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Abstract

This report presents a review of existing damping identification techniques, a new energy-based

method derived from one of these techniques and the design of an experiment in order to identify

viscous damping and Coulomb friction parameters separately from vibration test of a clamped

beam.
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Chapter 1

Introduction

1.1 Overview of the problem

Damping is often neglected or over-simplified in dynamic design and modelling of structures.

However, there are many cases where an accurate identification of structural damping is very

important, especially when the dynamics is dominated by the energy dissipation. If a model is to

be used to predict transient responses, transmissibility of exciting forces through the structure,

instabilities or decay times, good modelling of damping is necessary. The flutter problem in

aircraft wings is an example of a phenomenon dominated by energy dissipation, where accurate

damping prediction is important. Unfortunately, damping is still one of the least well-understood

aspects of vibration analysis for many reasons. First, there is an absence of a universal math-

ematical model to represent all damping forces. Secondly, it is not clear which state variables

the damping forces will depend on. Finally, damping parameters cannot be measured by the

static tests used for stiffness and inertia; dynamic tests, which are normally more effected by

noise, are needed. Most of the articles in literature are focused on the identification of viscous

damping, i.e. forces dependant on the instantaneous velocities only. This approximation is quite

far from reality but in the case of relatively small damping it is reasonable and mathematically

convenient for a big range of engineering applications.

1.2 Adhikari and Woodhouse

The paper by Adhikari and Woodhouse [1] proposes a method to identify the viscous damping

matrix from the imaginary part of the eigenvalues and eigenvectors obtained from experiments.

The method is based on the first order perturbational method and assumes that the damping

is small, so eigenvalues and eigenvectors of the damped system will be close to those of the

undamped system. The input data for this method are the complex eigenvalues, complex eigen-

vectors and the mass matrix M (that can be obtained from an FEM model of the structure)

necessary to normalize the eigenvectors to the right scale. This method does not guarantee

symmetry in the fitted damping matrix and non-physical results may be obtained, because the

original system is reciprocal. The same author also proposed a different model [2] based on

the original one (first order perturbational method) that preserves reciprocity of the system

forcing the symmetry of the viscous damping matrix C. The results of the numerical simulation

of a clamped beam with a dashpot at its free end showed that this method is affected by the
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incompleteness of data, especially when the sources of damping are localized in a small number

of points and are not distributed. A similar procedure also based on the perturbation method

was proposed by Lees [3].

1.3 Pilkey et al. (Lancaster)

Two other methods (one iterative and one direct) to identify the viscous damping matrix were

proposed by Pilkey et al. [4] based on the equation derived by Lancaster in his work on the

quadratic pencil [5]. The derivation of the equation regarding damping can be found in a more

recent paper on the inversion of lambda-matrices and application to the theory of vibrations

by Lancaster et al. [6]. The assumptions in this paper are that mass, damping and stiffness

matrices are symmetric and the mass matrix is positive definite. The authors also consider that

damping is subcritical, so eigenvalues and eigenvectors arise in complex conjugate pairs, but

this assumption is not actually necessary and can be ignored simply by reformulating the final

equation. Comparing the example used for the method proposed by Adhikari and Woodhouse,

this method exhibits better results when dealing with incompleteness of data or noise. One of

the drawbacks, for the non-iterative method, is the fact that the stiffness matrix K has to be

known as well as the mass matrix M. These matrices are not usually exactly known in real

cases so the identification process can be affected by this uncertainty.

1.4 Link’s parameterisation

A common way to represent the damping matrix for large order finite element models is to

write it as a linear combination of the mass and stiffness matrices. The so-called proportional

damping has no physical meaning but is widely used because it is able to provide real eigenvectors

which are more simple to handle compared to complex quantities and reduce the number of

parameter to identify from n2 (n is the number of degrees of freedom of the system) to two.

