in MDOF

systems rather than the damping ratio identification; the next section presents a

summary of the main MDOF damping identification techniques.

3.3 MDOF spatial identification

There are several MDOF damping identification methods available in literature,

each of them has its own advantages and drawbacks. Regarding linear viscous

damping identification, the methods can be classified into three main groups

depending on the input data used: methods based on the FRF matrix, methods

based on modal parameters (frequencies and mode shapes) and methods based

on time histories.

There are review papers which present surveys on the existing methods to iden-

tify the linear viscous damping matrix. Srikantha Phani and Woodhouse have

compared the performance of a number of specific identification routines using

a numerical simulation [83] and an experiment [84]. In particular, they try to

determine which are the best methods for a given vibration measurements from
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a test structure, what is the sensitivity of the damping identification methods to

noise and truncation and what is the influence of modal and spatial incomplete-

ness of data. The study is performed by comparing indices based on numerical

accuracy and spatial distribution. Prandina et al. [85] concentrated particularly

on the philosophy of the methods and not so much with the performance of par-

ticular implementations and routines; important considerations are focussed on

the effects of modal truncation which is an inevitable consequence of modal test-

ing over a limited frequency range. Pilkey and Inman [86] listed and explained

the main features of a number of different methods showing the theories of the

different approaches.

3.3.1 Preliminary calculations

Before starting the literature review, some calculations are presented in order

to draw conclusions in the next sections. Recalling the eigenproblem of the

damped MDOF system in eq. (2.66), the eigenvalues and eigenvectors forming

self-conjugate sets can be arranged to form the spectral and modal matrices as

[

Λ 0

0 Λ∗

]

=

[

diag(λp) 0

0 diag(λ∗
p)

]

∈ C
2n×2n (3.33)

[Ψ Ψ∗] = [ψ1 . . . ψn ψ
∗
1 . . . ψ∗

n] ∈ C
n×2n (3.34)

Using the symmetric state-space arrangement [67] it can be shown that

[

ΛΨT ΨT

Λ∗Ψ∗T Ψ∗T

](

s

[

0 M

M C

]

+

[

−M 0

0 K

])[

ΨΛ Ψ∗Λ∗

Ψ Ψ∗

]

=

=

[

sI−Λ 0

0 sI−Λ∗

]

(3.35)

where Ψ is normalised so that

[

ΛΨT ΨT

Λ∗Ψ∗T Ψ∗T

] [

0 M

M C

] [

ΨΛ Ψ∗Λ∗

Ψ Ψ∗

]

= I (3.36)

[

ΛΨT ΨT

Λ∗Ψ∗T Ψ∗T

] [

−M 0

0 K

] [

ΨΛ Ψ∗Λ∗

Ψ Ψ∗

]

= −
[

Λ 0

0 Λ∗

]

(3.37)

Expanding eqs.(3.36) and (3.37) leads to the orthogonality relationships given by

Lancaster [87]
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[

ΨT

Ψ∗T

]

M [Ψ Ψ∗]

[

Λ 0

0 Λ∗

]

+

[

Λ 0

0 Λ∗

] [

ΨT

Ψ∗T

]

M [Ψ Ψ∗] +

+

[

ΨT

Ψ∗T

]

C [Ψ Ψ∗] = I (3.38)

−
[

Λ 0

0 Λ∗

] [

ΨT

Ψ∗T

]

M [Ψ Ψ∗]

[

Λ 0

0 Λ∗

]

+

[

ΨT

Ψ∗T

]

K [Ψ Ψ∗] =

= −
[

Λ 0

0 Λ∗

]

(3.39)

3.3.2 FRF-based methods

The first category of identification methods considered uses the FRF matrix (typ-

ically the receptance matrix) as the input data to identify the viscous damping

matrix. The equations of motion of a viscously damped MDOF system

Mẍ(t) + Cẋ(t) + Kx(t) = f(t) (3.40)

described in section 2.3.2 can be written in the frequency domain as

x(ω)
[

K + iωC− ω2M
]

= f(ω) (3.41)

where x(ω) and f(ω) are respectively the Fourier transform of x(t) and f(t). The

receptance matrix is defined as

H(ω) =
[

K + iωC− ω2M
]−1

(3.42)

and can be directly measured from experiments. The element Hp,q of the recep-

tance matrix represents the response of the system at the degree of freedom p

when the system is excited at the degree of freedom q. For a linear conservative

system, Maxwell’s Rule of Reciprocity applies [44] so that Hp,q = Hq,p and the

FRF matrix is symmetric. This property is often used to check the quality of the

measured data by reciprocity checks.

Chen et al.

A method based on FRF measurements was proposed by Chen et al. [88]. The

frequency response function generated from the normal modes HN(ω) is defined
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as

HN(ω) =
[

K− ω2M
]−1

(3.43)

eq. (3.41) can be rewritten as

HN(ω)−1x(ω) + iωCx(ω) = f(ω) (3.44)

and premultiplying eq. (3.44) by HN(ω) yields

x(ω) + iG(ω)x(ω) = HN(ω)f(ω) (3.45)

where

G(ω) = ωHN(ω)C ∈ R
n×n (3.46)

recalling that

x(ω) = H(ω)f(ω) (3.47)

and using eq. (3.45), the relationship between the FRFs generated from the nor-

mal modes HN(ω) and the complex modes H(ω) can be written as

HN(ω) = [I + iG(ω)]H(ω) (3.48)

By separating H(ω) into real and imaginary parts

HN(ω) = [I + iG(ω)] (< (H(ω)) + i= (H(ω))) (3.49)

Expanding eq. (3.49) yields

HN(ω) = [< (H(ω))−G(ω)= (H(ω))] + i [G(ω)< (H(ω)) + = (H(ω))] (3.50)

Since HN(ω) is real, the imaginary part of the right hand side of eq (3.50) can

be set to zero and G(ω) can be obtained from the FRF as

G(ω) = −= (H(ω)) [< (H(ω))]−1 (3.51)

The viscous damping matrix can be obtained directly from eq. (3.46) and eq. (3.48)

as

C =
1

ω

[

HN(ω)
]−1

G(ω) (3.52)

Symmetry of the damping matrix is then imposed and the equation can be solved

in a least squares sense over the frequency range measured.
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Lee and Kim

Lee and Kim [89] proposed a method based on the inversion of the receptance

matrix measured from experiments. The method considers the identification of

the viscous damping matrix C and the structural damping matrix Ds consid-

ered as complex-stiffness damping. In this case the equations of motion in the

frequency domain become

[

K + i (ωC + Ds)− ω2M
]

x(ω) = f(ω) (3.53)

and the receptance matrix

H(ω) =
[

K + i (ωC + Ds)− ω2M
]−1

(3.54)

The dynamic stiffness matrix (DSM) Z(ω) can be obtained from the inversion of

H(ω)

Z(ω) = [H(ω)]−1 = K− ω2M + i (ωC + Ds) (3.55)

By separating the real and imaginary part

< (Z(ω)) = K− ω2M (3.56)

= (Z(ω)) = ωC + Ds (3.57)

eq. (3.57) can be written in the form

[

I ω
]

[

Ds

C

]

= = (Z(ω)) (3.58)

Eq. (3.58) can be solved for the range of frequencies at which the FRF has been

measured, so that the two damping matrices C and Ds can be determined in a

least squares sense from

[

Ds

C

]

=









I ω1I

I ω2I

. . . . . .
I ωmaxI









+ 







= (Z(ω1))
= (Z(ω2))

. . .
= (Z(ωmax))









(3.59)

where + indicates the pseudo-inverse of the matrix.
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Instrumental variable

Fritzen [90] proposed an iterative method based on the minimisation of the error

εEE of the equation of motion defined as

εEE = f(ω)−
(

K + iωC− ω2M
)

x(ω) (3.60)

by applying the instrumental variable method, initially developed for parameter

estimation in econometrics. Srikantha and Woodhouse [83] applied the same

concepts on the error E between the dynamic stiffness Z(ω) and the inverse of

the measured Frequency Response Function H(ω), which can be expressed as

E = H(ω)Z(ω)− I (3.61)

It is possible to separate the real and imaginary part as

[

<(−ω2H iωH H)
=(−ω2H iωH H)

]





M

C

K



 =

[

I

0

]

+

[

<(E)
=(E)

]

(3.62)

and then use the instrumental variable method to estimate the three matrices M,

C and K. The instrument variable method is able to significantly reduce bias

when noise is present and Fritzen [90], after several examples, concluded that the

accuracy is better than least squares methods. The iterative solution is of the

form
[

M C K
]T

m+1
=
[

WT
mA
]−1

WT
mĪ (3.63)

where

A = [A1 . . . Ak . . . An]T (3.64)

Ak =

[

<(−ω2
kH iωkH H)

=(−ω2
kH iωkH H)

]

(3.65)

Ī =

[[

I

0

]

. . .

[

I

0

]]

(3.66)

and W is the “instrumental variable” matrix. The choice of W is particularly

important and has restrictions such that W and the error are not correlated.

Srikantha and Woodhouse suggest to use the dynamic stiffness matrix obtained

using the matrices Mm, Cm and Km identified in each previous iteration as

Wm+1 = Km − ω2Mm + iωCm (3.67)
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after an initial estimate which can be based on the least square solution from the

inverse of the FRF matrix similar to Lee and Kim’s method. The iteration is

performed until convergence is reached according to various criteria based on the

norms of the identified matrices, natural frequencies or minimisation of the error

between the measured and reconstructed FRFs.

Considerations on the inversion of the FRF

The three methods described are representative of the large number of techniques

which extract damping information from FRF measurements. Most of these

methods are based on the inversion of the FRF matrix. There is an important

aspect which has to be considered when using these methods in real experiments

[85]. Considering a system with viscous damping only, the receptance matrix can

be written in the form

H(s) =
n
∑

p=1

(

ψpψ
T
p

(s− λp)
+
ψ∗

pψ
∗T
p

(

s− λ∗
p

)

)

(3.68)

where ψp and λp have been defined in section 2.3.2. When s = iω

H(iω) =
n
∑

p=1

(

ψpψ
T
p

(iω − λp)
+

ψ∗
pψ

∗T
p

(

iω − λ∗
p

)

)

(3.69)

or, in a more compact form

H(iω) = ΨT (iωI−Λ)−1
Ψ + Ψ∗T (iωI−Λ∗)−1

Ψ∗ (3.70)

where

Ψ = [ψ1 . . . ψn] (3.71)

and

Λ = diag(λ1, . . . , λn) (3.72)

From eq. (3.69) it is observable that H(iω) is dominated by the eigenvalues closest

to the frequency ω where the denominator goes to zero (Figure 3.3). Considering

the dynamic stiffness expressed in state-space form

Z′(iω) =

[

Z′
11(iω) Z′

12(iω)
Z′

21(iω) Z′
22(iω)

]

=

(

iω

[

0 M

M C

]

+

[

−M 0

0 K

])

(3.73)
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Figure 3.3: Effect of modal incompleteness on the FRF of a 10 degree-of-
freedom system.

and in terms of the modal and spectral matrices

Z′(iω) =

[

ΛΨT ΨT

Λ∗Ψ∗T Ψ∗T

]−1 [
iωI−Λ 0

0 iωI−Λ∗

] [

ΨΛ Ψ∗Λ∗

Ψ Ψ∗

]−1

(3.74)

By combining eqs. (3.74) and (3.36)

Z′(iω) =

[

0 M

M C

] [

ΨΛ Ψ∗Λ∗

Ψ Ψ∗

] [

iωI−Λ 0

0 iωI−Λ∗

]

[

ΛΨT ΨT

Λ∗Ψ∗T Ψ∗T

] [

0 M

M C

]

(3.75)

and the dynamic stiffness matrix Z(iω) can be expressed from eq. (3.73) in the

form

Z(iω) = K− ω2M + iωC = ω2Z′
11(iω) + Z′

22(iω) (3.76)

By expanding the product of the three central matrices on the right-hand side of

eq. (3.75)

[

ΨΛ Ψ∗Λ∗

Ψ Ψ∗

][

iωI−Λ 0

0 iωI−Λ∗

][

ΛΨT ΨT

Λ∗Ψ∗T Ψ∗T

]

=

[

Q11 Q12

Q21 Q22

]

(3.77)
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where

Q11 =
∑

p

(

ψpλ
2
p(iω − λp)ψ

T
p +ψ∗

pλ
∗2
p (iω − λ∗

p)ψ
∗T
p

)

(3.78)

Q12 =
∑

p

(

ψpλp(iω − λp)ψ
T
p +ψ∗

pλ
∗
p(iω − λ∗

p)ψ
∗T
p

)

(3.79)

Q21 =
∑

p

(

ψpλp(iω − λp)ψ
T
p +ψ∗

pλ
∗
p(iω − λ∗

p)ψ
∗T
p

)

(3.80)

Q22 =
∑

p

(

ψp(iω − λp)ψ
T
p +ψ∗

p(iω − λ∗
p)ψ

∗T
p

)

(3.81)

It can be seen that the elements of Z′(iω) which are present in eq. (3.76) de-
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Figure 3.4: Effect of modal incompleteness on the DSM of a 10 degree-of-
freedom system.

pends on the summations from eqs. (3.78-3.81) which show that the contribution

of the pth mode vanishes as iω approaches λp and the high-frequency poles be-

come very significant through squaring in Q11. Thus the low-frequency dynamic

stiffness matrix is dominated by the high-frequency eigenvalues far away from the

frequency ω (Figure 3.4). Berman [91, 92] explained the meaning of this result;

that it is impossible to invert the receptance matrix of a practical structure with
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many modes, measured over a limited frequency range, in order to estimate the

matrices M, C and K. Consequently, a damping matrix identified by extracting

the imaginary part of an inverted matrix of measured receptances will only be

correct if all the modes are present in the measurements. This is possible in simu-

lation but never happens in practical case of mechanical systems with distributed

mass and stiffness.

3.3.3 Modal parameters methods

Methods based on modal parameters consider complex mode shapes and natural

frequencies extracted from modal analysis tests as input for the identification.

Information about damping is often extracted from the imaginary part of the

modal parameters, since the mode shapes of an undamped system are real. Partial

information about the mass and stiffness matrices are often required and usually

extracted from FEM.

Lancaster

Lancaster’s formula [87] appeared in 1961 without proof as a derivation from a

previous article [93], although a proof was given subsequently by Lancaster and

Prells [94] using the theory of matrix polynomials. The formula states that if the

eigenvectors are normalized so that

ψT
p (2Mλp + C)ψp = 1 (3.82)

the damping matrix can be obtained by

C = −M
(

ΨΛ2ΨT + Ψ∗Λ∗2Ψ∗T
)

M (3.83)

The formula can be alternatively developed [85] from eq. (3.36) in a few simple

steps as demonstrated below. By inverting eq. (3.36)

([

ΛΨT ΨT

Λ∗Ψ∗T Ψ∗T

] [

0 M

M C

] [

ΨΛ Ψ∗Λ∗

Ψ Ψ∗

])−1

= I (3.84)

Expanding the inverse on the left hand side and rearranging leads to

[

0 M

M C

]−1

=

[

ΨΛ Ψ∗Λ∗

Ψ Ψ∗

] [

ΛΨT ΨT

Λ∗Ψ∗T Ψ∗T

]

(3.85)
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or
[

0 M

M C

]−1

=

[

ΨΛ2ΨT ΨΛΨT

ΨΛΨT 0

]

+

[

Ψ∗Λ∗2Ψ∗T Ψ∗Λ∗Ψ∗T

Ψ∗Λ∗Ψ∗T 0

]

(3.86)

it can be proven using the Schur complement [95] that the left hand side matrix

inverse is
[

0 M

M C

]−1

=

[

−M−1CM−1 M−1

M−1 0

]

(3.87)

by comparing the right hand side in eq. (3.86) and eq. (3.87) it is seen that

−M−1CM−1 = ΨΛ2ΨT + Ψ∗Λ∗2Ψ∗T (3.88)

or

C = −
(

MΨΛ2ΨTM + MΨ∗Λ∗2Ψ∗TM
)

(3.89)

which is Lancaster’s formula. This formula can be expanded in order to show the

contribution of each mode as

C = −M
∑

p

(

ψpλ
2
pψ

T
p +ψ∗

pλ
∗2
p ψ

∗T
p

)

M (3.90)

or

C = −2M
∑

p

<
(

ψpλ
2
pψ

T
p

)

M (3.91)

To apply this method the mass matrix must be known, which may be an ac-

ceptable restriction, and we see that the damping matrix is constructed mode-

by-mode. This means that if we know an incomplete set of eigenvalues and

eigenvectors corresponding to the limited frequency range of a vibration test and

no others, then the same eigenvalues and eigenvectors will be returned exactly

from eq. (2.66) when C is computed using the truncated series in eq. (3.91). The

same equation ensures that the identified damping matrix is strictly real. There-

fore the damping matrix C appears to be computed correctly by the truncated

series for the frequency range in question and for example will reproduce exactly

the modal damping ratios obtained in the test.

Pilkey and Inman

Pilkey and Inman [96] proposed two methods based on Lancaster’s formula; one

iterative and one direct. The iterative method is due to the fact that Lancaster’s
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formula requires the normalization in eq. (3.82) but the damping matrix C is

unknown at first, so the eigenvectors are normalized using an initial guess C0 for

the viscous damping matrix

ψT
p (2Mλp + C0)ψp = 1 (3.92)

then the matrix C1 is computed using Lancaster’s formula

C1 = −M
(

ΨΛ2ΨT + Ψ∗Λ∗2Ψ∗T
)

M (3.93)

and compared to the initial guess according to convergence criteria. If the criteria

are not satisfied, a new normalization is performed using C1 as

ψT
p (2Mλp + C1)ψp = 1 (3.94)

and so on until convergence is reached. The direct method avoids the iteration but

implies knowledge of the stiffness matrix K. The eigenvalue problem in eq. (2.67)

can be written as

ψT
p Cψp = −ψT

p

(

K
1

λp

+ Mλp

)

ψp (3.95)

which, substituted into the normalization eq. (3.82) yields a normalization con-

dition which does not contain the damping matrix as

ψT
p

(

Mλ2
p −K

)

ψp = λp (3.96)

The two normalizations in eq. (3.92) and eq. (3.96) are essentially the same equa-

tions as eq. (3.38) and eq. (3.39) obtained directly [85] from the eigenproblem of

the viscously damped MDOF system described in eq. (2.66).

By measuring the complex mode shapes and knowing the mass and stiffness ma-

trices it is then possible to normalize the eigenvectors and estimate the damping

matrix using Lancaster’s formula directly without iteration.

Ibrahim

Ibrahim [97] proposed a method to identify the viscous damping matrix from

measured complex modes together with an analytical mathematical model of the

structure under investigation that needs improvements. The data extracted from

the experiments consists of: m complex eigenvectors ψ1 . . .ψm measured at n
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points on the structure where n > m, the damped natural frequencies (ωd)i and

the damping factors ζi. The data extracted from the mathematical model consists

of the analytical mass matrix MA ∈ R
n×n, the n normal modes φ1 . . .φn and

the natural frequencies (ωn)i. If the structure is linear, the measured parameters

satisfy the equation

[

M−1K M−1C
]

{

ψi

λiψi

}

= −λ2
iψi (3.97)

for i = 1, . . . ,m, where λi is the ith characteristic root of the system which is

related to the ith damping factor and the ith damped natural frequency through

the equation

λi = (ωd)i

(

ζi
√

1− ζ2
i

+ i

)

(3.98)

These equations are not sufficient to compute the two matrices M−1K and M−1C,

since n > m. The remaining equations regarding the unmeasured modes out of

the frequency range over which the modal test was conducted are assumed to

satisfy
[

M−1K M−1C
]

{

φi

λiφi

}

= −λ2
iφi (3.99)

for i = m + 1, . . . , n, where λi is now defined as

λi = −(ωn)iζ + i(ωn)i

√

1− ζ2 (3.100)

where ζ is the average damping factor of the m measured modes. Combining

eq. (3.97) and eq. (3.99), the equation obtained can be solved for M−1K and

M−1C. These two matrices have been obtained from data derived from both the

modal test and analytical model. The matrix M−1K can now be used to compute

the experimental normal modes by means of the equation

[

M−1K
]

φ = ω2φ (3.101)

The first m eigenvectors obtained from eq. (3.101) are the computed normal

modes obtained from the measured complex modes, the remaining eigenvectors

are the higher analytical modes previously used. The mass matrix can now be

corrected using an approach based on minimum changes [98] by computing a mass
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matrix that satisfies the orthogonality condition of the computed experimental

normal modes. The orthogonality relation of the analytical mass matrix

ΦTMAΦ = diag(m1, . . . ,mn) = Mm (3.102)

can be used to obtain the corrected mass matrix

M = MA + MAΦM−1
m [I−Mm]M−1

m ΦTMA (3.103)

which can be used to derive the stiffness and damping matrix using the previously

identified matrices

K = M
[

M−1K
]

(3.104)

C = M
[

M−1C
]

(3.105)

Minas and Inman

The method proposed by Minas and Inman [99] assumes knowledge of the analyt-

ical stiffness and mass matrices from a FEM and measurement of an incomplete

set of eigenvalues and eigenvectors from experiments. The mass and stiffness ma-

trices are then reduced to the size of the modal data measured. The eigenvalue

problem in eq. (2.67) can be written as

Cψp = − 1

λp

(

λ2
pM + K

)

ψp = fp (3.106)

and its complex conjugate transpose is

ψ∗
pC = f∗p (3.107)

which can be solved by separating the real and imaginary parts and rearranging,

obtaining the equation

Gpd = bp (3.108)

where Gp contains the real and imaginary parts of the eigenvectors, d contains

the (n2 − n)/2 unknown parameters of the symmetric damping matrix and bp

contains the real and imaginary parts of fp. Eq. (3.108) can be solved using the

least-squares approach or other optimization procedures depending on the size of

the modal data available which can lead to an overdetermined or underdetermined

problem.
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Adhikari and Woodhouse

Adhikari and Woodhouse [100] introduced a damping identification method based

on perturbation analysis. A similar approach with a comparison of perturbation

and exact solutions of a system with non-classical damping can be found in a

paper by Lees [101]. This method is based on the following expressions, originally

developed by Lord Rayleigh [9], of the complex eigenvalues λp and eigenvectors

ψp in terms of undamped eigenvalues ωp and eigenvectors φp

λp = −
φT

p Cφp

2
± iωp (3.109)

ψp = φp ± iωp

∑

j

φT
p Cφj

ω2
p − ω2

j

φj (3.110)

From the matrix of measured complex eigenvectors Ψ, matrices U = <(Ψ) and

V = =(Ψ) are extracted and it is assumed that the columns of V are given by a

linear combination of the columns of U, so that

V = UB (3.111)

and

B =
(

UTU
)−1

UTV (3.112)

for an incomplete set of frequencies and modes. From eq. (3.110) and eq. (3.111)

it can be seen that

c′jp = φT
p Cφj =

(

ω2
p − ω2

j

)

bjp

ωp

j 6= p (3.113)

and from eq. (3.109)

c′pp = φT
p Cφp = 2<(λp) (3.114)

Eqs. (3.113) and (3.114) complete the matrix C′, which is the fully populated

damping matrix in the modal coordinates of the undamped system. The matrix

C in physical coordinates is then computed as

C = U
(

UTU
)−1

C′
(

UTU
)−1

UT (3.115)

It is seen that the matrices C and C′ are generally not symmetric. Adhikari

and Woodhouse [102] modified their formulation by placing a constraint on the

solution of B that ensured a symmetric solution for C′ and hence for C.
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Considerations on the perturbation method

The method depends on pseudo inversions of the undamped eigenvectors U in

eqs. (3.112) and (3.115). By combining eqs. (3.111) and (3.112) the projection of

V onto the columns of U is obtained as

U
(

UTU
)−1

UTV = V′ 6= V (3.116)

This means that the matrix B obtained from eq. (3.112) results in the projection

V′ when substituted into eq. (3.111). The error E = (V −V′) is therefore carried

into eq. (3.113) which in turn produces erroneous values for C′. The Frobenius

norm εp of this error,

εp =
‖E‖F
‖V‖F

· 100% (3.117)

may be used as an indicator to assess whether or not enough modes have been

included in U and V. In eq. (3.115) pseudo inverses are used in the transformation

from modal to physical coordinates, of C′ to C. By pre and postmultiplying

eq. (3.115) by UT and U, thereby reversing the transformation, then

UTU
(

UTU
)−1

C′
(

UTU
)−1

UTU = C′ (3.118)

It can be seen that if the damping matrix in modal coordinates C′ is known

exactly it is converted to physical coordinates with perfect accuracy by eq. (3.115).

Thus it is the pseudo inverse in eq. (3.112) that introduces errors into the damping

estimate and not the pseudo inversion in eq. (3.115). Moreover, since eqs. (3.109)

and (3.110) are developed using the undamped orthogonality equation, it is clear

that the first order perturbation method requires a known mass matrix too.

3.3.4 Time histories methods

The last group of damping identification techniques consists in methods which use

measurements in the time domain as input to estimate the damping matrix. These

measurements are usually obtained from force transducers and accelerometers

from which velocities and displacements are derived.
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Liang

The method proposed by Liang [103] extends the technique introduced in the

previous paper [75] by Liang and Feeny presented in section 4.2 to MDOF sys-

tems. The concept is the same: balancing the energy input by the external forces

with the energy dissipated by damping. Starting from the equation of motion of

a MDOF system with viscous damping and Coulomb friction

Mẍ + Kx + Cẋ + D(ẋ)fk = f(t) (3.119)

where fk ∈ R
n×1 represents a vector consisting of Coulomb elements such that

D(ẋ)fk models the Coulomb damping. Assuming some of the damping coefficients

are known, eq (3.119) can be rearranged as

Mẍ + Kx + e(x, ẋ) + B(ẋ)c′ + G(ẋ)f ′k = f(t) (3.120)

where e(x, ẋ) ∈ R
n×1 contains all the known damping forces and c′ and f ′k con-

tains all the viscous damping and Coulomb friction coefficients to be identified.

These coefficients are multiplied by B(ẋ) and G(ẋ) which represent the associ-

ated state functions (velocities and sign functions). As for the SDOF method,

the excitation and the response must have a common fundamental period T . Pre-

multiplying eq. (3.120) by ẋT
i , where ẋi = [0 . . . ẋi . . . 0]T ∈ R

n×1 and integrating

over a full cycle of vibration, an energy equation is obtained

t+T
∫

t

ẋT
i Mẍdt +

t+T
∫

t

ẋT
i Kxdt +

t+T
∫

t

ẋT
i e(x, ẋ)dt+

+

t+T
∫

t

ẋT
i B(ẋ)c′dt +

t+T
∫

t

ẋT
i G(ẋ)f ′kdt =

t+T
∫

t

ẋT
i f(t)dt (3.121)

Repeating the premultiplication by all the vectors ẋT
i with i = 1, . . . , n, assuming

M is diagonal, remembering that the integration of conservative components over

a cycle of periodic motion are zeros and rearranging leads to n equations of the

type

c′1τi1 + . . . + c′pτip + F ′
k1γi1 + . . . + F ′

kqγiq = βi (3.122)

where, for i = 1, . . . , n

τij =

t+T
∫

t

bij(ẋ)ẋidt j = 1, . . . , p (3.123)
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γij =

t+T
∫

t

gij(ẋ)ẋidt j = 1, . . . , q (3.124)

βi =

t+T
∫

t

fi(t)ẋidt−
t+T
∫

t

(

n
∑

j 6=i

kijxj

)

ẋidt−
t+T
∫

t

ei(ẋ)ẋidt (3.125)

Eq. (3.122) can be rearranged to obtain a least squares problem with a solu-

tion which gives a column vector of the unknown damping parameters. From

eq. (3.125) it can be seen that knowledge of the stiffness matrix is required to-

gether with some known damping coefficients and the assumption of a diagonal

mass matrix in order to obtain enough equations to identify the unknown damp-

ing parameters.

3.3.5 Hybrid and other methods

To conclude the literature review, there are other methods which differ from the

three main groups and use different types of input together in order to improve

the performance of the identification.

Srikantha Phani and Woodhouse

Srikantha Phani and Woodhouse [83] proposed a method which relies on both

FRF measurements and modal parameters. The philosophy of the method is to

combine the results from the perturbational method described in section 3.3.3 by

Adhikari and Woodhouse [100] developed from the equations by Lord Rayleigh [9]

with a series expansion for the FRF matrix of a viscously damped system. First,

the diagonal part of the modal damping matrix C′ is obtained using the modal

parameters and then the off-diagonal terms are obtained from a perturbation

expansion. The FRF can be written in modal coordinates as

H(ω) =
[

−ω2I + iωC′ + Λ
]−1

(3.126)

where Λ in this case is a diagonal matrix with squared undamped natural frequen-

cies. From the experiments the modal damping factors determine the diagonal

elements of C′ whereas a standard series expansion is used to identify the off-

diagonal terms. Defining

A(ω) = Λ− ω2I + iωC′
d (3.127)
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where C′
d is the diagonal part of C′, it is possible to approximate H(ω) as

H(ω) = [A(ω) + iωC′
0]

−1 ≈ A−1(ω)− iωA−1(ω)C′
0A

−1(ω) (3.128)

where C′
0 is the off-diagonal part of C′. At this point, the full FRF matrix

H(ω) can be measured on the test structure and the matrix of real modes U,

damping amplification factors Qn and natural frequencies ωn for each mode can

be extracted using standard modal identification techniques. The diagonal terms

of C′ is obtained by

C′
dnn

=
ωn

Qn

(3.129)

the off-diagonal terms are given by

C′
0 ≈

A(ω)−A(ω)H(ω)A(ω)

iω
(3.130)

Matrix C′ can then be converted to physical coordinates by

C =
[

UT
]−1

C′U (3.131)

Since in eq. (3.130) C′ is frequency dependent, a least squares solution is required

and can be obtained by considering the range of frequency of interest.

Other methods

In this section some other approaches which have been found in literature and

have not been studied in details are listed for the sake of completeness. Caravani

and Thomson [104] proposed an iterative method where the aim is to minimize

the difference between the response vector of the identified system and the real

system. Beliveau [105] used a Bayesian approach based on perturbation and a

Newton-Raphson scheme. Fabunmi et al. [106] used mobility and the knowledge

of mass and stiffness matrices as input of the identification method based on

the transformation of the response vector as a linear combination of orthonormal

basis vectors. Other useful references can be found in the works by Hasselman

[107], Starek and Inman [108], Wang [109], Gaylard [110], Mottershead and Foster

[111] and Roemer and Mook [112].
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3.3.6 Numerical comparison

Three of the identification methods listed in this chapter (Lancaster’s formula,

perturbational method and inversion of the FRF matrix) have been compared [85]

in a numerical simulation in order to estimate the effect of modal incompleteness

on the performance of the identification. The cantilever beam shown in figure 3.5

is used for this purpose. The beam, of length 0.56 m and cross section 0.04 m

Figure 3.5: Cantilever beam with three dashpots in DOF 3, 13 and 17

(breadth) × 0.004 m (depth) has the standard material properties of aluminium.

In-plane bending vibrations are considered. Grounded dashpots are connected

at coordinates 3, 13 and 17 with damping coefficients of 0.2, 0.5 and 0.15 Ns/m

respectively. The beam model consists of ten Euler-Bernoulli beams, having

twenty coordinates and the same number of damped modes of vibration. One

way of assessing the effectiveness of the identified damping matrix is to compute

the eigenvalues of the system, using the known M, K and the identified C.

Natural frequencies and modal damping ratios determined for the computed

eigenvalues are shown in tables 3.2 and 3.1 using the identified damping ma-

trix from data consisting of five measured modes. All three methods produce

estimates very close to the exact natural frequencies. In table 3.2 all three meth-

ods return estimated damping ratios that exactly reproduce the damping ratios

for the first five modes. Since the data is restricted to the first five modes, the

remaining modes should be undamped. It is seen that Lancaster’s formula and

inverse do indeed correctly reproduce the undamped modes. The perturbation

method identifies damping in modes 6-20 that should not be present.
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Mode Exact Lancaster FRF inverse Perturbation

1 65.45 65.45 65.45 65.45
2 410.16 410.16 410.16 410.16
3 1148.71 1148.71 1148.71 1148.71
4 2252.59 2252.59 2252.59 2252.60
5 3729.53 3729.53 3729.53 3729.53
6 5587.26 5587.26 5587.26 5587.31
7 7839.20 7839.20 7839.20 7839.24
8 10502.37 10502.37 10502.37 10502.46
9 13579.43 13579.43 13579.43 13579.51
10 16881.19 16881.19 16881.19 16881.35
11 22468.11 22468.12 22468.11 22468.32
12 27144.31 27144.30 27144.31 27145.03
13 32905.22 32905.22 32905.22 32906.51
14 39714.40 39714.40 39714.40 39718.82
15 47722.70 47722.70 47722.70 47743.74
16 57076.72 57076.73 57076.73 57189.76
17 67741.22 67741.23 67741.22 67789.80
18 79084.58 79084.65 79084.63 79272.22
19 89058.18 89058.08 89058.11 88698.73
20 111455.14 111455.07 111455.15 111265.52

Table 3.1: Identified natural frequencies (rad/s). Five measured modes.

The modes determined from the identified C and those with exact damping are

compared using a generalised MAC correlation,

MAC(j, k) =

∣

∣

∣

∣

∣
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∣

∣

∣

∣

(3.132)

where the modal weight Wp is given by

Wp = |λp|
[

0 M

M C̃

]

+

[

−M 0

0 K

]

(3.133)

where C̃ is the identified damping matrix. The modal properties for the identified

C̃ and the exact C are denoted by the subscripts j and k respectively. This

generalised MAC returns an identity matrix when C̃ = C. The array given by

Eµ = |I−MAC| (3.134)
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Mode Exact Lancaster FRF inverse Perturbation

1 0.036247 0.036247 0.036247 0.036247
2 0.002208 0.002208 0.002208 0.002208
3 0.002140 0.002140 0.002140 0.002140
4 0.000711 0.000711 0.000711 0.000711
5 0.000281 0.000281 0.000281 0.000281
6 0.000433 0.000000 0.000000 0.000553
7 0.000243 0.000000 0.000000 0.000292
8 0.000097 0.000000 0.000000 0.000301
9 0.000224 0.000000 0.000000 0.000201
10 0.000186 0.000000 0.000000 0.000195
11 0.000022 0.000000 0.000000 0.000171
12 0.000027 0.000000 0.000000 0.000304
13 0.000066 0.000000 0.000000 0.000428
14 0.000031 0.000000 0.000000 0.000729
15 0.000027 0.000000 0.000000 0.002977
16 0.000040 0.000000 0.000000 0.009675
17 0.000015 0.000000 0.000000 0.004627
18 0.000004 0.000000 0.000000 0.004859
19 0.000004 0.000000 0.000000 0.134941
20 0.000006 0.000000 0.000000 0.007014

Table 3.2: Identified damping ratios. Five measured modes.

results in the null matrix for exact damping identification.

Eµ computed with different numbers of measured modes are shown in figures

3.6-3.8. The method based on the inverse of the FRF consistently returns the

most accurate eigenvectors and the least accurate are those given by first-order

perturbation. It is seen that inverting H(iω) returns the first five eigenvectors

with excellent accuracy even when only five modes are measured. The contents

of the identified damping matrix determined by the three methods using different

numbers of measured modes are shown in figures 3.9-3.11.

It is seen that inverting H(iω) produces three prominent peaks at the correct

locations of the grounded dampers, DOFs 3, 13 and 17, even when only five modes

are measured. A very accurate representation of the damping matrix is obtained

using 10 modes. Lancaster’s formula also produces a good estimate of C, but not

quite as good as the inverse FRF method. The first-order perturbation method

results in a fully populated damping matrix with the damping distributed over
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Figure 3.6: MAC error for Lancaster’s formula with different numbers of
measured modes.
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Figure 3.7: MAC error for inversion of FRF with different numbers of mea-
sured modes.
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Figure 3.8: MAC error for first-order perturbation with different numbers
of measured modes.

almost all of the system coordinates. It is seen in figure 3.11 that the identified

damping terms are very small for the cases of 5 and 10 measured modes.

Figures 3.9-3.11 are all shown with the same scale on the vertical axis. When

fifteen modes are measured prominent peaks begin to appear at coordinates 3

and 13. The error in the damping matrix is assessed in figure 3.12 using εC
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Figure 3.9: Identified damping matrix using Lancaster’s formula with dif-
ferent numbers of measured modes.
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Figure 3.10: Identified damping matrix using inversion of FRF with differ-
ent numbers of measured modes.
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Figure 3.11: Identified damping matrix using first-order perturbation with
different numbers of measured modes.

defined as

εC =

∥

∥

∥C− C̃

∥

∥

∥

F

‖C‖F
· 100% (3.135)

It is seen that the inverse of H(iω) method converges most rapidly. All three

methods converge to the correct damping matrix when all the modes are available

for measurement. The first-order perturbation approach is investigated further

in figure 3.13 where the projection error εp, described in section 3.3.3, is shown
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Figure 3.13: Error by first-order perturbation

together with εC . Even when the projection error is reduced to a very small

amount, when ten or more modes are measured, a significant error persists in the

terms of the damping matrix and their distribution on the beam. Prandina et
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al. [85] demonstrated that the energy method described in section 3.3.4 and its

modifications described in the following chapters are equivalent to the method

based on the inversion of the FRF for the case of viscous damping. For this

reason, the energy method also produces a good estimate of C when dealing with

modal incompleteness.

3.4 Closure

Some modal damping and SDOF identification techniques have been described

and a literature review of the main MDOF damping identification techniques has

been presented. A numerical comparison between three of the main techniques

has been performed with particular interest in the accuracy of the results when

dealing with the problem of modal incompleteness, which is an unavoidable issue

in most vibration tests. The MDOF identification method based on energy pro-

posed by Liang [103] in section 3.3.4 gives the basis for the new method presented

in the next chapter.
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Chapter 4

Energy balance method

4.1 Advantages and drawbacks of the existing

method

In this chapter a multi degree-of-freedom damping identification method based

on the balance between the input energy and the energy dissipated by damping

is presented. The identified damping matrix parameterisation, the spatial and

modal incompleteness of measurements and the underdetermination of the system

of equations are also addressed in order to improve the results of the identification.

The MDOF identification methods based on energy, such as the one proposed

by Liang [103], are powerful tools since they present some important advantages

compared to the majority of the other techniques considered. The most important

advantage is that they are able to identify different forms of damping as opposed

to just viscous damping. Liang considered viscous damping and Coulomb friction

but the method can be applied, for example, to quadratic damping with a few

small changes in the equations. Another advantage is that from the results of

the numerical simulation presented by Prandina et al. [85] it was found that

the error in the identification of the viscous damping matrix when dealing with

modal incompleteness is smaller than the one from methods based on Lancaster’s

formula or perturbational approach.

Unfortunately, the method proposed in [103] also presents some drawbacks. Firstly,

it assumes the knowledge of the stiffness matrix which is not always available and

it is also a source of uncertainty. Secondly, the assumption of having a diagonal

mass matrix is valid for certain types of structures only and cannot be applied to
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every case. Even if this problem can be avoided by using a similar formulation to

the one for the stiffness matrix, in that case the mass matrix must be known too.

Finally, the method requires some known damping coefficients which are difficult

to estimate a priori.

In order to avoid these disadvantages but maintain the versatility and perfor-

mance of the method, a different energy approach is proposed in this chapter.

4.2 The energy balance method

The energy balance method theory is presented in this section; after deriving the

energy equation, some techniques are proposed in order to improve the identifi-

cation by addressing issues such as the damping matrix parameterisation, spatial

incompleteness of measurements and the underdetermination of the system of

equations.