Unfortunately, mode shapes measured by experiments are almost always complex. Link [7]

proposes an interesting parameterisation of the viscous damping matrix to be used in model

updating of structures. The idea is to represent the full damping matrix of the whole system as

a summation of many damping submatrices. These submatrices are proportional to the mass

and stiffness matrices of each substructure but the whole matrix is not, so it is able to provide

complex mode shapes. Link demonstrates how to use the complex mode shapes in the updating

of some selected mass and stiffness uncertain parameters, but also damping parameters, with

good experimental results.

1.5 Lee and Kim

Another identification method is proposed by Lee and Kim [8]. This method is able to identify

the viscous damping matrix C from the imaginary part of the inverse of the frequency response

function matrix. It is also capable of identifying the hysteretic damping matrix D, the stiffness

matrix K and the mass matrix M if necessary. The method is based on the fact that the

frequency response function matrix (FRM) is the inverse of the dynamic stiffness matrix (DSM)

4



that contains C, D, M and K. Since the FRM is much easier to measure than the DSM, the

DSM is obtained by inverting the measured FRM. Then, the C and D matrices are found by a

pseudo-inverse procedure in the frequency domain. The method is validated both numerically

and experimentally on a small four degree-of-freedom structure with a dashpot.

1.6 Lamarque et al.

A wavelet-based formula [9] similar to the logarithmic decrement formula used for single degree-

of-freedom systems is introduced by Lamarque et al. to estimate damping in multi degree-

of-freedom systems from time domain responses. The theory is validated analytically in the

context of a general continuous wavelet transform and then numerically by comparison with

exact reference solutions in the frame of a superabundant multiresolution analysis. This method

is able to identify the damping ratio of dynamic systems and revealed an excellent noise resistance

when the signal-to-noise ratio is fairly bad.

1.7 Liang and Feeny

The last method reviewed is proposed by Liang and Feeny [10] for a single degree-of-freedom and

then extended by Liang to multiple degree-of-freedom systems [11]. The method is based on the

balance of the energy input in the system by external forces and the energy dissipated by damping

in the system. The data needed to perform this technique are time histories of the degrees of

freedom where the damping is acting; the method is validated with a simulated numerical

three degree-of-freedom system and experimentally on an equivalent two loop electrical network

consisting of two resistor-inductor-capacitor (RLC) series circuits. One of the advantages of this

method is the capability of identifying nonlinear damping sources, one of the drawbacks is the

fact that there are two important assumptions: the mass matrix has to be diagonal and the

stiffness matrix has to be known.

In the next chapter, the theory of a new method based on energy aimed at overcoming the

two approximations of Liang’s method is presented. An expansion technique and a subselection

method are then used to make it applicable to real problems. Chapter 3 shows the results of

numerical simulations to validate the method and chapter 4 illustrates the design of an experi-

mental setup in order to identify viscous damping and Coulomb friction parameters separately

from vibration test of a clamped beam. Conclusions and future works are summarized in chapter

5 and teccnical drawings can be found in Appendix A.
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Chapter 2

Energy method

2.1 Theory

The equations of motion of a damped multi degree-of-freedom system can be written in the

matrix form

Mẍ + Kx + D · f(x, ẋ, ẍ) = a(t), (2.1)

where M ∈ R
n×n is the mass matrix, K ∈ R

n×n is the stiffness matrix, D ∈ R
n×n represents

one of the possible damping matrices of coefficients multiplied by f(x, ẋ, ẍ) ∈ R
n×1, a function

of displacements, velocities or accelerations. x ∈ R
n×1 represents the vector of displacements

and a(t) ∈ R
n×1 the excitation input vector. Following a similar method to the one used for the

single degree of freedom in [10], eq.(2.1) is premultiplied by ẋT and then integrated over time

to obtain an energy equation:
∫ t+T1

t
ẋTMẍdt +

∫ t+T1

t
ẋTKxdt +

∫ t+T1

t
ẋTD · f(x, ẋ, ẍ)dt =

∫ t+T1

t
ẋTa(t)dt. (2.2)