4.2.1 Theory

The equations of motion of a damped multi degree-of-freedom system can be

written in the matrix form

Mẍ + Kx + D g(x, ẋ, ẍ) = f(t) (4.1)

where D ∈ R
n×n represents a generic damping matrix of coefficients multiplied

by g(x, ẋ, ẍ) R
n×1, a function of displacements, velocities and accelerations. This

is a generic formulation for damping, which includes viscous damping, Coulomb

friction, quadratic damping and many other models. If eq. (4.1) is integrated

along the motion path C, an energy equation is obtained as
∫

C

Mẍdx +

∫

C

Kxdx +

∫

C

D g(x, ẋ, ẍ)dx =

∫

C

f(t)dx (4.2)

and changing the integration variable into time

t+T
∫

t

ẋTMẍdt +

t+T
∫

t

ẋTKxdt +

t+T
∫

t

ẋTD g(x, ẋ, ẍ)dt =

t+T
∫

t

ẋTf(t)dt (4.3)

The main difference between this formulation and the one presented in [103] is

the premultiplication by the full vector of velocities ẋT, instead of the vector
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ẋT
i = [0 . . . ẋi . . . 0]. This modification, together with the assumption that the

excitation and the response have a common fundamental period T , allows the

simplification of the energy equation by removing the integration of conservative

components over a full cycle of periodic motion. The kinetic and potential energy

over this period
t+T
∫

t

ẋTMẍdt =

t+T
∫

t

ẋTKxdt = 0 (4.4)

are equal to zero and eq. (4.3) becomes

t+T
∫

t

ẋTD g(x, ẋ, ẍ)dt =

t+T
∫

t

ẋTf(t)dt (4.5)

Eq. (4.5) represents the balance between the energy dissipated by damping mech-

anisms on the left hand side of the equation and the energy input to the system

by external forces on the right hand side. This equation is the base of the identifi-

cation method proposed. An important remark is that the mass and stiffness ma-

trices are no longer required and there are no particular restrictions on g(x, ẋ, ẍ)

except that ẋTD g(x, ẋ, ẍ) must be integrable. On the other side, this approach

introduces an important drawback: only one equation is available for each force

configuration. Whereas the method proposed in [103] provides n equations for

each different excitation, in this case a different strategy in performing the ex-

periments and solving the energy equation must be applied. The identification

parameters in eq. (4.5) are represented by the coefficients in D, which has to be

parametrized in a proper way for the method to be practical.

4.2.2 Parameterisation of the damping matrix

As previously stated, D ∈ R
n×n represents a generic damping matrix of coef-

ficients multiplied by g(x, ẋ, ẍ) R
n×1, a function of displacements, velocities or

accelerations in order to obtain the damping forces. For example, viscous damp-

ing forces dv can be expressed in the form

dv = C ẋ (4.6)
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where C is the viscous damping matrix. The Coulomb friction dissipative forces

dc can be expressed by

dc = Dc sgn(ẋ) (4.7)

where Dc represents the coefficients of friction multiplied by the normal forces,

and so on. The different formulations can be used together in a model simply by

adding all the sources in the energy equation as in this case

t+T
∫

t

ẋTCẋdt +

t+T
∫

t

ẋTDc sgn(ẋ)dt =

t+T
∫

t

ẋTf(t)dt (4.8)

For simplicity, consider viscous damping only and the following energy equation

t+T
∫

t

ẋTCẋdt =

t+T
∫

t

ẋTf(t)dt (4.9)

Considering a fully populated viscous damping matrix, eq. (4.9) can be written

as
n
∑

j=1,k=1



cj,k

T
∫

0

ẋjẋkdt



 =

T
∫

0

ẋTf(t)dt (4.10)

The number of equations available for the identification can be increased by using

m different force configurations fi(t) at different frequencies ωi. The equations

can then be arranged in a matrix form as

G c = e (4.11)

where G is the matrix of velocity integrals, c is a column vector containing the

unknown damping coefficients and e contains the energy input by external forces

as

G =













T1
∫

0

ẋ1
2dt(1)

T1
∫

0

ẋ1ẋ2dt(1) . . .
T1
∫

0

ẋnẋn−1dt(1)
T1
∫

0

ẋ2
ndt(1)

. . . . . . . . . . . . . . .
Tm
∫

0

ẋ1
2dt(m)

Tm
∫

0

ẋ1ẋ2dt(m) . . .
Tm
∫

0

ẋnẋn−1dt(m)

Tm
∫

0

ẋ2
ndt(m)













(4.12)

c =























c1,1

c1,2

. . .
cn,n−1

cn,n























e =























T1
∫

0

ẋTf1(t)dt

. . .
Tm
∫

0

ẋTfm(t)dt























(4.13)
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From a mathematical point of view, the identification problem in eq. (4.11) is

underdetermined if matrix G has less rows than columns, i.e. if m < n2 in the

case of fully populated viscous damping matrix. At this point there are several

different strategies which can be applied in order to remove the underdetermina-

tion of the problem or to reduce it as much as possible. The number m of different

excitations cannot be increased unconditionally; each different test has a cost in

terms of money and time and the number of frequencies where the damping can

effectively be measured and at which an independent equation can be obtained is

limited. For this reason, reducing the number of unknowns is an alternative way

to reduce the underdetermination of the system of equations. The simplest way

of doing this is assuming that the viscous damping matrix is diagonal as

C = diag(ci,i) ∈ R
n×n (4.14)

where ci,i is the damping coefficient at the ith degree of freedom of the diagonal.

In this particular case there would be only n unknowns and matrix G and vector

c would be reduced to

G =













T1
∫

0

ẋ1
2dt(1) . . .

T1
∫

0

ẋ2
ndt(1)

. . . . . . . . .
Tm
∫

0

ẋ1
2dt(m) . . .

Tm
∫

0

ẋ2
ndt(m)













c =







c1,1

. . .
cn,n







(4.15)

Alternatively, the energy equation can be solved considering the symmetry of the

viscous damping matrix. This would reduce the number of unknowns for the fully

populated matrix from n2 to (n2 + n)/2. Moreover, a constraint on the positive

definiteness of the viscous damping matrix can also be added to the system of

equations to further improve the solution.

However, if the diagonal assumption could be considered oversimplistic, the so-

lution for a fully populated matrix is probably unnecessary since matrices of dy-

namic systems are normally sparse and usually diagonal band matrices. For this

reason a damping pattern approach is presented. The viscous damping matrix

can be written as a summation of p different matrices in the form

C =

p
∑

i=1

ciLi (4.16)
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where Li ∈ <n×n is a matrix which indicates the location of the ith viscous

damping sources of amplitude ci.

Figure 4.1: Absolute dashpot connecting DOF 2 to the ground

Consider for example a cantilever beam with ten vertical DOFs numbered from

1 to 10 starting from the clamp. In the case of an absolute dashpot connecting

one degree of freedom (e.g. degree-of-freedom 2, see figure 4.1) of the structure

to the ground, Li takes the form

Li =















0 0 0 · · · 0
0 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . . 0
0 0 0 0 0















(4.17)

In this case the pattern approach does not help the reduction of the number of

unknowns, but helps a systematic procedure to define the damping sources in

an automated way. In the case of a relative dashpot connecting two consecutive

Figure 4.2: Relative dashpot connecting DOF 1 to DOF 2
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degrees of freedom together (e.g degree-of-freedom 1 and 2, see figure 4.2), Li

takes the form

Li =















1 −1 0 · · · 0
−1 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . . 0
0 0 0 0 0















(4.18)

which allows the reduction of the number of parameters to identify from 4 to

1. If the damping between two consecutive degrees of freedom is assumed to

be the same for all the different couples (figure 4.3) representing, for example,

the material damping between identical elements or similar connections or joints

between parts of the structure, Li can take the form

Li =



















1 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . . −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1



















(4.19)

reducing the number of non-zero unknowns, in a 10 degrees of freedom example,

from 28 to 1.

Figure 4.3: Identical relative dashpots connecting consecutive DOFs

Assuming p different possible configurations for the damping sources, the energy

equation can be arranged as

c1

T
∫

0

ẋTL1ẋdt + c2

T
∫

0

ẋTL2ẋdt + . . . + cp

T
∫

0

ẋTLpẋdt =

T
∫

0

ẋTf(t)dt (4.20)

83



and by exciting the structure with m excitations at different frequencies, different

versions of eq. (4.20) are obtained and arranged in a matrix form














T1
∫

0

ẋTL1ẋdt . . .
T1
∫

0

ẋTLpẋdt

...
...

...
Tm
∫

0

ẋTL1ẋdt . . .
Tm
∫

0

ẋTLpẋdt

























c1
...
cp











=



























T1
∫

0

ẋTf1(t)dt

...
Tm
∫

0

ẋTfm(t)dt



























(4.21)

which can be written in the same compact form as eq. (4.11),

Gc = e (4.22)

This parameterisation can considerably reduce the number of unknowns and

eq. (4.22) can be solved for vector c using least square techniques and forcing

the non-negative definiteness of the identified damping matrix at the same time.

When vector c is calculated, the full identified viscous damping matrix can be

obtained from eq. (4.16).

4.2.3 Expansion of incomplete measurements

Another common issue in damping identification and, more generally, vibration

experiments is spatial incompleteness. In real experiments it is often impossi-

ble to measure accelerations, velocities and displacements at all the degrees of

freedom. This happens for many reasons: a limited number of accelerometers

is usually available and attaching too many accelerometers to a structure may

considerably change the dynamic behaviour of the initial system by adding fur-

ther mass, stiffness and damping. The amount of data acquired during a test

is also limited and repeating tests and moving accelerometers all around a big

structure could take several days of work. Moreover, rotational degrees of free-

dom are more difficult to measure than translational degrees of freedom and even

if rotational accelerometers are commercially available it seems that the quality

of measurement at the moment is still not as good as conventional translational

accelerometers. For these reasons, matrix G described in the previous section can-

not be fully computed since some measurements are missing. To overcome this

problem there are two strategies: model reduction and modal expansion [113].

Model reduction consists of reducing the number of degrees of freedom in the
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analytical model to the number of degrees of freedom measured in experiments,

using techniques such as Guyan static reduction or dynamic reduction. Modal

expansion consists in expanding the measured data to the number of degrees of

freedom of the analytical model.

It has been stated before that one of the advantages of the energy method is the

fact that an analytical model is not necessary but in chapter 3 the importance of

having information about the location of damping (MDOF spatial identification)

rather than a single scalar for each mode (modal damping) has also been consid-

ered. In order to apply the energy method and have useful information about the

location of damping in large structures, modal expansion of measurements could

be necessary, so stiffness and mass matrix of the analytical model are required.

The chosen method for expanding the measurements uses concepts similar to the

ones used by Jalali et al. [114]. Consider the full vector of velocities ẋf (t) ∈ R
n×1

necessary to compute G and the set of accelerations ẍm(t) ∈ R
p×1 measured at p

different degrees of freedom, where p < n. If the damping is small and the system

is excited by a single frequency harmonic force close to the ith natural frequency,

the acceleration response of the structure may be written in the form

ẍf = φiq̈i(t) (4.23)

where ẍf (t) ∈ R
n×1 is the full vector of accelerations, φi ∈ R

n×1 is the full ith

mode shape of the undamped structure obtained from the analytical model and

q̈i(t) is the modal acceleration. By using this approximate formulation it is pos-

sible to estimate q̈i(t) from the experimental measurements and then substitute

into eq. (4.23) to obtain the complete set of data. Consider eq. (4.23) for the

degrees of freedom of the incomplete measurements only

ẍm = φm(i)
q̈i(t). (4.24)

where φm(i)
is the incomplete ith mode shape in the form

φm(i)
=





φ1

. . .
φp



 (4.25)

containing the p measured degrees of freedom. If the excitation is harmonic at a

single frequency ωi, the response of the system will be harmonic too and generally
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would contain higher harmonics due to nonlinearities. The modal coordinate q̈(t)

may be represented using

q̈i(t) =
n
∑

k=1

(Aksin(kωit) + Bkcos(kωit)) (4.26)

For simplicity, consider the linear case without higher harmonics so eq. (4.26) is

reduced to

q̈i(t) = Asin(ωit) + Bcos(ωit) (4.27)

By substituting eq. (4.27) in eq. (4.24), it is possible to rearrange the equation

for each time instant from t0 to tend in a matrix form so that





















φ1sin(ωit0) φ1cos(ωit0)
. . . . . .

φpsin(ωit0) φpcos(ωit0)
. . . . . .

φ1sin(ωitend) φ1cos(ωitend)
. . . . . .

φpsin(ωitend) φpcos(ωitend)





















[

A
B

]

=





















ẍ1(t0)
. . .

ẍp(t0)
. . .

ẍ1(tend)
. . .

ẍp(tend)





















(4.28)

Using a least squares procedure, A and B can be determined. The analytical

integration of eq. (4.27) can be used to calculate the modal coordinate velocity

q̇i(t) and the modal coordinate displacement qi(t) as

q̇i(t) =
1

ωi

(−Acos(ωit) + Bsin(ωit)) (4.29)

qi(t) =
1

ω2
i

(−Asin(ωit)−Bcos(ωit)) (4.30)

and to reconstruct the full vector of velocities by

ẋf = φi · q̇i(t). (4.31)

to be used in the calculation of G.

4.2.4 Localisation of damping

The energy equation per se does not give direct information about the location

of damping. However, each column of matrix G is related to a specific degree of

freedom or to a specific hypothetical damping configuration Li. These columns

are vectors which will be linearly combined through the damping coefficients ci
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to obtain the vector of external energy e. Since the problem is often underdeter-

mined, as previously discussed, locating the damping means understanding which

columns of G are the most suitable to represent vector e. One way of choosing

the “best” columns is using a criterion based on the angle between vectors. This

method was used by Friswell et al. [115] for a different application in model

updating. The angle ϑ between two vectors a and b can be calculated by

ϑ = cos−1

(

aTb√
aTa ·

√
bTb

)

(4.32)

Among the large number of columns of matrix G, a certain s number of columns

with the smallest value of ϑ is selected. From a vector point of view, these columns

are the most parallel to the vector e so they are the best representative in a one-

dimensional approximation. After selecting these columns, the concept of angle

between subspaces is introduced [116]. Consider the two matrices A ∈ R
n×m and

B ∈ R
n×q. An orthogonal basis for these subspaces can be obtained by the QR

algorithm

A = QARA (4.33)

B = QBRB (4.34)

where QA and QB are orthogonal matrices of size n×m and n×q respectively and

RA and RB are upper triangular. If q < m there will be q principal angles between

the subspaces, ϑi, which are computed from the singular value decomposition of

QT
AQB. Thus

cos(ϑi) = σi(Q
T
AQB) (4.35)

where σi() indicates the ith singular value. Again, it is now possible to select a

number s of subsets of two columns of G that have the smallest angle with e.

These subsets were created using combinations of one of the previously selected

vectors with the other columns of G. This method can then be applied for bigger

subsets of three columns and so on. When the angle between these subsets and

e is sufficiently small, the selection can be stopped and only the chosen columns,

which carry spatial information, will be used to solve the energy equation. This

criterion does not guarantee the correct location of the sources of damping but

gives a physically meaningful location from an energy point of view and for the
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range of frequencies used. In the next chapter the results of numerical simulations

show that in most cases the angle criterion leads to the correct location in most

cases and even when it does not, the identified location is close to the correct one

and the amplitude of the damping coefficient varies accordingly to the energy

dissipation.

4.2.5 Solution of the energy equation

The solution of the energy equation (4.11) is a basic linear least squares problem

which can be stated as follow [117]:

Given a real m × n matrix A of rank k ≤ min(m,n), and given a real m-vector

b, find a real n-vector x minimizing the euclidean length of Ax− b.

This problem can lead to six different cases:

1. m = n, Ax = b, rank(A) = m = n

2. m = n, Ax ∼= b, rank(A) = k < m = n

3. m > n, Ax ∼= b, rank(A) = n < m

4. m > n, Ax ∼= b, rank(A) = k < n < m

5. m < n, Ax = b, rank(A) = m < n

6. m < n, Ax ∼= b, rank(A) = k < m < n

Most of the simulations and experiments performed in this research fall into cases

5 and 6, since the number of useful single frequency harmonic excitations m is

always smaller than the number of damping parameters to identify n, which

are normally of the same order of the number of degrees of freedom or larger.

This was deliberately done in simulations (where the number of possible force

configurations can increase considerably since there are no physical constraints)

in order to simulate real engineering problems on large structures with thousands

of degrees of freedom which cannot be practically excited with the same amount

of different force configurations. More precisely, case 5 is the most common case

since matrix G is almost always of rank m. However, in some cases some rows
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of matrix G were very close to being linearly dependent, especially when the two

different excitations were similar in terms of frequency, amplitude and location.

As it has already been mentioned, the solution can be achieved using the angle

criterion and reducing the problem to the square problem (case 1) which possess

a single solution or an overdetermined problem (case 3) which can be solved by

pseudo-inverting matrix G. Another way of solving the equation, which gives

good results especially with real data, has been found to be the non-negative

least squares algorithm (also known as NNLS in [117]) which minimise the norm

of Ax−b subject to x ≥ 0. If the damping matrix is parameterised as described

in section 4.2.2, forcing x ≥ 0 (which in this case represents the vector of the

damping coefficients of the dashpots physically connected to different degrees of

freedom) automatically means forcing the non-negative definiteness of the damp-

ing matrix, which is what is expected from a passive structure. On the other

hand forcing x ≥ 0, even if reasonable from a physical point of view, constraints

the solution from a mathematical point of view so that the solution may be not

exact (Ax 6= b) even for case 1 and 5. This never happened in simulations,

where the added damping was viscous or in other known forms, but happened in

experiments where the model for damping is assumed to be viscous but is in fact

an uncertain approximation.

4.3 Energy method and inverse FRF equivalence

In the case of linear viscous damping only, the energy method provides exactly

the same solution of the identification methods based on the inversion of the

receptance matrix described in chapter 3. Specifically eq. (3.57) in the case where

Ds is zero can be related to eq. (4.9), demonstrating a mathematical equivalence of

the two methods despite the different kinds of measurement and processing used,

with all advantages and drawbacks related. In eq. (4.9), f(t) can be expressed as

f(t) =















f1

f2

. . .
fn















cos(ωt) = f cos(ωt) (4.36)
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If the system is linear as in this case, the vector of velocities ẋ(t) can be written

in the following way

ẋ(t) = −ω















<(x1)
<(x2)
. . .
<(xn)















sin(ωt) + ω















=(x1)
=(x2)
. . .
=(xn)















cos(ωt) (4.37)

or in condensed form

ẋ(t) = −ω















a1

a2

. . .
an















sin(ωt) + ω















b1

b2

. . .
bn















cos(ωt) = −ωa sin(ωt) + ωb cos(ωt)

(4.38)

The two quantities inside the integrals become

ẋTCẋ =aTω2Ca sin2(ωt)− aTω2Cb sin(ωt) cos(ωt)+

−bTω2Ca sin(ωt) cos(ωt) + bTω2Cb cos2(ωt) (4.39)

and

ẋTf = −ωaTf sin(ωt) cos(ωt) + ωbTf cos2(ωt) (4.40)

and since
2π
∫

0

cos2(ωt)d(ωt) =

2π
∫

0

sin2(ωt)d(ωt) = π (4.41)

2π
∫

0

cos(ωt) sin(ωt)d(ωt) = 0 (4.42)

then eq. (4.9) may be cast in the simplified form

aT(ωC)a + bT(ωC)b = bTf (4.43)

Now, assuming that f = ei where ei is the ith column of the identity matrix, the

response to this ith force input may be then expressed as

xi =















h1i

h2i

. . .
hni















(4.44)

so that

ai = <















h1i

h2i

. . .
hni















bi = =















h1i

h2i

. . .
hni















(4.45)
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where hji is the receptance at degree of freedom j when exciting the structure at

degree of freedom i. Eq. (4.43) becomes

aT
i (ωC)ai + bT

i (ωC)bi = bT
i ei (4.46)

From the definition of receptance matrix

(<(H−1) + i=(H−1))(<(H)i + i=(H)) = I (4.47)

so that

<(H−1)ai −=(H−1)bi = ei (4.48)

<(H−1)bi + =(H−1)ai = 0 (4.49)

and

−ω2M + K = <(H−1(iω)) (4.50)

−ωC = =(H−1(iω)) (4.51)

Eqs. (4.48) and (4.49) may be cast as

(−ω2M + K)ai − ωCbi = ei (4.52)

ωCai + (−ω2M + K)bi = 0 (4.53)

From eq. (4.53)

bi = −(−ω2M + K)−1(ωC)ai (4.54)

and premultiplying eq. (4.52) by bT
i and combining with eq. (4.54), the following

equation is obtained from the receptance matrix

aT
i (ωC)ai + bT

i (ωC)bi = bT
i ei (4.55)

which is the same as eq. (4.46) from the energy method. In chapter 3 it has been

shown that methods based on the inversion of the receptance are the ones which

have the best results when dealing with modal incompleteness. By demonstrating

this equivalence it is stated that the energy method should perform in the same

way for the case of viscous damping, with the advantage of the possibility of being

applied to different types of damping too.
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4.4 Closure

The theory of the damping identification method based on the balance of the

energy input by external forces with the energy dissipated by damping has been

presented. A damping-pattern matrix parameterisation has been proposed in

order to reduce the number of unknowns of the identification problem together

with a criterion based on the angle between vectors to localize the main damping

sources when the problem is uderdetermined. In the case of viscous damping,

the method is equivalent to methods based on the inversion of receptance which

were found to be the best when dealing with modal incompleteness. In the

next chapter the method will be used to identify sources of damping in several

numerical simulations performed in Matlab and Simulink in order to validate the

proposed theory.
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Chapter 5

Numerical simulations

5.1 Introduction

Several numerical simulations have been performed in order to validate the pro-

posed method. In this chapter a selection of the most interesting results is pre-

sented to show the advantages of the method together with some considerations on

the physical meaning of the energy-equivalent identified damping, incompleteness

of data and size of the model. The simulations include a ten-element cantilever

beam with absolute viscous dashpots and spatial incompleteness of the measured

accelerations, a similar example including Coulomb friction and a larger problem

on a 196 degrees of freedom simplified aircraft wing.