If the excitation force a(t) and the response x are periodic, the integration of conservative

components of eq.(2.2) is zero over a full cycle of periodic motion. So if T is the period of the

force a(t), the sum of kinetic and potential energy over this period is zero:

∫ t+T

t
ẋTMẍdt +

∫ t+T

t
ẋTKxdt = 0 (2.3)

so eq.(2.2) becomes ∫ t+T

t
ẋTD · f(x, ẋ, ẍ)dt =

∫ t+T

t
ẋTa(t)dt. (2.4)

Eq.(2.4) represents the balance between the energy dissipated by the damping mechanisms on

the left hand side of the equation and the energy input to the system on the right hand side.

This equation is the base of the identification method proposed.

In eq.(2.4) the unknowns are represented by the coefficient matrix D. This matrix can be

parameterised in several different ways (for example, the parameterisation proposed by Link [7]

can be used) and the number of unknowns can vary substantially depending on the parame-

terisation. By exciting the structure with a certain number of different forces and measuring

the responses, in theory it is possible to obtain multiple versions of eq.(2.4) so that the number

of equations is bigger than the number of unknown parameters in D and then proceed to the
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identification by solving an inverse problem using least squares techniques. An important aspect

of this method is that many of the most common damping models can be expressed in the form

D · f(x, ẋ, ẍ) that is necessary to apply the method. Also, there is no need to know the stiffness

or mass matrix of the system if the full set of measurements is available. For example, the

viscous damping dissipative forces can be expressed in the form

dv = C · ẋ (2.5)

and the Coulomb friction dissipative forces in the form

dc = Dc · sign(ẋ) (2.6)

and so on.

2.2 Example: diagonal viscous damping matrix

The simplest case of diagonal viscous damping matrix is considered to explain how the method

works. In this case, the following equations can be substituted into eq.(2.4) to obtain the

identification equation:

D = diag(ci,i) ∈ R
n×n, (2.7)

f(x, ẋ, ẍ) = ẋ ∈ R
n×1, (2.8)

where diag(ci,i) is a n × n matrix with different damping coefficients ci,i in each ith degree of

freedom of the diagonal and zero elsewhere. Eq.(2.4) becomes
∫ t+T

t
ẋTdiag(ci,i)ẋdt =

∫ t+T

t
ẋTa(t)dt. (2.9)

or

c1,1

∫ t+T

t
ẋ1

2dt + . . . + ci,i

∫ t+T

t
ẋi

2dt + . . . + cn,n

∫ t+T

t
ẋn

2dt = Ea. (2.10)

By exciting the structure with m different excitations, multiple version of eq.(2.10) are obtained

and then grouped into a single matrix equation on the form:

Ac = e (2.11)

where

A =

⎡
⎢⎣

∫ t+T
t ẋ1

2dt(1) . . .
∫ t+T
t ẋn

2dt(1)
. . . . . . . . .∫ t+T

t ẋ1
2dt(m) . . .

∫ t+T
t ẋn

2dt(m)

⎤
⎥⎦ ,∈ R

m×n (2.12)

c =

⎡
⎣ c1,1

. . .
cn,n

⎤
⎦ ,∈ R

n×1 (2.13)

e =

⎡
⎣ Ea (1)

. . .
Ea (m)

⎤
⎦ . ∈ R

m×1 (2.14)

If m > n, eq.(2.11) can be solved using least squares tecnique to obtain the coefficient of the D

matrix as

c = (AT A)−1 AT e. (2.15)
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This simple example shows that if all the measurement of velocities ẋ1, . . . , ẋn are available and

if it is possible to excite the structure with a number of different excitation m that is bigger

than the number of degrees of freedom n, the damping coefficients can be easily estimated.

Unfortunately in real structures it is impossible to satisfy these two conditions. Firstly, it is

very difficult to measure all the degrees of freedom of a real big structure and secondly, even

if it was possible, the number of tests to have m > n could be probably take too much time

consuming. For these reasons a method is used to expand the measurements of few degrees of

freedom to the whole structure and then another method is used to select the best (or the most

representative) degrees of freedom to identify damping.