5.2 Cantilever beam

The first numerical simulation consists of a ten element (22 degrees of freedom)

cantilever beam clamped at one side and free to vibrate on the other side. The

DOF numbering is shown in figure 5.1. The two clamped degrees of freedom are

not considered so that the size of the system matrices is 20 × 20. The beam

dimensions are 4× 40× 560 mm and the material is aluminium.

5.2.1 Case 1: same damping coefficients

Four viscous dashpots (figure 5.2) are attached between the ground and degrees

of freedom number 3, 5, 13 and 17, as the absolute dashpot described in section

4.2.2, figure 4.1. The viscous damping coefficient of the four dashpots is set to

the same value of 0.1 Ns/m as shown in table 5.1. After selecting an appropriate
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Figure 5.1: Cantilever beam and DOFs numbering

Figure 5.2: Numerical simulation: cantilever beam with four absolute vis-
cous dashpots attached at DOF 3, 5, 13 and 17 with accelera-
tion measurements at DOF 7, 11 and 19.

set of single frequency excitations, the signals from three accelerometers, contam-

inated with 5% white noise and applied on degrees of freedom 7, 11 and 19 are

measured and the full vector of velocities is derived using the expansion described

in section 4.2.3. A realistic damping pattern (section 4.2.2) is defined according

to the engineering knowledge of the structure and the matrix G and vector e are

computed to obtain the energy equation. The minimum angle criterion described

Dashpots Damping
DOF coefficients (Ns/m)

3 5 13 17 0.1 0.1 0.1 0.1

Table 5.1: Dashpots configuration for case 1.

in section 4.2.4 is used to locate the main damping sources and the non-negative

least squares algorithm [117] is used to extract the values of the equivalent damp-
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ing coefficients. The first step is the selection of the force configurations used to

excite the structure. Theoretically, the method would work with any set of m

different excitations which leads to a well conditioned matrix G so the choice

could fall into a sufficient number of forces applied in different places at different

random frequencies. In practice changing the location of the exciting force (i.e.

moving a shaker along the length of the beam) could be unnecessarily expensive

and time consuming, moreover choosing random frequencies is also not the opti-

mal selection from an engineering point of view. It has been shown in chapter 2

that the effect of damping is mainly visible in the proximity of resonances, so if

the excitations are at frequencies close to those of the modes of vibration of the

structure, the information held by this kind of test is likely to be more valuable

when dealing with the identification of damping. In this example eight different

excitations are used and consist of single frequency harmonic forces applied at

DOF 19 at frequencies close to the first 8 bending modes, respectively at 10, 65,

182, 358, 593, 889, 1247 and 1671 Hz. The responses of the system excited with

these forces is simulated in Simulink and the measurement of the accelerations at

degrees of freedom 7, 11 and 19 is obtained. It is very important at this stage to

wait for the transient to end before measuring the accelerations. If the transient

is still present, the energy balance equation used for the identification is wrong

since the response is not periodic and the energy of conservative forces does not

vanish.

For this simple example the parameterisation consists in 20 localisation matrices

as eq. (4.17), one for each degree of freedom (rotational degrees of freedom in-

cluded) representing the 20 possible locations of an indefinite number of absolute

dashpots. It must be considered that in a general identification problem it is not

always known where the damping sources are and how many they are. In this

simulation there are many issues involved: spatial incompleteness (3 accelerom-

eters only for 20 DOFs), modal incompleteness (excitations at frequencies close

to 8 out of 20 modes), uncertainty on the location and quantity of the sources of

damping (20 possible locations for a maximum of 8 equivalent absolute viscous

dashpots to identify).

After expanding the measurements and deriving velocities as explained in section
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4.2.3, the integrals present in matrix G have to be computed. Remembering the

energy matrix equation, for this case is














T1
∫

0

ẋTL1ẋdt . . .
T1
∫

0

ẋTL20ẋdt

...
...

...
T8
∫

0

ẋTL1ẋdt . . .
T8
∫

0

ẋTL20ẋdt

























c1
...

c20











=



























T1
∫

0

ẋTf1(t)dt

...
T8
∫

0

ẋTf8(t)dt



























(5.1)

or

Gc = e (5.2)

If the accelerations are assumed to be in the form

ẍi(t) = a sin(ωit) + b cos(ωit) (5.3)

where ωi is the frequency of the excitation, velocities can be written as

ẋi(t) =
1

ωi

(−a cos(ωit) + b sin(ωit)) (5.4)

so the integrals in G can be calculated analytically. Consider the expanded

acceleration measurements for the ith excitation in the form

ẍi(t) =











ẍ1i
(t)
...

ẍ20i
(t)











=











a1i

...
a20i











sin(ωit) +











b1i

...
b20i











cos(ωit) (5.5)

or

ẍi(t) = ai sin(ωit) + bi cos(ωit) (5.6)

so that velocities and displacements can be calculated by analytical integration

as

ẋi(t) =
1

ωi

(−ai cos(ωit) + bi sin(ωit)) (5.7)

xi(t) = − 1

ω2
i

(ai sin(ωit) + bi cos(ωit)) (5.8)

Consider now the integrals in the jth column of matrix G

Ti
∫

0

ẋTLjẋdt (5.9)

the period Ti for the linear case is equivalent to the period of the excitation, then

Ti =
2π

ωi

(5.10)
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so that the analytical solution of the integral becomes

∫ Ti

0

ẋTLj ẋ dt =
π

ω3
i

(aT

i Ljai + bT

i Ljbi) (5.11)

Regarding the vector of input energy e, each force can be expressed as

fi(t) =



















0
...

fi(t)
0



















(5.12)

with fi(t) in the corresponding degree of freedom (in this case DOF 19) which

can also be fit to a sinusoidal curve in the form

fi(t) = ri sin(ωit) + si cos(ωit) (5.13)

so that the entries of e can be calculated as

Ti
∫

0

ẋTfi(t)dt =
π

ω2
i

(b19i
ri − a19i

si) (5.14)

When matrix G and vector e have been calculated, the localisation of damping

through the minimum angle criterion can start. The first step is finding the

smallest angle between each column gi of matrix G and the vector e, using the

formula

ϑi = cos−1

(

gT
i e

√

gT
i gi ·

√
eTe

)

(5.15)

The smallest 5 angles are selected, corresponding to the degrees of freedom dis-

played in table 5.2. From this first calculation, two aspects can be observed.

DOF ϑi (deg)

19 6.505
13 6.899
17 6.905
15 13.468
11 18.420

Table 5.2: Selection of smallest angles.

Firstly, the degree of freedom corresponding to the smallest angle (DOF 19) is
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not where the dashpots actually are (3,5,13 and 17). This is not unexpected

since the minimum angle criterion does not guarantee the correct location of the

equivalent dashpots, especially when the number of equivalent dashpots selected

(corresponding to the number of columns which in this first step is equal to one)

is smaller than the actual number of damping sources. The second and third

smallest angles correspond to two of the correct degrees of freedom (DOFs 13

and 17). Secondly, the five smallest angles are all related to translational degrees

of freedom so it seems that this preliminary criterion “understands” that the

dashpots are not rotational but they are actually acting on the vertical degrees of

freedom. The selection of the columns could stop after the first step and the value

of the damping coefficient of the equivalent dashpot at DOF 19 can be calculated

by applying the non-negative least squares algorithm to

[

g19

] {

c19

}

≈ e (5.16)

which leads to c19 = 0.107 Ns/m. From an energy point of view, this result means

that a dashpot with this damping coefficient located at DOF 19 dissipates the

same amount of energy as the four original dashpots (in a least square approxi-

mation sense and for the 8 modes considered). Even if the damping coefficient is

small compared to the sum of the four dashpots that it is representing, it must be

considered that DOF 19 is the one which possess the largest velocities in the se-

lected range of frequencies so it will dissipate more energy than a similar dashpot

attached, for example, at DOF 1. If the error between the actual energy vector

e and the identified energy vector eid, calculated as

eid =
[

g19

] {

c19

}

(5.17)

does not meet the desired requirements, the location of a second dashpot can be

selected. Since the number of combinations will grow in a factorial way which

becomes very costly in computation, the five best DOFs were kept and only the

combination of these five DOFs with the other one are considered instead of all

the possible combination of two locations. Using the definition of angle between

subspace [116] described in section 4.2.4

cos(ϑi) = σi(QG
T
2 Qe) (5.18)
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where G2 is a matrix containing two columns of G selected as previously ex-

plained, it is now possible to select the combination with the smallest angle,

which in this case corresponds to DOFs 13 and 19, and calculate the equivalent

damping coefficients solving

[

g13 g19

]

{

c13

c19

}

≈ e (5.19)

by applying the non-negative least squares algorithm and re-checking the error

between actual and identified energy. If the result is not satisfactory, the number

of equivalent dashpots can be increased to three and so on until an acceptable

error is obtained. The identification results for up to four equivalent dashpots

(which corresponds to the actual number of dashpots attached to the structure)

are summarised in table 5.3. It can be seen that the method leads to the cor-

Number of Dashpots Damping ϑi

dashpots DOF coefficients (Ns/m) (deg)

1 - - - 19 - - - 0.107 6.505
2 - - 13 19 - - 0.151 0.059 0.404
3 - 5 15 17 - 0.212 0.127 0.055 0.124
4 3 5 13 17 0.1 0.099 0.1 0.101 0.001

Original 3 5 13 17 0.1 0.1 0.1 0.1 -

Table 5.3: Results for case 1.

rect solution when a sufficient number of equivalent dashpots is selected for the

identification (with some negligible differences due to the added noise). An inter-

esting result is the equivalent configuration obtained using three dashpots; two

of the three locations (DOFs 5 and 17) are correct and the third one (DOF 15) is

relatively close to the correct location (DOF 13). The value of the coefficients is

reasonable since the 0.212 Ns/m dashpot at DOF 5 could represent a sort of sum

of the two 0.1 Ns/m dashpots at DOFs 3 and 5 and the remaining ones appears

close to the expected values, considering that the number of identified parameters

is smaller than the actual number necessary to describe the damping. This result

has to be seen from an engineering point of view on larger and more complicated

structures. The information extracted from the three dashpots equivalent sys-

tem is valuable both for the location and the amplitude of the damping sources.
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Moreover they have been obtained from incomplete data.

The energy equivalence is reflected in the damping ratio ζ. In table 5.4 a com-

parison of the damping ratio of the first 10 modes (using respectively 1, 2 and 3

equivalent dashpots) of the identified system versus the original system is shown.

Mode ζoriginal ζeq(1) Err % ζeq(2) Err % ζeq(3) Err %

1 1.41E-02 1.35E-02 4.09% 1.41E-02 0.14% 1.41E-02 0.13%
2 1.50E-03 2.16E-03 44.15% 1.50E-03 0.07% 1.50E-03 0.22%
3 1.02E-03 7.71E-04 24.74% 8.95E-04 12.60% 1.04E-03 1.22%
4 3.38E-04 3.94E-04 16.66% 3.05E-04 9.68% 3.41E-04 0.95%
5 1.38E-04 2.39E-04 73.13% 1.49E-04 7.97% 1.34E-04 2.90%
6 1.90E-04 1.61E-04 14.82% 1.93E-04 1.99% 1.81E-04 4.51%
7 1.14E-04 1.17E-04 2.68% 1.18E-04 4.23% 1.01E-04 11.37%
8 5.75E-05 8.85E-05 53.99% 4.88E-05 15.07% 4.84E-05 15.81%
9 1.06E-04 6.84E-05 35.49% 7.30E-05 31.11% 1.05E-04 0.51%
10 8.51E-05 4.43E-05 47.96% 6.14E-05 27.87% 8.73E-05 2.62%

Table 5.4: Damping ratios for case 1 for the first ten modes. ζeq(1), ζeq(2)
and ζeq(3) respectively indicate the damping ratios of the system
with 1, 2 and 3 equivalent dashpots.

The agreement between the two systems increases with the number of columns

selected and it is interesting to notice how the error for the first seven modes when

using only two equivalent dashpots to represent four dashpots is smaller than 10%,

which in the field of damping identification is already a reasonably positive result.

The method is then capable not only of obtaining valuable information about the

location and the magnitude of the single source but also to keep modal values

close to the exact ones.

5.2.2 Case 1a: same damping coefficients with known lo-

cation

A subcase of case 1 is considering the same problem when one or more damping

locations are known. For example, consider the case when the location of the

dashpot at degree of freedom 3 is known. Starting from this information, a

different pattern of solutions is found by forcing the presence of DOF 3 in the

column selection, summarised in table 5.5.

100



Number of Dashpots Damping ϑi

dashpots DOF coefficients (Ns/m) (deg)

1 3 - - - 0.856 - - - 72.055
2 3 - - 17 0.322 - - 0.148 2.284
3 3 - 13 19 0.060 - 0.177 0.049 0.120
4 3 5 13 17 0.1 0.099 0.1 0.101 0.001

Original 3 5 13 17 0.1 0.1 0.1 0.1 -

Table 5.5: Results for case 1a.

Despite the fact that the angle between column number 3 and the energy vector is

large, adding a second dashpot to the identification process immediately reduces

the angle to 2.284 degrees with reasonable results in terms of location and value.

This new set of possible solutions is also valid and leads to the same solution of

case 1 when four equivalent dashpots are used.

Results from case 1 and case 1a represent different sets of energy equivalent

solutions to the same problem, obtained using different initial information. Which

one is better is difficult to judge since it depends not only on the agreement

between modal damping ratios and correct locations of the sources, but also on

the problem under examination. An incomplete set of dashpot locations might

represent certain modes well and this could be a practical good solution, though

not the physically correct one.

5.2.3 Case 2: different damping coefficients

In case 2 the dashpots and accelerometers are located at exactly the same de-

grees of freedom as case 1, but the value of their viscous damping coefficients is

different so that there are now large sources of damping to identify together with

smaller and possibly negligible ones. The values of the damping coefficients for

case 2 are shown in table 5.6. The same procedure as case 1 is used with the same

forces configuration and amount of noise. The results are summarised in table

5.7. In this case results are qualitatively better than in case 1 for two distinct

reasons. Firstly, the location of damping is always correct even using the first ap-

proximation with only one equivalent dashpot. Secondly, the order the dashpots

are selected using the minimum angle criterion is from the largest to the smallest
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Dashpots Damping
DOF coefficients (Ns/m)

3 5 13 17 0.01 0.5 0.1 1

Table 5.6: Dashpots configuration for case 2.

damping coefficient. This is a good result from an engineering point of view since

Number of Dashpots Value of damping ϑi (deg)
dashpots DOF coefficients (Ns/m)

1 - - - 17 - - - 1.084 12.557
2 - 5 - 17 - 0.581 - 1.042 1.029
3 - 5 13 17 - 0.506 0.124 0.989 0.263
4 3 5 13 17 0.01 0.5 0.1 1 0.001

Original 3 5 13 17 0.01 0.5 0.1 1 -

Table 5.7: Results for case 2.

in real problems there is not much information about the total number of sources

of damping and one must decide at what level of approximation to stop. If, for

example in this case the decision is to consider a two-dashpot equivalent system

then the two most important sources are correctly located whereas the smallest

ones are somehow included through a small increase in the value of the damping

coefficients of the larger ones.

5.2.4 Case 3: Viscous and Coulomb friction

One of the advantages of the energy method is the fact that it is theoretically able

to identify sources of damping that are different from viscous damping. To check

if this feature works effectively, a simulation on the previous structure damped

with both viscous dashpots and Coulomb friction devices (figure 5.3) has been

tested. A total of six damping sources (three viscous and three Coulomb friction)

have been attached to the cantilever beam. The values of the viscous damping

coefficients and the values of the product Fc of the normal forces Fn and the

friction coefficients µ

Fc = µFn (5.20)
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Figure 5.3: Numerical simulation: cantilever beam with three absolute vis-
cous dashpots attached at DOF 3, 13 and 17, three Coulomb
friction devices attached at DOF 7, 15 and 19 with acceleration
measurements at DOF 7, 11 and 19.

as described in section 2.2.3 are displayed in table 5.8.

Viscous damping coefficients Fc

DOF 3 13 17 7 15 19
Value 0.2 Ns/m 0.5 Ns/m 0.15 Ns/m 3.2 N 5.1 N 1 N

Table 5.8: Damping sources configuration for case 3.

The method works in the same way as the previous two cases with some small

differences. Maintaining the same damping pattern as the previous examples for

the possible location of the sources, the size of matrix G is doubled (8×40 instead

of 8 × 20) since it contains the integrals of both types (viscous and Coulomb

friction) in the form

G =















T1
∫

0

ẋTL1ẋdt . . .
T1
∫

0

ẋTL20ẋdt
T1
∫

0

ẋTL1sgn(ẋ)dt . . .
T1
∫

0

ẋTL20sgn(ẋ)dt

...
...

...
...

...
...

T8
∫

0

ẋTL1ẋdt . . .
T8
∫

0

ẋTL20ẋdt
T8
∫

0

ẋTL1sgn(ẋ)dt . . .
T8
∫

0

ẋTL20sgn(ẋ)dt















(5.21)
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and vector c is also doubled in size (it is now 40× 1) in the form

c =




















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











c1
...

c20

Fc1
...

Fc20



































(5.22)

whereas the length of e remains unchanged (8×1) since it depends on the number

of excitations only. The terms of matrix G have different orders of magnitude

between the viscous and the Coulomb friction parts. The integrals in the first

twenty columns are proportional to the squared velocities whereas the remaining

columns are related to the absolute value of the velocities. This may lead to scal-

ing problems when solving the energy equation through least squares techniques,

so matrix G and vector e are normalized in order to solve the equation and sub-

sequently the solution of the normalized equation is converted to the solution of

the original equation. The integrals in the form

Ti
∫

0

ẋTLjsgn(ẋ)dt (5.23)

can be solved analytically. The accelerations previously written in the form

ẍi(t) = a sin(ωit) + b cos(ωit) (5.24)

can be written as

ẍi(t) = p cos(ωit− ϕ) (5.25)

where

p =
√

a2 + b2 (5.26)

and

ϕ = cos−1

(

b

p

)

if a ≥ 0 (5.27)

ϕ = − cos−1

(

b

p

)

if a < 0 (5.28)

Velocities become

ẋi(t) =
1

ωi

p cos(ωit− ϕ) (5.29)

104



and assuming

Ti =
2π

ωi

(5.30)

the integral combining, for example, degrees of freedom 1 and 2 will be

Ti
∫

0

ẋ1sgn(ẋ2)dt =
p1

ωi

2π
ωi
∫

0

sin(ωit− ϕ1) sgn(sin(ωit− ϕ2))dt (5.31)

Since the function is periodic, the value of the definite integral between 0 and

2π/ωi is the same as the one between ϕ2/ωi and (ϕ2 + 2π)/ωi. To integrate the

sign function it is possible to split the integral into two parts according to

sgn(sin(ωit− ϕ2)) = +1 for
ϕ2

ωi

< t <
ϕ2 + π

ωi

(5.32)

sgn(sin(ωit− ϕ2)) = −1 for
ϕ2 + π

ωi

< t <
ϕ2 + 2π

ωi

(5.33)

so that

Ti
∫

0

ẋ1sgn(ẋ2)dt =
p1

ωi









ϕ2+π

ωi
∫

ϕ2
ωi

sin(ωit− ϕ1)dt−

ϕ2+2π

ωi
∫

ϕ2+π

ωi

sin(ωit− ϕ1)dt









(5.34)

which results in
Ti
∫

0

ẋ1sgn(ẋ2)dt =
4p1

ω2
i

cos(ϕ1 − ϕ2) (5.35)

In a n degrees of freedom system (as in this case) for the ith excitation the two

vectors are defined as

pi =











p1i

...
pni











φi =











ϕ1i

...
ϕni











(5.36)

and the matrix of phase differences cosines PD as

PD =









cos(ϕ1 − ϕ1) cos(ϕ2 − ϕ1) . . . cos(ϕn − ϕ1)
cos(ϕ1 − ϕ2) cos(ϕ2 − ϕ2) . . . cos(ϕn − ϕ2)

. . . . . . . . . . . .
cos(ϕ1 − ϕn) cos(ϕ2 − ϕn) . . . cos(ϕn − ϕn)









(5.37)

The analytical solution of the integral in eq. (5.23) for responses in the form of

eq. (5.25) is then
Ti
∫

0

ẋTLjsgn(ẋ)dt =
4

ω2
i

pT
i PDLjun (5.38)
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where un is the unity vector

un =











1
...
1











∈ R
n×1 (5.39)

It is now possible to build matrix G analytically and to proceed to the minimum

angle selection to locate the damping sources and to solve the energy equation

as in the previous case. It is not known a priori if the equivalent sources to

identify are related to viscous damping or Coulomb friction. In this specific case

(with three viscous dashpots and three Coulomb friction devices attached to the

structure) it is possible that the equivalent system could consist of six viscous

dashpots as well as six Coulomb friction devices. The results of the identifica-

tion are summarised in table 5.9. As in previous cases, the rotational degrees

Number of Viscous damping DOF Coulomb friction DOF
dashpots and coefficients (Ns/m) and Fc (N)

1
DOF - - - - 13 - -
Value - - - - 35.3 - -

2
DOF - - - - 13 15 -
Value - - - - 29.7 4.6 -

3
DOF - - 13 - - 15 19
Value - - 0.45 - - 8.4 6.2

4
DOF 3 11 13 17 - - -
Value 0.36 0.06 0.51 0.25 - - -

5
DOF 3 7 13 17 - 15 -
Value 0.28 0.08 0.52 0.20 - 3.4 -

6
DOF 3 - 13 17 7 15 19
Value 0.20 - 0.5 0.15 3.18 5.08 1

Original
DOF 3 - 13 17 7 15 19
Value 0.2 - 0.5 0.15 3.2 5.1 1

Table 5.9: Results for case 3.

of freedom (which are indicated using even numbers) are never selected by the

minimum angle criterion showing that the method somehow understands the di-

rection of the damping sources. It can be seen that the two largest sources for

each type are correctly located using three equivalent dashpots. Unfortunately

the quality of the damping location for the Coulomb friction devices seems to
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decrease when four dashpots are used. The reasons for this are not clear but

it must be said that the selection is based solely on the angle between vectors

from an incomplete set of data and the amount of information which can be ex-

tracted with few measurements is still remarkable. Using an appropriate number

of equivalent dashpots leads to the correct solution (with small differences due

to noise contamination) confirming that the equations used have been correctly

formulated. The error between the identified energy vector and the original one,

however, always decreases with an increasing number of equivalent dashpots.

The numerical simulation on the cantilever beam appears to be reasonably suc-

cessful for the three cases proposed. The results are particularly good for case

2, where the location is always correct and the dashpots are selected from the

largest to the smallest. Cases 1 and 3 behave slightly differently but a logical

trend is visible and the results can be explained and justified using reasonable

physics and engineering considerations. The next simulation on a larger structure

aims to test the identification of relative dashpots between two different degrees

of freedom when the amount of data available is considerably smaller compared

to the size of the model.

5.3 Goland wing

The Goland wing (figure 5.4) is a benchmark structure in aeroelastic studies and

provides a valid example for testing the damping identification method on a more

complex structure than the previous cantilever beam. The finite element model of

the heavy version of the Goland wing is composed of upper and lower skins, three

spars, eleven ribs, three spar caps, eleven rib caps and 33 posts (1-D elements)

with nominal thicknesses and areas as defined [118] in tables 5.10 and 5.11.

Parameter Thickness (m)

Upper and lower wing skins 0.0047
Leading and trailing edge spars 0.00018

Centre spar 0.0271
Ribs 0.01058

Table 5.10: Nominal values of thicknesses for the Goland wing FEM.
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Figure 5.4: Finite element model of the heavy version of the Goland wing

Parameter Areas (m2)

Leading and trailing edge spar caps 0.003865
Centre spar cap 0.013898

Rib caps 0.003921
Posts 0.000074

Table 5.11: Nominal values of areas for the Goland wing FEM.

Each node of the finite element model has three degrees of freedom (translation

along x, y and z axis) for a total of 198 degrees of freedom. Six nodes (at

coordinate y = 0) are clamped reducing the size of the system matrices to 180×
180. The aim of this simulation is to check the performance of the method when

dealing with the identification of relative dashpots between two different degrees

of freedom. In this case fourteen viscous dashpots acting on the vertical degree

of freedom (z axis) of fourteen couple of consecutive nodes is applied as shown in

figure 5.5. These dashpots create a damping force which is proportional to the

relative velocity in the z direction of the two connected nodes. The value and

the location of the dashpots have been chosen in order to spatially cover most

of the wing and to obtain damping ratios ζi for the first ten modes in the range

0.01-0.06 (table 5.12) which is an average typical value for mechanical systems.
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All dashpots have the same damping coefficient equal to 2919 Ns/m. The nodes
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Figure 5.5: Location of viscous dashpots on the Goland wing

are numbered starting from the clamp to the free end of the upper part of the

wing (node 1 to node 30, three nodes for each rib excluding the clamped one)

and in the same way for the lower part of the wing (node 31 to node 60). For

clarity, x and y direction degrees of freedom will not be displayed in the results so

that DOFs 1 to 60 indicate the z direction only; however they have been included

in the calculations. The identification method is not restricted to one-direction

sources of damping; the dashpot pattern proposed is just a simple example with

the purpose of showing the philosophy and the physical meaning of the equivalent

spatial damping identification on large structures. The fourteen dashpots have

been located between the following groups of nodes: 1-4, 5-8, 9-12, 13-16, 17-20,

21-24, 25-28, 32-35, 36-39, 40-43, 44-47, 48-51, 52-55, 56-59. It can be seen that

the modal damping of mode 4 is zero; this is due to the fact that mode 4 is an

in-plane mode and there is no relative displacement in the z direction.

In this example, there are no dashpots connecting the structure to the ground

so the damping pattern selected for the identification is different from the one

selected for the cantilever beam. In this case it is preferred to use the relative

dashpot localisation matrices described by eq. (4.18). In this part of the iden-
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Mode Frequency (Hz) ζ

1 1.967 0.0216
2 4.047 0.0092
3 9.651 0.0192
4 13.272 0.0000
5 13.450 0.0263
6 17.998 0.0233
7 23.888 0.0292
8 29.940 0.0452
9 31.017 0.0495
10 35.196 0.0569

Table 5.12: Natural frequencies and damping ratios of the first 10 modes
of the Goland Wing.

tification process engineering knowledge of the structure is used to reduce the

possibilities for the location of the damping sources. A set of single frequency

harmonic excitations at frequencies close to those of the first five modes has been

used to perform the energy-balance damping identification method. Considering

that the system possess 180 modes, the information used to identify the equiv-

alent viscous damping matrix represent a small percentage of the whole data

theoretically available. This is a useful test to evaluate the behaviour in case of

modal incompleteness in the data.

The response of the system excited by single frequency harmonic excitations

has been simulated in Matlab by using the damping matrix described in the

previous section together with the mass and stiffness matrices extracted from the

MSC.NASTRAN model used in [118, 119] derived from the Goland wing model

described in [120] originally developed by Goland [121]. The response can be

calculated in two ways: numerically or analytically. The first way consists of

using the three system matrices in a Simulink model. By applying a harmonic

source to the system the differential equations of motion are solved for each

time instant by using the Matlab “ode45” solver to obtain accelerations which

are then numerically integrated to obtain velocities and displacements. This

approach has been used in previous simulations of the cantilever beam since

it allows the calculation of the response of a system with different sources of
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damping (included non-viscous sources) and gives an easy visualisation of the

measurements, including the transient.

However, for the application of the energy method in this specific case the ap-

proach is not convenient for two main reasons: firstly, solving a system of 180

coupled differential equations for each time instant is computationally intensive

and secondly the energy method is based on the steady-state response so it is

necessary to wait for the transient to end, which could take a significant amount

of time and calculation depending mainly on the level of damping. Since in this

case the damping is viscous and the closed form solution of the forced response of

a viscously damped multi-degree-of-freedom system is available in literature [44]

and has been described in section 2.3.2, the analytical solution has been used to

produce the necessary data to apply the identification method, i.e. the velocities.

Following a similar procedure to the one used for the cantilever beam, the re-

sults of the identification are represented in figure 5.6 The size of the red circles
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Figure 5.6: Location of the identified viscous dashpots on the Goland wing.

represent the amplitude of the damping sources with respect to the ones shown

in figure 5.5. The limited amount of data used provides an identified viscous

damping matrix which does not exactly represent the spatial distribution of the

original dashpots but it gives an energy-equivalent result which is valid for the
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five modes considered.

A relative dashpot with a viscous coefficient c located between two degrees of

freedom p and q produces four entries in the viscous damping matrix. Two of

these entries are off-diagonal terms located at the pth column of the qth row and

vice versa, both equal to −c, whereas the other two entries are on the diagonal

on the pth and qth row. Since the whole 180 × 180 matrix is difficult to display,

an estimation of the quality of the damping location and identification can be

extracted from the plot of the sixty terms corresponding to the vertical degrees of

freedom, from the diagonal of the identified damping matrix versus the original

damping matrix (figure 5.7). As already mentioned, the degrees of freedom from
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Figure 5.7: Amplitude of the diagonal elements of the identified and orig-
inal damping matrices

1 to 30 represent the upper part of the wing whereas the degrees of freedom from

31 to 60 refer to the lower part. It can be seen that the identified values are of

the same order of magnitude of the original values and in some cases the location

is very accurate too (see for example degrees of freedom 1 and 4). There is also

an almost “empty” area between degrees of freedom 25-30 in the upper part and

between 31-38 in the lower part. This can be explained by the fact that the

identified equivalent damping in the 1-15 upper zone is larger than the original

112



damping, therefore it compensates for the missing dashpots in the lower 31-38

zones whereas the big values between DOFs 50 to 60 in the lower part compensate

for the missing damping in the corresponding upper part. Another factor that

affects the location of damping in case of incomplete data is that some of the

original dashpots could have been located between degrees of freedom which do

not have large relative velocities in the range of frequencies considered. Identify-

ing their location becomes more difficult with a limited number of measurements

and other locations are preferred for the energy-equivalent model. From a modal
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Figure 5.8: Modal damping ratio comparison for the first 10 modes.

point of view, the results are shown in figure 5.8 and table 5.13. The agreement

between the modal damping coefficients of the original and identified system is

very accurate for the first five modes used to perform the identification (the maxi-

mum error is -0.104%) and it is still acceptable for further modes with reasonable

errors up to 4%. The energy method is then able to give a reasonable spatial

pattern of dashpots with viscous damping coefficients of the same order of the

original one together with a good agreement of the modal properties even on large

structures using a relatively small amount of data.
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Mode ζ Original ζ Identified Error (%)

1 0.021636 0.021635 -0.003%
2 0.009169 0.009169 -0.001%
3 0.019158 0.019149 -0.045%
4 0.000000 0.000000 0.000%
5 0.026271 0.026243 -0.104%
6 0.023350 0.023658 1.319%
7 0.029190 0.029165 -0.086%
8 0.045236 0.045047 -0.417%
9 0.049506 0.047473 -4.107%
10 0.056917 0.054697 -3.901%

Table 5.13: Identified versus original modal damping comparison

5.4 Closure

The numerical simulations on two different structures with different damping con-

figurations have been studied in order to evaluate the advantages and drawbacks

of the method proposed. This method is a spatial identification method aimed

at providing information about the location and amplitude of the sources of en-

ergy dissipation in order to link the damping to a specific region or to a specific

physical phenomenon. This method seems to give valuable information in all

the cases proposed. The numerical simulation on the cantilever beam appears to

be reasonably successful for the three cases proposed. Particularly in case 2 the

location is always correct and the dashpots are selected from the largest to the

smallest. Cases 1 and 3 present some inaccuracies due to limited data and noise,

but a logical trend is visible and the results can be explained using engineering

considerations. In the Goland wing example, the identified damping pattern ob-

tained possess viscous damping coefficients of the same order of magnitude as the

original and the location is globally representative of the spatial distribution on

the wing. From a modal damping point of view, the two systems (original and

identified) are very close to each other for the first five modes used to identify

the damping and remain close for further modes.

Although these results are encouraging, they are not sufficient to validate a

method. Simulations can validate the mathematics behind the method and even-
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tually the effect of noise or other kinds of contaminations, however they are not

able to validate the relationships between the real world and the way the damping

is modelled and the approximations introduced. For these reasons in the next

chapter two different experiments have been designed in order to test the method

on real structures with different sources of damping.
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Chapter 6

Experiments

6.1 Introduction

Most of the identification methods found in the literature work very well in the-

ory and in simulations but there are not many papers on their validation with

regard to real structures, especially for the location of the sources of energy dis-

sipation. An interesting article on the subject is written by Srikantha Phani and

Woodhouse [84], who compared the performance of a number of specific identifi-

cation routines on two different test structures: a three cantilever beam system

and a free-free beam. In this chapter the proposed energy balance identification

method is tested on two structures: an aluminium cantilever beam with nominal

dimensions close to the one of the numerical simulations described in chapter 5

and a five degrees of freedom mass-spring structure. Both structures have been

designed and built for the purpose of validating the method and several different

damping devices (eddy current dashpots, air viscous dashpots, Coulomb friction

devices) have been attached to these structures in order to locate and evaluate

their damping properties.

6.2 Design of experiment 1: cantilever beam

Since the numerical simulations on the cantilever beam performed reasonably

well, the idea is to repeat a similar experiment on a real structure. A sketch of the

experiment is showed in figure 6.1. The cantilever aluminium beam has nineteen

equidistant holes in order to have different locations for the damping devices along

the length of the beam by means of small wings attached to it. The dimensions
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Figure 6.1: Cantilever beam experimental setup

and material of the beam have been designed so that the natural frequencies of

the first ten modes are well separated from each other, in order to minimise the

effect of each mode on those closest to it. The chosen material is aluminium since

the damping devices that will be used on the beam include magnets and there

could be unwanted interactions in case of ferromagnetic materials, even if they

are located considerably far from the beam. After choosing the dimensions of the
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Figure 6.2: Effect of the length of the beam on natural frequencies

rectangular section of the beam (40× 4 mm), an eigenvalues analysis based on a

FEM of the beam (figure 6.2) was performed in order to choose the optimal length.

118



0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Natural frequencies (Hz)

W
in

gs
 m

as
s 

(K
g)

 

 
Bending xy modes
Bending xz modes
Torsional modes

Figure 6.3: Effect of added mass on natural frequencies

An appropriate length was found to be 560 mm. The mass of the wings attached

to the beam to provide damping will have an effect on the dynamics of the beam

(figure 6.3) which has been considered in the design. The mass for one pair of

wings at the same degree of freedom was calculated as 0.014 Kg. In table 6.1 are

displayed the values of the natural frequencies of the first ten modes for three

different wings configuration: the beam only without added mass (configuration

1), the beam with wings at 500 mm distance from clamp (configuration 2) and the

beam with wings at 200 mm distance from clamp (configuration 3). It can be seen

that frequencies are well separated and the location of the wings does not affect

modes considerably if the wings are reasonably light. The shape of the wings

was optimised in order to provide enough conductive material for the magnetic

dashpot, described in the following section, while keeping the mass of 0.014 Kg.

The beam is stiffly clamped in compression between two large steel blocks. Ten

translational accelerometers are placed along the beam, five for each side and

equidistant from each other; no rotational degrees of freedom are considered.

Degrees of freedom are numbered from 1 to 10 starting from the clamp to the

free end and a shaker, which provides the external excitation forces, is placed at
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Mode Description ω (Hz) case 1 ω (Hz) case 2 ω (Hz) case 3

1 1st bending xy 10.380 9.7256 10.536
2 2nd bending xy 65.034 64.271 63.469
3 1st bending xz 103.05 96.679 102.82
4 3rd bending xy 181.98 182.42 177.66
5 1st torsional 269.11 233.66 264.09
6 4th bending xy 356.75 357.91 353.13
7 5th bending xy 588.27 591.69 582.99
8 2nd bending xz 628.73 623.06 606.53
9 2nd torsional 809.35 754.52 684.69
10 6th bending xy 885.38 885.09 873.69

Table 6.1: Natural frequencies for three different wing configurations

DOF 3 (figure 6.4). The complete experimental setup is shown in figure 6.5. On

Figure 6.4: Experiment 1: DOFs numbering and location of the shaker

the left a magnetic eddy current dashpot is visible acting on DOF 9 where the

two wings are attached, five accelerometers can be seen on one side of the beam

whereas the other five are on the opposite side; the large white cylinder is the

shaker. As previously discussed in the introduction, all structures exhibit some

forms of damping. In this case there would certainly be some energy dissipation

in the clamp, which cannot be considered completely ideal, and also some friction

between the beam and the steel blocks of the clamp. The cables connected to the

accelerometers will also dissipate some vibration as well as the material damping

of the aluminium itself. However, the experiment is aimed to locate and measure

the external added sources of damping which are meant to be larger than these

intrinsic values which can then potentially be neglected.
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Figure 6.5: Experimental setup

6.3 Damping sources

The three different damping sources chosen for this experiment consist in eddy

current dashpots, air viscous dashpots and Coulomb friction devices. The mag-

netic eddy current dashpots provide a damping force close to viscous damping

with the advantage of not having moving parts in contact so that unwanted forms

of friction are avoided. The air viscous dashpots consist in the traditional cylin-

der with a movable piston which creates a damping force proportional to velocity

by forcing a laminar flow of air through a restriction. The Coulomb friction de-

vices are essentially callipers which compress the wings through an adjustable

normal force; different materials can be used on the contact surfaces to change

the friction coefficient.

6.3.1 Magnetic eddy current dashpot

The movement of a conductor (in this case the aluminium wing) through a sta-

tionary magnetic field (figure 6.6) generates an electromagnetic force that creates

a damping effect proportional to instantaneous velocities similar to pure viscous

damping [12, 13]. By varying the air gap between the magnet and the conductor

it is possible to vary the damping coefficient of the dashpot. This coefficient

121



can be estimated if the size of the magnets and conductor are known [11]. The

value of the damping coefficient can be further increased by using two magnets

placed on the two sides of the conductor with opposite direction of the magnetic

flux density Bm. The viscous damping coefficient of this device is proportional

Figure 6.6: Eddy current dashpot model

to the size and geometry of the magnet and the conductor, the magnetic flux

density in the direction orthogonal to the displacements, the electric resistance of

the conductor and the air gap between the magnet and the conductor [11]. The

Figure 6.7: Magnetic eddy current dashpot located at DOF 9

constraint on the mass of the wings, which represent the conductor (aluminium)

of the eddy current dashpot, limits the value of the damping coefficient in the
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0-1.5 Ns/m range depending on the air gap between the magnet and the conduc-

tor. This value seems to be a valid compromise in order to have a light device

providing viscous damping without friction.

6.3.2 Air viscous dashpot

The viscous dashpot (figure 6.8) used in the experiments is a precision air damp-

ing dashpot by AirpotR© type 2KS160A2.0TX which is able to produce higher

damping coefficients than the magnetic eddy current dashpot, in the 0-20 Ns/m

range, with the minor disadvantage of experiencing a small amount of energy

dissipation by friction due to the movable parts in contact.

Figure 6.8: Air dashpot at DOF 4

However, this amount of energy is relatively small compared to the energy dissi-

pated by viscous damping, so it is assumed to be negligible during the identifica-

tion process. The value of the damping coefficient in this case can be varied by

adjusting a screw which reduces or increases the section of the hole where the air

is forced to flow through. Even if the viscous damping coefficient is theoretically

constant at any frequency and this kind of dashpots are normally used to repre-

sent viscous damping, it has been found that the actual damping coefficient is not

constant but it varies considerably depending on the frequency. For this reason

an average value of the damping coefficient within the range of frequencies used
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in the identification process has been previously estimated on the dashpot only

in order to compare it with the value identified once attached to the structure.

6.3.3 Coulomb friction device

The Coulomb friction device consists of the simple system showed in figure 6.9.