2.3 Expansion of incomplete measurements

This method uses concepts similar to the ones used by Jalali, Ahmadian and Mottershead in

[12]. Consider the full vector of velocities ẋf ∈ R
n×1 necessary to calculate the matrix A of

eq.(2.12) and to calculate the vector e of eq.(2.14). In real experiments it is usually easier and

less expensive to measure a set of accelerations in p different degrees of freedom, where p < n.

Define this set as ẍm ∈ R
p×1. If the damping is small and the system is excited by a single

frequency harmonic force close to the kth natural frequency, the acceleration response of the

structure may be written in the form

ẍf = φ(k) · q̈(t). (2.16)

where φ(k) ∈ R
n×1 is the full kth mode shape of the undamped structure (that can be derived from

a finite element model) and q̈(t) is a modal coordinate acceleration. Using this approximation

it is possible to estimate q̈(t) from the experimental results and then substitute into eq.(2.16)

to obtain complete data. Consider eq.(2.16) for the incomplete measurements

ẍm = φm(k) · q̈(t). (2.17)

where φm(k) is the incomplete kth mode shape in the form

φm(k) =

⎡
⎣ y1

. . .
yp

⎤
⎦ (2.18)

for p < n degrees of freedom. Considering the excitation at a single frequency ω, the response of

the system will be harmonic too and generally contains higher harmonics due to nonlinearities

so the modal coordinate q̈(t) may be represented using

q̈(t) =
n∑

i=1

(Ansin(nωt) + Bncos(nωt)). (2.19)

For simplicity, consider the linear case so eq.(2.19) is reduced to

q̈(t) = Asin(ωt) + Bcos(ωt). (2.20)
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Substituting eq.(2.20) in eq.(2.17), it is possible to rearrange the equation for each time instant

from t0 to tend in a matrix form so that
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1sin(ωt0) y1cos(ωt0)
. . . . . .

ypsin(ωt0) ypcos(ωt0)
. . . . . .

y1sin(ωtend) y1cos(ωtend)
. . . . . .

ypsin(ωtend) ypcos(ωtend)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
·
[

A
B

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẍ1(t0)
. . .

ẍp(t0)
. . .

ẍ1(tend)
. . .

ẍp(tend)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.21)

Using a least-squares procedure, A and B can be determinated. Then, the analytical integration

of eq.(2.20) can be used to reconstruct the full vector of velocities by using the following two

equations

q̇(t) =
1
ω

(−Acos(ωt) + Bsin(ωt)), (2.22)

ẋf = φ(k) · q̇(t). (2.23)

2.4 Selection of the most representative degrees of freedom

After performing the expansion, it is now possible to calculate the full matrix A of the diagonal

viscous damping matrix example from the measurements, but there is still the problem of solving

an underdetermined system of equations. Considering the matrix A ∈ R
m×n (where n is the

number of degrees of freedom of the system and m is the number of tests made), usually m < n so

the system has an infinite number of solutions. To find a reasonable solution an angle criterion is

used. This angle method was used by Friswell, Mottershead and Ahmadian in [13] for a different

application in model updating. It is know from the theory of this method that the vector e is a

linear combination of some columns of the matrix A. These columns corresponds to the degrees

of freedom where the damping matrix has non-zero elements. The angle between two vectors a

and b can be calculated using the relationship

θ =
aTb√

aTa ·
√

bTb
. (2.24)

Among the large number of columns of the matrix A, a certain (s) number of columns with the

smallest value of θ is selected. From a vector point of view, these columns are the “more paral-

lel” to the vector e so they are the ones that will best represent the vector in a 1-dimensional

approximation. After selecting these columns, the concept of angle between subspaces is intro-

duced [14]. The angle between two matrices (in this case a matrix containing some columns of

A and a matrix containing the e vector only) can be calculated with the method now described.