A calliper acts on the aluminium wing by means of a normal force obtained by

turning the screw in the middle of the device creating a deflection of the two small

beams. The normal force can be adjusted using the screw while films of different

Figure 6.9: Coulomb friction device at DOF 9

materials can be applied to the wings and to the callipers to provide different

combinations and different friction coefficients µ. On the back of the calliper it

is possible to measure the tangential force through a load cell transducer while

the normal force can be measured by static tests before starting the dynamic

experiment.

6.4 Test procedure

The experimental procedure is similar to the procedure used for the numeri-

cal simulations; a preliminary Frequency Response Function of the undamped

structure under investigation (the cantilever beam only) is measured in order to
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choose the frequencies at which the excitations will be applied for the identifica-

tion method. The choice is to use frequencies close to the ones of the first eight

modes of the undamped system, where the effect of damping is more likely to ap-

pear when the additional sources will be attached. The structure is then excited

using these single-frequency forces and maintaining the input energy as constant

as possible in order to have similar order of magnitude in each row of matrix G

and vector e in eq. (4.22). The measured data from the load cell attached to the
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Figure 6.10: Typical measured force versus harmonic fitted force

shaker and the ten accelerometers are then fitted to a harmonic function. In this

ten degree-of-freedom system, with the shaker attached at DOF 3, the measured

forces vector will take the form

fi(t) =
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(6.1)
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and fi(t) will be fitted to the harmonic function

fi(t) = ri sin(ωit) + si cos(ωit) (6.2)

by estimating the two coefficients ri and si using least squares techniques. A

representative typical measured force versus its fitted harmonic function is shown

in figure 6.10. The same procedure is done for the acceleration measurements

(figure 6.11). In this example, the vector of measured accelerations will be

ẍi(t) =











ẍ1i
(t)
...

ẍ10i
(t)
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cos(ωit) (6.3)

or

ẍi(t) = ai sin(ωit) + bi cos(ωit) (6.4)

Once ai and bi have been estimated, velocities and displacements can be calcu-

lated by analytical integration as

ẋi(t) =
1

ωi

(−ai cos(ωit) + bi sin(ωit)) (6.5)

xi(t) = − 1

ω2
i

(ai sin(ωit) + bi cos(ωit)) (6.6)

This harmonic fitting is not necessary but it is advantageous for many reasons.

For example, the analytical integration of the harmonic-fitted accelerations is

faster than using the fast Fourier transform (FFT) on all frequencies and then

apply the inverse to obtain velocities and displacements. The same is valid for the

integrals present in matrix G and vector e. Since the excitation frequencies are

known and the nonlinearities present in the system are considered negligible, it is

an acceptable approximation to assume that the response is at the same frequency

of the excitation. This is an important advantage since it must be considered that

the amount of measured data when using this method is considerably large. A

certain number of periods of the time histories with a proper resolution is needed

for each accelerometer and force transducer (for each excitation frequency, for

each test) which results in large files that would have taken a large amount of

time to be integrated numerically. However, in order to check if the chosen

approximation was reasonable, the values for the entries of matrix G and vector e
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Figure 6.11: Typical measured acceleration versus harmonic fitted acceler-
ation

in the very first experiment obtained by analytical and numerical integration have

been compared. The maximum error is found to be 0.12% by using the analytical

harmonic fitted solution instead of the numerical inverse-FFT integration, and for

this simple ten degree-of-freedom example the ratio between the time consumed

to perform the integrations using the two methods is about 1 to 250. Moreover,

high frequency noise is automatically filtered by assuming a linear relationship

between input force and response. Other numerical integration related problems

such as the error in the trapezoid sum or phase shifts are also avoided or reduced

by analytical integration.

In order to compute matrix G it is necessary to choose a parameterisation for

the damping matrix by means of the localisation matrices Li described in section

4.2.2. In this experiment the damping is going to be applied between some degrees

of freedom and the ground so ten relative dashpot localisation matrices in the

127



form

L2 =












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0 0 0 · · · 0
0 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . . 0
0 0 0 0 0
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


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





(6.7)

have been used (eq. (6.7) refers to a dashpot connected between DOF 2 and the

ground, for example). Moreover, a matrix in the form

L11 =


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
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1 −1 0 · · · 0 0
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0 −1 2 · · · 0 0
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0 0 0 −1 2 −1
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
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







(6.8)

is used to represent dissipations between all pairs of two consecutive degrees of

freedom. These energy dissipations are assumed of equal magnitude since nothing

is connected between two of these DOFs and all damping is due to material

damping in the aluminium, which is considered an homogeneous material. There

might also be some damping due to the accelerometers’ cables, which can be larger

in the proximity of the clamp (DOF 1) since there are ten cables there compared

to the free end (DOF 10) where only the cable of the last accelerometer is present.

A total of eleven equivalent viscous damping coefficients are identified to represent

the damping of the structure. Once matrix G and vector e have been calculated

for each test, the identification procedure is the same as the numerical simulations

in chapter 5, i.e. by applying the non-negative least squares algorithm and the

minimum angle criterion.

6.5 Results for experiment 1

In this section the results of the energy equivalent damping identification are

presented on different damping configurations: the undamped cantilever beam

(referred as “offset damping”, i.e. the intrinsic damping of the structure itself

without any added source), the cantilever beam with a magnetic dashpot attached

at DOF 8, the cantilever beam with an air dashpot attached at DOF 8, the
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cantilever beam with a Coulomb friction device attached between at DOF 6 and

the cantilever beam with two air dashpots attached at DOFs 6 and 8.

6.5.1 Case 1: undamped cantilever beam

The first experiment is performed on the undamped cantilever beam in order to

estimate the offset damping due to the clamp, material damping, cables, air and

everything else. The identified equivalent viscous damping matrix Cid for the

range of frequencies selected (10÷ 1000 Hz) is

Cid =
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






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0 0 0 0 0 −0.26 0.52 −0.26 0 0
0 0 0 0 0 0 −0.26 0.78 −0.26 0
0 0 0 0 0 0 0 −0.26 0.52 −0.26
0 0 0 0 0 0 0 0 −0.26 0.26

































(6.9)

and it is shown in figure 6.12. Immediately visible is a large value (5.67 Ns/m) in

the proximity of the clamp (DOF 1), with similar, albeit smaller, values for the

rest of the beam. This result was expected since the clamp region is the most
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Figure 6.12: Identified damping matrix for case 1
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affected by the damping due to the non-perfect boundary conditions and cables.

However, the values of damping coefficients are larger than it was expected by

preliminary studies during the design stage, confirming how damping is difficult

to predict and to model a priori. From an energy point of view, it is not strictly

valid to compare the value of the coefficients of the equivalent viscous damping

matrix in order to find the largest sources of damping. The energy dissipated in a

particular degree of freedom is obviously proportional to the damping coefficient

but also to the velocity of that DOF. For this reason the degree of freedom with

the highest damping value is not necessarily the one which dissipates most energy

in a certain frequency range. It makes more sense to compare the percentage of

energy dissipated in a particular degree of freedom compared to the total energy

dissipated by the whole damping matrix, in the frequency range of interest, as

shown in figure 6.13. In the undamped case the energy dissipated in the clamp is
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Figure 6.13: Energy DOF contribution (% of the total dissipation) of the
identified damping matrix for case 1

still relatively the largest, since there are no other important external sources of

damping and material damping seems to be negligible. However, in subsequent

cases this way of displaying the results will help with the location of the main

sources of energy dissipation. The identified damping matrix for case 1 will be
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used to compare the other cases for detecting the additional damping provided

by the different devices.

6.5.2 Case 2: single magnetic dashpot

The first damped experiment uses the magnetic eddy current dashpot described

in section 6.3.1 as additional external source of viscous damping. Due to the

constraints occurred during the design stage the maximum damping coefficient

attainable with this device in the frequency range of interest, according to Nagaya

and Kojima [11], is 1.5 Ns/m. This value is of the same order of magnitude (or

even smaller) of the offset damping, which has been found to be larger than ex-

pected, so locating and identifying it could be challenging. The magnetic dashpot

has been attached between degree of freedom 8 and the ground as shown in figure

6.14, and its viscous damping coefficient has been set to the maximum value 1.5

Ns/m. The identified damping matrix is shown in figure 6.15. The magnetic

Figure 6.14: Case 2: magnetic dashpot location (DOF 8)

dashpot creates some small disturbances with respect to the matrix identified

from the undamped system in figure 6.12 and even if a small value (1.17 Ns/m) is

present at degree of freedom 8 (where the magnetic dashpot is actually located),

the system seems to exhibit some damping of approximately the same value at

DOFs 2 and 6 too, which is not present in the real system. The plot of the energy

contributions in figure 6.16 shows that the clamp is no longer the main source

of energy dissipation but the effect of the magnetic dashpot is still too small to

be correctly located. Although the results of this first case are not particularly

successful, there are some positive aspects that can be extracted from the com-
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Figure 6.15: Identified damping matrix for case 2
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Figure 6.16: Energy DOF contribution (% of the total dissipation) of the
identified damping matrix for case 2

parison of the undamped case with this lightly damped example. Firstly, the

norm of the identified damping matrix which has increased from 5.6863 Ns/m to
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6.1293 Ns/m showing that the added dashpot has a direct effect on the identified

damping matrix in the right direction. This could look banal but considering

the uncertainty and simplicity of the chosen damping model (only eleven viscous

linear parameters to describe and locate all sorts of energy dissipation in a real

structure) and the number of assumptions and approximations made during the

handling of measured data, it was not so obvious. Secondly, though the method

is not able to explicitly locate the magnetic dashpot, the general damping pattern

is reasonable and confirms the presence of damping in the clamp region and the

second largest value of the damping matrix at the right degree of freedom (DOF

8). A conclusion of this first experiment is that the external added damping

source which was meant to be identified has been undersized during the design

stage and as such the method is not particularly effective in locating it. This is

because the useful information is lost within the offset damping.

6.5.3 Case 3: single air dashpot

Following the results of case 2, the choice for case 3 is to use a dashpot with

a larger damping coefficient at the same degree of freedom (DOF 8). The air

dashpot described in section 6.3.2 has been used, with a damping coefficient set

to 5 Ns/m by a previous experiment on the daspot alone. The identified damping

matrix is shown in figure 6.17. The identified damping matrix presents a peak of

4.4312 Ns/m at the location where the air dashpot is attached, some small values

at DOFs 3, 4 and 7 and the usual large value in the clamp region. Despite the

value of the identified damping at the location of the air dashpot being slightly

lower than expected, the value of the coefficient in the clamp region (DOF 1) has

increased from 5.67 Ns/m to 7.75 Ns/m. This result may look strange but it must

be considered that DOF 1 is the one with smallest velocities in the frequency range

under examination, so the actual increase from an energy point of view is not

particularly remarkable. From the plot of the energy contributions (figure 6.18) it

is now clear that the main source of dissipation is given by the added air dashpot

at DOF 8. Unexpectedly, there seems to be some kind of energy dissipation

at DOFs 3 and 4. These “perturbations” may occur for numerical or physical

reasons: one interpretation may be related to the minimum angle selection which
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Figure 6.17: Identified damping matrix for case 3
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Figure 6.18: Energy DOF contribution (% of the total dissipation) of the
identified damping matrix for case 3

might select the wrong column (in section 4.2.4 it is stated that the method does

not guarantee a correct location but it just leads to it in most cases; even in
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numerical simulations it happened to have wrong but reasonable solutions). A

physical reason, instead, could be the fact that the shaker is attached at DOF 3

and it surely affects the dynamics of the structure and the damping as well. The

results obtained in case 3 seem reasonably good and it appears that if the source

is relatively big and the type of damping is mainly viscous, the method is able

to locate the source and its magnitude effectively. In the next case a non-viscous

source is attached to the system to check if an equivalent viscous damping system

is able to give useful information on this different kind of source as well.

6.5.4 Case 4: single Coulomb friction device

In case 4, a Coulomb friction device such as the one described in section 6.3.3

has been attached between degree of freedom 6 and the ground, as schematically

shown in figure 6.19. A thin sheet of biaxially-oriented polyethylene terephthalate

Figure 6.19: Case 4: Coulomb friction device location (DOF 6)

(boPET, commercially known as Mylar) has been placed between the callipers

and the wing to obtain the desired friction coefficient. The identified damping

matrix is shown in figure 6.20. Although the viscous model does not reflect the

true physics of Coulomb friction as explained in section 2.2.3, the energy method

is able to locate the source of damping at the right degree of freedom for this

device too. An equivalent viscous damping coefficient of 3.2776 Ns/m has been

obtained on the diagonal of the identified matrix corresponding to DOF 6. This

viscous damping value is considered equivalent in terms of energy dissipated per
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Figure 6.20: Identified damping matrix for case 4

cycle to the energy dissipated by Coulomb friction through the relationship

πceqωx2
0 = 4µFnx0 (6.10)

where ω is the frequency of vibration, x0 is the amplitude of displacements, µ the

coefficient of friction and Fn the normal force acting on the wing. The equivalent

viscous damping coefficient ceq is then

ceq =
4µFn

πωx0

(6.11)

This approximation means that the equivalent system with a viscous dashpot

and damping coefficient ceq dissipates the same amount of energy per cycle of

the original system with Coulomb friction, but only at the specific frequency

ω. In this case a range of frequencies, and not a specific value, is considered

with different values of the displacement x0 for each different excitation. The

normal force Fn has been statically measured resulting as 0.8 N and the average

coefficient of friction µ for the range of interest has been estimated as 0.32 using

eq. (6.11). The value of the coefficient of friction between aluminium and Mylar
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Figure 6.21: Energy DOF contribution (% of the total dissipation) of the
identified damping matrix for case 4

obtained from a previous experiment on a inclined plane was 0.40. The plot of

the energy contributions (figure 6.21) shows that the main source of damping is

located at DOF 6, followed by the energy dissipated in the clamp, confirming a

good spatial localisation as in the previous case.

6.5.5 Case 5: multiple air dashpot

The last case for the first experiment consists in two air dashpots, respectively of

viscous damping coefficient 5 Ns/m and 7 Ns/m, attached at degrees of freedom

6 and 8 as schematically represented in figure 6.22 and shown in figure 6.23.

The identified damping matrix is shown in figure 6.24. As in the previous cases,

the highest damping coefficient is in the clamp region, followed by DOFs 8, 6,

9 and 3. The damping coefficients of 3.2391 Ns/m and 4.8121 Ns/m are lower

than expected for the two air dashpots but some of the energy input in the

system is dissipated by the “wrong” equivalent dashpots at DOFs 9 and 3. The

method seems to perform reasonably well with multiple sources of damping; the

localisation seems particularly effective and even if the amplitude is not always

precise, it is still representative of the relative magnitude between the different
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Figure 6.22: Case 4: Multiple air dashpots location (DOF 6 and 8)

Figure 6.23: Case 5: air dashpots at DOF 6 and 8

energy dissipations.

By looking at the energy contributions (figure 6.25), it can be seen how the

energy dissipated by the dashpot at DOF 8 is split into two equivalent dashpots

at DOFs 8 and 9. Since nothing is attached to the beam at DOF 9, this is

probably one of the numerical perturbations mentioned for case 3. However,

figure 6.25 clearly shows the regions where the damping sources are effectively

acting on the structure.
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Figure 6.24: Identified damping matrix for case 5
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Figure 6.25: Energy DOF contribution (% of the total dissipation) of the
identified damping matrix for case 5

6.6 Conclusions for experiment 1

The first experiment was meant and designed to validate the damping identi-

fication energy method, especially regarding the location of absolute dashpots
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connected between the structure and the ground. The results obtained are en-

couraging: despite the simple linear eleven-parameters model which has been

used to describe all the energy dissipations present in the system, the method

gives valuable information about the location and amplitude of the sources of

damping with a reasonably simple procedure. By measuring the time responses

of only eight different excitations for each case and without building any FEM

of the structure under examination, the results are sufficiently accurate to give a

good general idea of the critical regions for damping.

Some important practical issues which are worth mentioning were encountered

during the performance of the experiments. The first issue regards some problems

which occurred with standard accelerometers at low frequencies. What appeared

from this experiment is that standard equipment normally used for vibration

tests may experience small phase lag at frequencies below 15 Hertz. Damping

identification is extremely affected by phase lag since damping itself is the cause

of the normal phase delays present in real systems. For methods based on time

history as the energy method in particular, this may easily lead to wrong results

so low frequency signals have to be checked carefully before applying the method

and high performance accelerometers may become necessary when the range of

frequencies of interest is in the low region. In this experiment, with a range of

frequency approximately between 10 to 1000 Hz, the first bending mode of the

beam is around 12 Hz so it is possible either to ignore the first mode or to excite

the structure at a slightly higher frequency (around 15-16 Hertz) if the damping

is still effective at that frequency.

Another practical issue encountered during the experiment is the difficulty to

build a dashpot which behaves as a viscous dashpot with constant damping co-

efficient in the range of frequencies of interest. The values used to compare with

the results of the identification are the average of the values at the different

frequencies used in the experiments. The damping coefficient, even for the air

dashpot which is the typical example used in all vibration books to illustrate

viscous damping, is far from being constant in the range from 10 to 1000 Hz

with variations sometime larger than 100%. Viscous damping is then a purely

mathematical approximation which is often sufficient for engineering needs but
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not accurately representative of reality.

Given the good results of the first experiment, a second experimental setup has

been designed to test the method on the identification of relative dashpots be-

tween different degrees of freedom of a structure with a limited frequency range

to avoid the two problems just mentioned.

6.7 Design of experiment 2: five masses system

The second experiment consists of a five degree-of-freedom system as schemat-

ically shown in figure 6.26. Five masses (m1, . . . ,m5) are connected to the

Figure 6.26: Experiment 2: Scheme and DOF numbering

ground with five nominally identical springs of stiffness kg and four other springs

(k12, . . . , k45) connecting each mass to the next one. The values of masses and

stiffnesses of springs have been chosen in order to have the frequency of the first

mode higher than 20 Hz to avoid the phase lag problem at low frequencies en-

countered in the first experiment.

Moreover, the five degree-of-freedom system differs from the cantilever beam since

it can be considered a discrete system with a finite number of modes (five) in-

stead of a continuous system with an infinite number of modes. The system has

been designed so that the frequencies of the five modes are in a limited range

of frequencies between 20 to 80 Hz, well separated from each other, so that the

damping coefficients of the sources of energy dissipation that will be attached to

it will not vary too much in that range.

From a practical point of view, the spring connecting the masses to the ground
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Figure 6.27: Experiment 2 design

consist of two identical vertical beams for each mass, connected to a steel block

clamped to the ground. The relative springs between two masses are instead

curved arc springs fixed to the upper part of each mass. Between the two spring

attachments there is the necessary space for the attachment of damping devices

(figure 6.27). The chosen mass and stiffness values are shown in table 6.2, leading

to the five natural frequencies shown in table 6.3.

Parameter Value

m1 1.727 Kg
m2 5.122 Kg
m3 8.213 Kg
m4 2.609 Kg
m5 1.339 Kg
kg 94263 N/m
k12 75136 N/m
k23 67744 N/m
k34 75466 N/m
k45 83396 N/m

Table 6.2: Mass and stiffness values for experiment 2

These frequencies will slightly change when the damping devices will be attached

to the system because of the added mass of the dashpot itself, the added damping

and a small increase in stiffness too. However the damping devices are consider-

ably lighter than the five masses and the variation expected in terms of frequency
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Mode Frequency (Hz)

1 21.88 Hz
2 32.13 Hz
3 42.48 Hz
4 52.44 Hz
5 64.36 Hz

Table 6.3: Natural frequencies for experiment 2

when attaching these devices should not exceed 2 Hz. The experimental setup for

experiment 2 is shown in figure 6.28. The measured Frequency Response Function

Figure 6.28: Experimental setup

of the undamped system is shown in figure 6.29. The five natural frequencies are

well spaced from each other and in the predicted range. The localisation matrices

chosen for this example consist of five absolute dashpot localisation matrices as

eq. 6.7, representing the energy dissipations present in the connections between

the five masses and the ground, plus four relative dashpot localisation matrices

in the form

L1,2 =















1 −1 0 · · · 0
−1 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . . 0
0 0 0 0 0















(6.12)

representing, for example, the equivalent dashpot between degrees of freedom 1

and 2 for a total of nine parameters to identify.
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Figure 6.29: Experiment 2: FRF of the undamped system

6.8 Test procedure

The test procedure is practically identical to the one used for experiment 1. The

main difference is that in this case only five different frequencies are used and a

preliminary analysis on the Frequency Response Function is performed in order

to select the most relevant frequencies to use in the process before starting the

identification procedure.

Since the added dashpots will be located between two degrees of freedom, it

is important to know the mode shapes in order to understand if a particular

mode is affected or not by the presence of an added dashpot. Consider the five

mode shapes displayed in figure 6.30; depending on the location of the added

dashpots each mode could be relevant or not to the identification procedure. If,

for example, a dashpot is placed between degrees of freedom 4 and 5, the most

relevant information will be obtained by exciting the structure at frequencies

close to the fifth mode (figure 6.30(e)), since it is the one with the largest relative

displacement between the two DOFs, whereas in all the other four modes the

two DOFs move together in the same direction. For the same reason, mode 2

(figure 6.30(b)) will be more important when trying to locate sources of damping

between DOFs 2 and 3. Mode 4 (figure 6.30(d)), instead, is clearly a local mode
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Figure 6.30: Mode shapes for experiment 2

regarding mainly DOFs 1 and 2. Using data obtained from mode 4 in order

to identify damping between DOFs 3 and 4 or 4 and 5 could actually make the

identification results worse introducing useless information in the energy equation

and reducing the accuracy of the identified parameters.

In the next section a selection of the most interesting results on the identification

of damping on the five degree-of-freedom system is presented. Results include

the undamped system, the system with single and multiple air dashpots and a

combined air dashpot and Coulomb friction device system.

6.9 Results for experiment 2

6.9.1 Case 1: undamped system

The first test has been performed in order to measure the offset damping present

in the structure which will be compared to the other cases with additional external

sources of damping. Several excitations at different frequencies close to the ones of

the first five modes have been applied to degree of freedom 5 and the accelerations

at all five DOFs have been measured to apply the energy method. The energy
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equivalent viscous damping matrix for the undamped system is

Cid =













2.0413 0 0 0 0
0 4.0066 −1.9652 0 0
0 −1.9652 4.0066 0 0
0 0 0 2.3693 −0.3280
0 0 0 −0.3280 2.3693













(6.13)

and it is shown in figure 6.31. The values of the equivalent viscous damping
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Figure 6.31: Identified damping matrix for the undamped system

coefficient on the diagonal are between 2 to 4 Ns/m and there seems to be a small

amount of energy dissipation between DOFs 2 and 3. The identified damping

matrix can be used together with the mass and stiffness matrices derived from

the values in table 6.2 to obtain the damping ratio ζ of the identified system which

can be compared with the damping ratio obtained directly from the acquisition

system using the half-power bandwidth method (section 3.2.2). The results of this

comparison are shown in table 6.4. Values are not too different for modes from 2 to

5 whereas mode 1 appears to be more damped in the energy equivalent identified

system. However, each identification method contains different assumptions and

the energy method provides information that are not available using the half-

power bandwidth method alone. Since the half-power method is well established

146



Mode ζhp ζid Err %

1 0.0020 0.0030 +50%
2 0.0024 0.0025 +4%
3 0.0023 0.0019 -17%
4 0.0015 0.0017 +13%
5 0.0021 0.0020 -5%

Table 6.4: Comparison of damping ratios for case 1 obtained by half-
power bandwidth method (ζhp) versus energy spatial identifi-
cation method (ζid).

in engineering and widely used in many applications, it could eventually be used

to adjust the results obtained by the energy method by scaling the amplitudes of

the identified damping coefficients once the location is determined.

6.9.2 Case 2: single air dashpot

In the first case with added damping, an air dashpot (figure 6.32) with a viscous

damping coefficient of 4 Ns/m has been attached between DOFs 4 and 5 as

additional source of damping. By using data obtained from excitations in the full

Figure 6.32: Viscous dashpot between DOFs 4 and 5

frequency range of the first five modes in the identification process, the results

are not satisfactory both for the location and for the amplitude of the identified
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damping sources. Looking at mode shapes in figure 6.30, a possible reason could

be the fact that adding a dashpot between DOFs 4 and 5 almost does not affect

the first four modes but strongly affects the fifth mode. Data obtained from

excitations at frequencies in the range between 20 to 55 Hz does not contain much

information about the added damping and does not give any useful contribution

to the energy equations regarding the identification. Actually this data could

be considered damaging to the method. Another way of looking at this aspect

is considering the Frequency Response Function of the undamped system versus

the FRF of the system with the added dashpot in figure 6.33. The two FRFs
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Figure 6.33: Experiment 2: FRF of the undamped system versus case 2

practically overlap for the first four modes and the effect of damping is only visible

for the fifth mode.

For this reason, instead of using all the data available, only a selection of signifi-

cant excitations in the range from 55 to 70 Hz is used to apply the method. The

identified equivalent viscous damping matrix for case 2 becomes

Cid =













0.8165 0 0 0 0
0 1.6026 −0.7861 0 0
0 −0.7861 1.8751 −2.1476 0
0 0 −2.1476 6.3098 −3.3457
0 0 0 −3.3457 4.1622













(6.14)

and it is shown in figure 6.34. In the damping matrix is immediately noticeable an
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Figure 6.34: Identified damping matrix for case 2

increasing of the damping coefficients in the region where the dashpot is attached

(between DOFs 4 and 5). The value of the damping coefficient of the added

dashpot is slightly lower than expected (3.3457 Ns/m instead of 4 Ns/m) but

reasonably close and correctly located. Some of the offset damping changed, but

the identified damping pattern is representative of the real system.

6.9.3 Case 3: multiple air dashpots

In the second damped example two air dashpots of viscous damping coefficient

respectively equal to 15 and 4 Ns/m have been applied between DOFs 2 and 3

and between DOFs 4 and 5. By looking at the mode shapes, the first dashpots

seems to be especially effective on mode 2 where DOFs 2 and 3 are moving in

opposite directions with large relative displacements and velocities. By looking

at the comparison between the Frequency Response Function of the undamped

system versus case 3 (figure 6.35), the frequency ranges affected by the added

dashpots seems to be between 25 and 38 Hz and between 55 to 70 Hz again.

There appears to be a small effect on modes 3 and 4 too with a slight shift

for the natural frequencies due to the added masses of dashpots. The identified
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Figure 6.35: Experiment 2: FRF of the undamped system versus case 3

equivalent viscous damping matrix for case 3 becomes

Cid =













2.0413 0 0 0 0
0 21.7735 −19.7321 0 0
0 −19.7321 21.7735 0 0
0 0 0 7.5764 −5.5351
0 0 0 −5.5351 7.5764













(6.15)

and it is shown in figure 6.36. The identification is representative of the real

system, both regarding the location and the relative amplitude (the damping

coefficient of the dashpot between DOFs 2 and 3 is larger than the one of the

dashpot between DOFs 4 and 5). The damping coefficient values are close to the

previously measured ones and considering each single dashpot individually, the

error is around 30%. The dashpot between DOFs 4 and 5 is then moved between

DOFs 3 and 4 (case 3b) to check if the identification method is able to detect

the change in the location maintaining the same amplitude. The new location

particularly affects mode 3, as it can be seen from the FRF in figure 6.37. The

identified equivalent viscous damping matrix for case 3b becomes

Cid =













2.0543 0 0 0 0
0 16.4224 −14.3811 0 0
0 −14.3811 25.8219 −9.3995 0
0 0 −9.3995 11.7689 −0.3280
0 0 0 −0.3280 2.3693













(6.16)
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Figure 6.36: Identified damping matrix for case 3
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Figure 6.37: Experiment 2: FRF of the undamped system versus case 3b

and it is shown in figure 6.38. The two dashpots are correctly located but the

damping coefficients merged together with a transfer of energy from the largest

to the smallest. In case 3 it was expected to find two damping coefficients of

respectively 15 and 4 Ns/m but the results obtained were 19.73 and 5.53 Ns/m
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Figure 6.38: Identified damping matrix for case 3b

with some variations of the offset damping. In case 3b, again the expectation was

to obtain 15 and 4 Ns/m but the results was 14.38 and 9.40 Ns/m. The validity

of these results depends on many factors and the level of accuracy requested

by the specific application of the method. Qualitatively speaking, the damping

pattern looks reasonably close to the real system and to usual viscous damping

models used to represent these systems. One question which could arise is how

these equivalent systems are capable of predicting physical phenomena which are

closely related to damping. If the identification is performed in order to detect

the regions of a structure where the energy is mostly dissipated, this method can

give valuable information; if the identification aims to give, for example, a precise

value of frequency at which an instability will happen, then more accurate and

expensive approaches may be necessary.

6.9.4 Case 4: combined viscous and friction dashpots

The last case consists of the system with combined viscous and friction dashpots.

The viscous dashpot is the same as case 3 located between DOFs 2 and 3 of

damping coefficient 15 Ns/m whereas the Coulomb friction device (figure 6.39) is
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located between DOFs 3 and 4 with a coefficient of friction of 0.4 and a normal

force of 0.9 N. The FRF is similar to the one of case 3b, so the same frequency

Figure 6.39: Coulomb friction device between DOFs 3 and 4

range is used to perform the identification. The identified equivalent viscous

damping matrix for case 4 is

Cid =













2.9881 −2.3757 0 0 0
−2.3757 14.6754 −11.6874 0 0

0 −11.6874 19.3396 −7.0399 0
0 0 −7.0399 9.3596 −1.7073
0 0 0 −1.7073 2.3197













(6.17)

and is shown in figure 6.40. The identified viscous dashpot has a damping coeffi-

cient of 11.68 Ns/m instead of the expected 15 Ns/m and the equivalent viscous

dashpot representing the Coulomb friction device has a damping coefficient of

7.03 Ns/m. From eq. (6.11) the value of the coefficient of friction can be derived

for the frequency of mode 3, where the Coulomb friction device is mostly effective,

obtaining

µ =
ceqπωx0

4Fn

=
7.03 · π2 · 2 · 50 · 0.0003

4 · 0.9 = 0.5782 (6.18)

The value is higher than the expected 0.4, compensating the lower value for

the viscous dashpot. This last case was initially meant to validate the energy

method with Coulomb friction included in the analytical model, as explained

in section 5.2.4. The good results obtained in numerical simulations were not
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Figure 6.40: Identified damping matrix for case 4

exactly replicated in the experiments. Possible reasons include the analytical

model chosen to represent friction as well as the conditioning of matrix G when

different mathematical models are included and the effect of nonlinearities. This

dissertation is not intended to address issues such as nonlinearities at this stage

but they might be part of future work on the subject.

6.10 Conclusions for experiment 2

Results extracted from experiment 2 reflect the general performances obtained

from the previous experiment: good location of the damping sources when ap-

propriate data is used with realistic values for the equivalent viscous damping

coefficients. The choice of the localisation matrices seems to be very important

in order to obtain the right results. If too many parameters are chosen to represent

the damping matrix, a large number of measurements is required and the method

becomes less advantageous. Engineering knowledge is required to choose the most

important parameters to identify, the best force configurations, the range of fre-

quencies to excite the structure and the interpretation of the results obtained. At

the moment the method is not very effective in distinguishing between different
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sources of damping but it quantitatively performed well in capturing the energy

equivalent dissipations.

6.11 Closure

The energy balance identification method proposed in chapter 4 has been tested

on two different structures: an aluminium cantilever beam and a five degrees

of freedom mass-spring structure. The results obtained are interesting from an

engineering point of view since they provide useful information both on the lo-

cation and on the amplitude of the main sources of damping. The method does

not require expensive instrumentation more than any other modal test, it is rea-

sonably fast and seems suitable for many engineering applications where energy

dissipation is a major issue. In the last chapter the most important outcomes of

the research are summarised, with particular interest on the possible applications

of the energy method in other fields and future work.
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Chapter 7

Conclusions and future work

7.1 Summary of the contributions made

The oscillation of elasto-mechanical systems involves the exchange of kinetic and

potential energies as well as the dissipation of energy by damping. Methods are

generally well established for modelling the inertial and stiffness properties of

most systems but often there remains considerable doubt on how the damping

behaviour should be represented. The most common method is to assume vis-

cous damping, which is attractive computationally because it results in systems

of second-order differential equations with solutions which are readily available

by well understood techniques. However, viscous damping is a mathematical ap-

proximation of a large number of physical phenomena involving friction, radiation,

air pumping, fluid interactions, electronic mechanisms, dislocations, relaxation on

grain boundaries, irreversible intercrystal heat flux, viscoelasticity, eddy currents

and ferromagnetic hysteresis. Whether this approximation is valid or not depends

on the application, the level of accuracy required and the nature of the problem

under examination. This dissertation addresses the problem of spatial damping

identification in multi degree-of-freedom systems, with particular attention to

practical issues arising from real structures and measurements.

An extensive literature review of the main viscous damping matrix identification

methods has been presented. Some useful considerations on the philosophy and

performance of the existing methods have been provided. Methods have been

classified into three main categories depending on the input used to perform the

identification, i.e. methods based on the Frequency Response Function, modal

parameters and time-domain measurements. In particular, attention has been
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focused on three fundamentally different approaches; the closed-form solution

developed by Lancaster [87], methods based on inverting the measured matrix

of receptances and first-order perturbation methods. Interesting considerations

include an alternative way of deriving Lancaster’s formula from the second-order

matrix pencil, addressing the problem of inverting the matrix of receptances by

showing the effect of modal incompleteness as well as the error introduced by

pseudo inversion in the first-order perturbation method. The three methods have

been compared by a numerical simulation and all three approaches have been

found to be capable of closely reproducing the complex eigenvalues within the

frequency range of the data obtained by modal truncation. However, the pertur-

bation method seems to be highly affected by modal incompleteness whereas the

other two methods lead to reasonably good results with the limited frequency

range measurements available.

From the several methods available in literature, a method based on the balance

between the energy input by external forces and the energy dissipated by damp-

ing mechanisms proposed by Liang [103] has been considered. It is particularly

interesting for some of the advantages it presents with respect to the other meth-

ods. This method can potentially be used to identify different kinds of damping

(and not only with viscous damping) and it seems to perform well when dealing

with the modal incompleteness of measurements; however it also has some disad-

vantages: it assumes a diagonal mass matrix and knowledge of the full stiffness

matrix and some coefficients of damping. In order to avoid these disadvantages

but maintain the versatility and performance of the method a different energy

approach has been proposed. The improved method does not require any mass

or stiffness information if measurements at the degrees of freedom of interest are

available. This advantage has a cost in terms of the number of equations avail-

able for each measurement, which is reduced. For this reason some techniques are

proposed in order to improve the identification by addressing issues such as the

damping matrix parameterisation, the spatial incompleteness of measurements

and the underdetermination of the system of equations.

The method has been tested on different numerical simulations, including cases

with sources of damping different from viscous damping such as Coulomb friction,
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and it obtained good results when dealing with random noise and modal and

spatial incompleteness too. The method seems able to replicate the location and

the amplitude of damping accurately and provides a useful tool to detect the

main sources of energy dissipations. The identified damping matrix is equivalent

from an energy point of view to damping of the actual system in the frequency

range of interest. This does not always means that the two systems (original

and identified) are identical but the general damping pattern and values have

consistently been found to be reasonably similar and representative of the actual

system. The method can be set to a certain level of approximation depending on

the number of parameters and on the complexity of the damping functions used;

it has been found that if a low approximation level is used the method seems to

detect the largest sources of energy dissipation first, whereas the smallest (and

possibly negligible) require a more accurate model.

Given the good results in the numerical simulations two different experiments

have been designed and tested in order to validate the method on real structures.

The two structures consist of an aluminium cantilever beam with nominal dimen-

sions close to the one of the numerical simulations and a five degrees of freedom

mass-spring structure. Different damping devices (eddy current dashpots, air vis-

cous dashpots, Coulomb friction devices) have been attached to these structures

in order to locate and evaluate their damping properties. The results obtained are

interesting from an engineering point of view since they provide useful informa-

tion both on the location and on the amplitude of the main sources of damping.

The method does not require expensive instrumentation, it is reasonably fast and

seems suitable for many engineering applications where the energy dissipation is

a major issue. The choice of the damping matrix parameterisation seems to be

very important in order to obtain the right results. If too many parameters are

chosen to represent the damping matrix, a large number of measurements are

required and the method is not advantageous. Engineering knowledge is required

to choose the most important parameters to identify, the best force configura-

tions, the range of frequencies to excite the structure and the interpretation of

the results obtained.

The most important outcomes of this research consist of the critical analysis of
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some of the existing spatial damping identification techniques, the definition of an

improved method which has been successfully validated by numerical simulations

and provided good results in real problems as well as demonstrated by two ex-

periments. The method can still be improved on many aspects; some suggestions

and ideas for future work are proposed in the next section.

7.2 Suggestions for future work

Several ideas have arisen from the development and testing of the energy method

proposed in this dissertation. The results obtained both from numerical simu-

lations and experiments are encouraging but there is always the possibility for

further improvements. One of the weak points of the method concerns the ampli-

tude of the identified damping sources. Whereas the location has been accurate

in most cases (if the right parameterisation and the correct range of frequency

are selected) the values of the damping coefficients have often been found to be

different from what was expected, with errors sometimes larger than 100%. One

idea is to use the information given by other well-established modal damping

identification methods, such as the half-power bandwidth method, to properly

“scale” the results once the location has been identified. If the modal damping

ratio is known it is possible to calculate the energy dissipated by a certain mode

and therefore the energy dissipated in the frequencies of interest by modes in-

volved in that range. This information can then be used in the energy spatial

identification to improve the results. Alternatively, an equivalent modal energy

method can be derived from the spatial method proposed in this thesis simply

by writing the energy equations in terms of modal parameters instead of spatial

coordinates. This has not been done, since it is not pertaining to spatial damping

identification, but it can be an interesting extension of the proposed technique

which can lead to improved results.

Another idea regards the application of the energy method to other fields. A

possibility is to consider damage or defect detection; most of these phenomena

result in energy dissipation in the region surrounding the defect which can even-

tually be detected by a specific version of the energy method. In this case more
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accurate measurements might become necessary but the principles of the method

remain valid. The same thing is true for damage detection: even if established

techniques are already available, the energy method could help by looking at the

same problem from a different angle which might be advantageous in some cases.

An improvement that has to be considered regards the non-viscous sources of

damping. Although in numerical simulations the method has proven to be suc-

cessful, the same thing cannot be said for real experiments where the results were

not particularly accurate where the Coulomb friction model has been introduced

into the energy equations. The best results have been obtained when using the

viscous damping model only and subsequently deriving the friction coefficient

rather than including it in the equations in the first place. This way of solving

the energy equations can be further improved by introducing different solving

algorithms or adding other important information. However, it must be kept in

mind that the initial purpose of the method was to give readily usable information

for engineering design with a simple but effective method. The parameterisation

of the damping matrix also plays an important role in the identification process

and further investigation could lead to improved results.

Another aspect which can be improved is the implementation of the identification

method in standard modal analysis software and instrumentation. At present

one of the most common techniques to dynamically define a system and measure

damping is to excite the structure by random signals in the frequencies of interest

or by a hammer test to obtain the Frequency Response Function and then using

the half-power bandwidth method to estimate the modal damping ratio. Using

the energy method as it has been developed in this dissertation, where time

domain measurements and single frequency excitations are needed, will result

in more time-consuming and expensive tests if the interest is in both dynamic

properties (FRF) and damping at the same time.

The last suggestion is to properly investigate whether the equivalent viscous

damping approximation is sufficient for a specific application or not. Obtaining

similar natural frequencies and mode shapes between the real and identified sys-

tems does not mean that the identified system is able to predict any phenomenon

occuring in the real system. All non-linear events are practically deleted by the
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viscous damping approximation in the model so each case has to be studied sep-

arately with particular attention to the nature of the problem.

7.3 List of publications

The major outcomes of this research may be found in the following references.

Journal papers

• M. Prandina, J.E. Mottershead and E. Bonisoli, An assessment of damping

identification methods, Journal of Sound and Vibration 323 (3-5), 2009,

pages 662-676.

• M. Prandina, J.E. Mottershead and E. Bonisoli, Damping identification

in multiple degree-of-freedom systems using an energy balance approach,

J. Phys.: Conf. Ser., 181, 2009, 012006.

Conference papers

• M. Prandina, J.E. Mottershead and E. Bonisoli, Location and identifica-

tion of damping parameters, IMAC XXVII Conference and Exposition on

Structural Dynamics, Orlando, Florida, USA, 2009.