Consider the two matrices F ∈ R
n×m and G ∈ R

n×q. An orthogonal basis for these subspaces

can be obtained by the QR algorithm

F = QFRF (2.25)

G = QGRG (2.26)

9



where QF and QG are orthogonal matrices of dimension n × m and n × q respectively and RF

and RG are upper triangular. If q < m there will be q principal angles between the subspaces,

θi, which are computed from the singular value decomposition of QF
TQG. Thus

cos(θi) = σi(QF
TQG) (2.27)

where σi() indicates the ith singular value.

Again, it is now possible to select a number s of subsets of two columns of A that have the

smallest angle with e. These subsets were created using combinations of one of the previously

selected vectors with the other columns of A. This method can then be applied for bigger

subsets of three columns and so on. When the angle between these subsets and e is sufficiently

small, the selection can be stopped and only the selected columns will be used to solve eq.(2.11).

In this way, matrix A becomes of size s × m and it can be solved with least-squares techniques

provided s < m. Other constraints can be considered in the method to obtain results with

more physical meaning. For example, in the diagonal viscous damping matrix, the values of

the damping coefficients must be positive so the energy equation may be solved forcing this

additional constraint.

This angle selection corresponds to the spatial location of damping in a real structure. By

choosing the columns of A the method allows the location of the damping sources in the system.

The value of damping, instead, depends on solving the energy equation. Engineering knowledge

can be used to estimate the possible location of the main damping sources before performing the

tests so that the accelerometers can be applied in the choosen degrees of freedom only. In this way

there will be no need to expand the measurements and then select the best columns. However,

this methodology can be applied to a structure without any usable engineering information.
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Chapter 3

Results of numerical simulations

3.1 Viscous damping

Several numerical simulations were performed to test the method. In this section the results

obtained from a simple example on a clamped ten-elements contilever beam with four viscous

dashpot (Figure 3.1) are shown. The simulated structure is excited with sinusoidal forces at

Figure 3.1: Numerical simulation setup

frequencies close to those of the first eight natural modes. From the signal of three accelerom-

eters contaminated with noise, deliberately applied on degrees of freedom without dashpots to

demonstrate the robustness of the method even when there are no information about the lo-

cation of damping, the full vector of velocities is derived and the location and identification of

damping is obtained by the methods just explained.

In this example the viscous damping matrix size is 20×20 with only four values different from

zero on the diagonal corresponding to the degrees of freedom of the dashpots. Without knowing

anything about the structure, the actual number of unknowns of the identification problem is

400 (the number of coefficients in the C matrix). Since the dashpots are connected to the ground
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and there are no sources of damping between two elements, the number of unknowns can be

reduced to 20 (the diagonal). The matrix A described in the previous section will be 8 × 20

in this example, using 8 different excitations to try to identify the diagonal of the C matrix.

Two cases are presented with two different sets of values for the damping coefficients of the four

dashpots: in case 1 the values are all equal whereas in case 2 the values are different.

Case DOF of Value of damping
dashpots coefficients [N·s/m]

1 3 5 13 17 0.1 0.1 0.1 0.1
2 3 5 13 17 0.01 0.5 0.1 1

Table 3.1: Dashpot configurations in case 1 and case 2

The two examples in Table 3.1 look very similar but they are useful to show what happens

when the location of damping based on the angle selection does not work correctly (Case 1) or

it does (Case 2).

3.2 Case 1

The identified damping coefficients for case 1 are summarized in Table 3.2. The ‘number of

dashpots’ represents the number of columns of matrix A selected to identify the damping.

‘Angle’ is the angle between the selected columns and the vector e of input energies.