• G.A. Vio, M. Prandina and G. Dimitriadis, Damping identification in a

non-linear aeroelastic structure, abstract accepted in the ISMA 2010 Inter-

national Conference on Noise and Vibration Engineering, Leuven, Belgium,

2010.
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vement des corps solides élastiques et des fluides. Journal de l’cole Poly-

technique, 13:139, 1831.

[7] G.G. Stokes. On the effect of the internal friction of fluids on the motion

of pendulums. Pitt press, Cambridge, 1851.

[8] J.C. Maxwell. On the viscosity or internal friction of air and other gases.

Philosophical Transactions of the Royal Society of London, 156:249–268,

1866.

[9] Lord Rayleigh. The theory of sound - Second edition revised and enlarged.

Macmillan and co., New York, 1896.

[10] D.J. Mead. Passive vibration control. Wiley, Chichester, 1998.

163



[11] K. Nagaya and H. Kojima. Shape characteristics of a magnetic damper con-

sisting of a rectangular magnetic flux and a rectangular conductor. Bulletin

of JSME, 25(206):1306–1311, 1982.

[12] K. Nagaya, H. Kojima, Karube Y., and Kibayashi H. Braking forces and

damping coefficients of eddy current brakes consisting of cylindrical magnets

and plate conductors of arbitrary shape. IEEE Transactions on Magnetics,

20(6):2136–2145, 1984.

[13] H.A. Sodano, J.-S. Bae, D.J. Inman, and W.K. Belvin. Concept and model

of eddy current damper for vibration suppression of a beam. Journal of

Sound and Vibration, 288:1177–1196, 2005.

[14] N.W. Hagood and A. Von Flotow. Damping of structural vibrations with

piezoelectric materials and passive electrical networks. Journal of Sound

and Vibration, 146(2):243–268, 1991.

[15] F. Dell’Isola, C. Maurini, and M. Porfiri. Passive damping of beam vibra-

tions through distributed electric networks and piezoelectric transducers:

prototype design and experimental validation. Smart Materials and Struc-

tures, 13:299–308, 2004.

[16] F. Sadek, B. Mohraz, A.W. Taylor, and R.M. Chung. Method of estimating

the parameters of tuned mass dampers for seismic applications. Earthquake

Engineering and Structural Dynamics, 26:617–635, 1997.

[17] N.A. Alexander and F. Schilder. Exploring the performance of a nonlinear

tuned mass damper. Journal of Sound and Vibration, 319:445–462, 2009.

[18] R. Stanway, J.A. Rongong, and N.D. Sims. Active constrained-layer damp-

ing: A state-of-the-art review. Proceedings of the Institution of Mechanical

Engineers. Part I: Journal of Systems and Control Engineering, 217(6):437–

456, 2003.

[19] G. Gatti, M.J. Brennan, and P. Gardonio. Active damping of a beam

using a physically collocated accelerometer and piezoelectric patch actuator.

Journal of Sound and Vibration, 303:798–813, 2007.

[20] A. Preumont. Vibration control of active structures : an introduction (2nd

ed.). Kluwer Academic Publishers, Dordrecht, 2002.

164



[21] C. Paulitsch, P. Gardonio, and S.J. Elliott. Active vibration damping using

self-sensing, electrodynamic actuators. Smart Materials and Structures,

15:499508, 2006.

[22] B.J. Lazan. Energy dissipation mechanisms in structures, with particular

reference to material damping. In Structural Damping edited by J.E. Ruz-

icka, American Society of Mechanical Engineers, pages 1–34, New York,

1959. Pergamon Press.

[23] A. Muszynska. Tlumienie wewnetrzne w ukladach mechanicznuch (Inter-

nal damping in mechanical systems). In Dynamika Maszyn (Dynamics of

Machines), Polish Academy of Sciences, pages 164–212, Warsaw, 1974. Os-

solineum.

[24] A.D. Nashif, D.I.G. Jones, and J.P. Henderson. Vibration damping. John

Wiley & Sons, New York, 1985.

[25] B.J. Lazan. Damping of materials and members in structural mechanics.

Pergamon, New York, 1968.

[26] C.W. Bert. Material damping: an introductory review of mathematical

models, measures and experimental techniques. Journal of Sound and Vi-

bration, 29(2):129–153, 1973.

[27] F.R. Eirich. Rheology. Theory and applcations. Academic Press, New York,

1956.

[28] R.C. Koeller. Applications of fractional calculus to the theory of viscoelas-

ticity. ASME Journal of Applied Mechanics, 51:299–307, 1984.

[29] A. Schmidt and L. Gaul. Finite element formulation of viscoelastic con-

stitutive equations using fractional time derivatives. Nonlinear Dynamics,

29:37–55, 2001.

[30] D.R. Bland. The theory of linear viscoelasticity. Pergamon Press, Oxford,

1960.

[31] W.N. Findley, J.S. Lai, and K.Onaran. Creep and relaxation of nonlinear

viscoelastic materials, with an introduction to linear viscoelasticity. North-

Holland series in applied mathematics and mechanics, Amsterdam, 1976.

165



[32] C.F. Beards. The damping of structural vibration by controlled interfacial

slip in joints. ASME Journal of Vibration, Acoustics, Stress and Reliability

in Design, 105:369–372, 1983.

[33] E.E. Ungar. Energy dissipation at structural joints; mechanisms and mag-

nitudes. Technical report, Flight Dynamics Laboratory, Report FDL-TDR-

14-98, 1964.

[34] E.E. Ungar. The status of engineering knowledge concerning the damping

of built-up structures. Journal of Sound and Vibrations, 26:141–154, 1973.

[35] L. Goodman. A review of progress in analysis of interfacial slip damping. In

Structural Damping edited by J.E. Ruzicka, American Society of Mechanical

Engineers, pages 1–34, New York, 1959. Pergamon Press.

[36] J. Lenz and L. Gaul. The influence of microslip on the dynamic behaviour

of bolted joints. In Proceedings of the 13th International Modal Analysis

Conference, Nashville, pages 248–254, 1995.

[37] L. Gaul and J. Lenz. Nonlinear dynamics of structures assembled by bolted

joints. Acta Mechanica, 125:169–181, 1997.

[38] M. Groper. Microslip and macroslip in bolted joints. Experimental Me-

chanics, 25(2):171–174, 1985.

[39] W.D. Iwan. On a class of models for the yielding behaviour of continuous

composite systems. ASME Journal of Applied Mechanics, 89:612–617, 1967.

[40] D.J. Segalman. An initial overview of iwan modeling for mechanical joints.

Technical report, Sandia National Laboratories, Albuquerque, New Mexico,

Report No. SAND2001-0811, 2001.

[41] K.C. Valanis. Fundamental consequences of a new intrinsic time mea-

sure. plasticity as a limit of the endochronic theory. Archive of Mechanics,

32:171–191, 1980.

[42] H. Wentzel. Modelling of frictional joints in dynamically loaded structures:

a review. Technical report, KTH Solid mechanics, Royal Institute of tech-

nology, 2006.

[43] Y.K. Wen. Equivalent linearization for hysteretic systems under random

excitation. ASME Journal of Applied Mechanics, 47:150–154, 1980.

166



[44] N.M.M. Maia, J.M.M. Silva, J. He, N.A.J. Lieven, R.M. Lin, G.W. Sk-

ingle, W.M. To, and A.P.V. Urgueira. Theoretical and experimental modal

analysis. Research Studies Press, Taunton, 1997.

[45] D.J. Ewins. Modal testing: theory and practice. Research Studies Press

LTD, Letchworth, Hertfordshire, England, 1984.

[46] W.T. Thomson and M.R. Dahleh. Theory of vibration with applications.

Prentice-Hall, Englewood Cliffs, N.J., 1998.

[47] L.S. Jacobsen. Steady forced vibration as influenced by damping. Trans-

actions of the American Society of Mechanical Engineers, 52(1):169–181,

1930.

[48] J. Woodhouse. Linear damping models for structural vibration. Journal of

Sound and Vibration, 215(3):547–569, 1998.

[49] A.L. Kimball and D.E. Lovell. Internal friction in solids. Phys. Rev.,

30(6):948–959, 1927.

[50] T. Theodorsen and I.E. Garrick. Mechanism of flutter. a theoretical and ex-

perimental investigation of the flutter problem. Technical report, N.A.C.A.

Report No. 689, Langley Field, Virginia, 1940.

[51] R.E.D. Bishop and D.C. Johnson. The mechanics of vibration. Cambridge

University Press, 1960.

[52] S.H. Crandall. The hysteretic damping in vibration theory. In Proceedings of

the Institution of Mechanical Engineers, volume 205, pages 23–28, London,

U.K., 1991.

[53] B.M. Fraijs de Veubeke. Influence of internal damping on aircraft resonance.

In AGARD manual on elasticity, volume 1. AGARD, 1960.

[54] T.K. Caughey. Vibration of dynamics systems with linear hysteretic damp-

ing. In Proceedings of Fourth US National Congress of Applied Mechanics,

New York, 1962. ASME.

[55] S.H. Crandall. Dynamic response of systems with structural damping. In

Air, space and instruments, Draper Anniversary Volume, pages 183–193,

New York, 1963. McGraw-Hill.

167



[56] S. Adhikari. Damping models for structural vibration. PhD thesis, Univer-

sity of Cambridge, 2000.

[57] R.E.D. Bishop and W.G. Price. A note on hysteretic damping of transient

motions. In Random vibration - status and recent developments, pages 39–

45, Amsterdam, 1986. Elsevier.

[58] G.B. Muravskii. On frequency independent damping. Journal of Sound

and Vibration, 274:653–668, 2004.

[59] G.B. Muravskii. Frequency independent model for damping. In Proceedings

of the 25th Israel Conference on Mechanical Engineering, pages 230–232,

Haifa, Israel, 1994.

[60] N.B. Do, A.A. Ferri, and O.A. Bauchau. Efficient simulation of a dynamic

system with LuGre friction. Journal of Computational and Nonlinear Dy-

namics, 2(4):281–289, 2007.

[61] A.J. Morin. New friction experiments carried out at Metz in 1831-1833.

In Proceedings of the French Royal Academy of Sciences, volume 4, pages

1–128, 1833.

[62] R. Stribeck. Die wesentlichen eigenschaften der gleit- und rollenlager. Tech-

nical report, VDI-Zeitschrift 46, 1902.

[63] J.E. Mottershead and R. Stanway. Identification of nth-power velocity

damping. Journal of Sound and Vibration, 105(2):309–319, 1986.

[64] I. Podlubny. Fractional differential equations. Academic Press, San Diego,

CA, 1999.

[65] I. Podlubny. Geometric and physical interpretation of fractional integration

and fractional differentiation. Fractional Calculus and Applied Analysis,

5(4):367 – 386, 2002.

[66] P.G. Nutting. A new general law of deformation. Journal of the Franklin

Institute, 191:679–685, 1921.

[67] R.A. Fraser, W.J. Duncan, and A.R. Collar. Elementary matrices. Cam-

bridge University Press, 1946.

[68] L. Meirovitch. Analytical methods in vibrations. Macmillan Publishing,

New York, 1967.

168



[69] W.T. Thomson, C. Calkins, and P. Caravani. A numerical study of damp-

ing. Earthquake Engineering and Structural Dynamics, 3:97–103, 1974.

[70] F. Ma S.M. Shahruz. Approximate decoupling of the equations of motion of

linear underdamped system. ASME Journal of Applied Mechanics, 55:716–

720, 1988.

[71] S.R. Ibrahim and A. Sestieri. Existence and normalisation of complex modes

in post experimental modal analysis. In Proceedings of the 13th IMAC,

pages 483–489, Nashville TN, 1995.

[72] T.K. Caughey. Classical normal modes in damped linear systems. ASME

Journal of Applied Mechanics, 27:269–271, 1960.

[73] T.K. Caughey and M.E.J. O’Kelly. Classical normal modes in damped

linear systems. ASME Journal of Applied Mechanics, 32:583–588, 1965.

[74] M. Link. Using complex modes for model updating of structures with non-

proportional damping. In Proceedings of the International Conference on

Noise and Vibration Engineering ISMA 2006, Belgium, 2006. University of

Leuven.

[75] J.-W. Liang and B.F. Feeny. Balancing energy to estimate damping param-

eters in forced oscillators. Journal of Sound and Vibration, 295:988–998,

2006.

[76] F.-L. Huang, X.-M. Wang, Z.-Q. Chen, X.-H. He, and Y.-Q. Ni. A new

approach to identification of structural damping ratios. Journal of Sound

and Vibration, 303:144–153, 2007.

[77] J.-W. Liang. Identifying coulomb and viscous damping from free-vibration

acceleration decrements. Journal of Sound and Vibration, 282:1208–1220,

2005.

[78] C. Meskell. A decrement method for quantifying nonlinear and linear damp-

ing parameters. Journal of Sound and Vibration, 296:643–649, 2006.

[79] W. Li. Evaluation of the damping ratio for a base-excited system by the

modulations of responses. Journal of Sound and Vibration, 279:1181–1194,

2005.

169



[80] C.H. Lamarque, S. Pernot, and A. Cuer. Damping identification in multi-

degree-of-freedom systems via a wavelet-logarithmic decrement - part 1:

Theory. Journal of Sound and Vibration, 235(3):361–374, 2000.

[81] J. Slavic, I. Simonovski, and M. Boltezar. Damping identification using a

continuous wavelet transform: application to real data. Journal of Sound

and Vibration, 262:291–307, 2003.

[82] W.J. Staszewski. Identification of damping in mdof systems using time-scale

decomposition. Journal of Sound and Vibration, 203(2):283–305, 1997.

[83] A. Srikantha Phani and J. Woodhouse. Viscous damping identification in

linear vibration. Journal of Sound and Vibrations, 303:475–500, 2007.

[84] A. Srikantha Phani and J. Woodhouse. Experimental identification of

viscous damping in linear vibration. Journal of Sound and Vibrations,

319:832–849, 2009.

[85] M. Prandina, J.E. Mottershead, and E. Bonisoli. An assessment of damping

identification methods. Journal of Sound and Vibration, 323(3-5):662 – 676,

2009.

[86] D.F. Pilkey and D.J. Inman. A survey of damping matrix identification. In

Proceedings of the 16th IMAC, pages 104–110, Santa Barbara CA, 1998.

[87] P. Lancaster. Expression of damping matrices in linear vibrations problems.

Journal of the Aerospace Science, 28:256, 1961.

[88] S.Y. Chen, M.S. Ju, and Y.G. Tsuei. Estimation of mass, stiffness and

damping matrices from frequency response functions. ASME Journal of

Vibration and Acoustic, 118(1):78–82, 1996.

[89] J.-H. Lee and J. Kim. Development and validation of a new experimental

method to identify damping matrices of a dynamic system. Journal of

Sound and Vibration, 246(3):505–524, 2001.

[90] C.P. Fritzen. Identification of mass, damping and stiffness matrices of me-

chanical systems. ASME Journal of vibration, acoustics, stress, and relia-

bility in design, 108:9–16, 1986.

[91] A. Berman and A.W.G. Flannelly. Theory of incomplete models of dynamic

structures. AIAA Journal, 9(8):1481–1487, 1971.

170



[92] A. Berman. System identification of structural dynamic models - theoretical

and practical bounds. In AIAA conference, volume 84-0929, pages 123–129,

1984.

[93] P. Lancaster. Inversion of lambda-matrices and application to the theory

of linear vibrations. Arch. Rational Mech. Anal., 6:105–114, 1960.

[94] P. Lancaster and U. Prells. Inverse problems for damped vibrating systems.

Journal of Sound and Vibration, 283:891–914, 2005.

[95] F. Zhang. The Schur Complement and Its Applications. Springer, 2005.

[96] D.F. Pilkey, G. Park, and D.J. Inman. Damping matrix identification and

experimental verification. In Proceedings of the SPIE’s 6th Annual Interna-

tional Symposium on Smart Structures and Materials, volume 3672, pages

350–357, Newport Beach CA, 1999.

[97] S.R. Ibrahim. Dynamic modeling of structures from measured complex

modes. AIAA Journal, 21(6):898–901, 1983.

[98] A. Berman, F.S. Wei, and K.W. Rao. Improvement of analytical models

using modal test data. In Proceedings of the AIAA/ASME/ASCE/AHS

21st SDM Conference, Seattle, 1980.

[99] C. Minas and D.J. Inman. Identification of a nonproportional damping ma-

trix from incomplete modal information. Journal of Vibration and Acous-

tics, 113:219–224, 1991.

[100] S. Adhikari and J. Woodhouse. Identification of damping: part 1, viscous

damping. Journal of Sound and Vibration, 243(1):43–61, 2001.

[101] A.W. Lees. Use of perturbation analysis for complex modes. In Proceed-

ings of the 17th International Modal Analysis Conference, Kissimmee, pages

779–784, 1999.

[102] S. Adhikari and J. Woodhouse. Identification of damping: part

3, symmetry-preserving methods. Journal of Sound and Vibration,

251(1):477–490, 2001.

[103] J.-W. Liang. Damping estimation via energy-dissipation method. Journal

of Sound and Vibration, 307:349–364, 2007.

171



[104] P. Caravani and W.T. Thomson. Identification of damping coefficients in

multidimensional linear systems. ASME Journal of Applied Mechanics,

41:379–382, 1974.

[105] J.G. Beliveau. Identification of viscous damping in structures from modal

information. ASME Journal of Applied Mechanics, 41:379–382, 1976.

[106] J. Fabunmi, P. Chang, and J. Vorwald. Damping matrix identification using

the spectral basis technique. ASME Journal of vibration, acoustics, stress,

and reliability in design, 110:332–337, 1988.

[107] T.K. Hasselman. A method of constructing a full modal damping matrix

from experimental measurements. AIAA Journal, 10:526–527, 1972.

[108] L. Starek and D.J. Inman. A symmetric inverse vibration problem for non-

proportional underdamped systems. ASME Journal of Applied Mechanics,

64:601–605, 1997.

[109] J.H. Wang. Mechanical parameter identification with special consideration

of noise effect. Journal of Sound and Vibration, 125(1):151–167, 1988.

[110] M.E. Gaylard. Identification of damping matrices: an autocorrelation-style

technique. In Proceedings of the conference on identification in engineering

systems, pages 225–237, 1996.

[111] J.E. Mottershead and C.D. Foster. An instrument variable method for

the estimation of mass, stiffness and damping parameters from measured

frequency response functions. Mechanical Systems and Signal Processing,

2(4):379–390, 1988.

[112] M.J. Roemer and D.J. Mook. Mass, stiffness, and damping matrix identi-

fication: an integrated approach. ASME Journal of Vibration, Acoustics,

Stress and Reliability in Design, 114(3):358–363, 1992.

[113] M.I. Friswell and J.E. Mottershead. Finite element model updating in struc-

tural dynamics. Kluwer Academic Publishers, Dordrecht, 1995.

[114] H. Jalali, H. Ahmadian, and J.E. Mottershead. Identification of nonlinear

bolted lap-joint parameters by force-state mapping. International Journal

of Solids and Structures, 44:8087–8105, 2007.

172



[115] M.I. Friswell, J.E. Mottershead, and H. Ahmadian. Combining subset se-

lection and parameter constraints in model updating. Transactions of the

ASME, Journal of Vibration and Acoustics, 120(4):854–859, 1998.

[116] A. Bjorck and G.H. Golub. Numerical methods for computing angles be-

tween linear subspaces. Mathematics of Computation, 27(123):579–594,

1973.

[117] C.L. Lawson and R.J. Hanson. Solving least squares problems. Prentice-Hall

Series in Automatic Computation, Englewood Cliffs, 1974.

[118] H.H. Khodaparast, J.E. Mottershead, and K.J. Badcock. Propagation of

structural uncertainty to linear aeroelastic stability. Computers and Struc-

tures, 88(3-4):223–236, 2010.

[119] K.J. Badcock, H. Haddad Khodaparast, S. Marques, and J.E. Mottershead.

Cfd based aeroelastic stabilty predictions under the influence of structural

uncertainty. In 50th Structural Dynamics and Materials Conference, AIAA-

2009-2324, Palm Springs, 2009. American Institute of Aeronautics and As-

tronautics.

[120] P.S. Beran, N.S. Knot, F.E. Eastep, R.D. Synder, and J.V. Zweber. Nu-

merical analysis of store-induced limit cycle oscillarion. Journal of Aircraft,

41(6):1315–1326, 2004.

[121] M. Goland. The flutter of a uniform cantilever wing. Journal of Applied

Mechanics, 12(4):197–208, 1945.

173