Number of DOF of Value of damping Angle
dashpots dashpots coefficients [N·s/m]

1 - - - 19 - - - 0.107 6.505
2 - - 13 19 - - 0.151 0.059 0.404
3 - 5 15 17 - 0.212 0.127 0.055 0.124
4 3 5 13 17 0.1 0.1 0.1 0.1 0.000

Table 3.2: Results for case 1

In this case, the location of the dashpots is not always correct. However, considering for

example the case with three dashpots, the degree of freedom 15 is close to the correct one 13

and the value of damping coefficients are not so different considering the different locations. In

particular, the damping coefficient of the dashpot in 5 is almost the sum of the dashpots in 3 and

5 of the original system. Considering the fact that we are using three dashpots to represent a

four-dashpot system and it was assumed absolutely no knowledge about the location and values

of the dashpots, this is still a reasonably good result. Even the ‘wrong’ solutions still hold some

useful information. Moreover the identified systems can be considered as an energy equivalent

approximation of the original system. This can be noticed by comparing the damping ratio ζ of

the first 10 modes of the identified system with the original system (Table 3.3).

Obviously, the agreement between the two systems increases with the number of columns

selected. It must be said that an error of 10÷20% in the identified damping ratio is acceptable

12



Mode ζ ζ Err ζ Err ζ Err
Original 1 dashp. % 2 dashp. % 3 dashp. %

1 1.41E-02 1.35E-02 4.09% 1.41E-02 0.14% 1.41E-02 0.13%
2 1.50E-03 2.16E-03 44.15% 1.50E-03 0.07% 1.50E-03 0.22%
3 1.02E-03 7.71E-04 24.74% 8.95E-04 12.60% 1.04E-03 1.22%
4 3.38E-04 3.94E-04 16.66% 3.05E-04 9.68% 3.41E-04 0.95%
5 1.38E-04 2.39E-04 73.13% 1.49E-04 7.97% 1.34E-04 2.90%
6 1.90E-04 1.61E-04 14.82% 1.93E-04 1.99% 1.81E-04 4.51%
7 1.14E-04 1.17E-04 2.68% 1.18E-04 4.23% 1.01E-04 11.37%
8 5.75E-05 8.85E-05 53.99% 4.88E-05 15.07% 4.84E-05 15.81%
9 1.06E-04 6.84E-05 35.49% 7.30E-05 31.11% 1.05E-04 0.51%
10 8.51E-05 4.43E-05 47.96% 6.14E-05 27.87% 8.73E-05 2.62%

Table 3.3: Damping ratios for case 1

and it is also important to notice that the 9th and 10th damping ratio are still reasonably close to

the exact solution even if the data used to identify the damping has been derived from excitations

close to the first 8 natural frequencies. Another possibility to increase the number of equations

for the energy method is not only by exciting the structure at different frequencies but also at

different amplitudes. This is useless in this linear example but can be very useful especially in

the identification of nonlinearities.

3.3 Case 2

The results obtained for case 2 are qualitatively better than case 1. Especially the location of

the main sources of damping is always correct (Table 3.4).

Number of DOF of Value of damping Angle
dashpots dashpots coefficients [N·s/m]

1 - - - 17 - - - 1.084 12.557
2 - 5 - 17 - 0.581 - 1.042 1.029
3 - 5 13 17 - 0.506 0.124 0.989 0.263
4 3 5 13 17 0.01 0.5 0.1 1 0.001

Table 3.4: Results for case 2

An important point that can be noticed from the value of the identified coefficients in Table

3.4 is that not only the right locations are identified but also the sources of damping are selected

from the biggest to the smallest when increasing the number of dashpots to identify. This is an

interesting result because if the number of columns selected is smaller than the real number of

dashpots of the structure, the method can still identify the biggest and then can be considered

the most reasonable approximation at that level.
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3.4 Viscous damping and Coulomb friction

The method is also tested on a system containing nonlinear damping, i.e. some Coulomb friction

devices attached to the previous example structure. In particular, the structure is the ten-

elements cantilever beam with three viscous dashpots (in degrees of freedom 3, 13 and 17 with

values respectively 0.2 N·s/m, 0.5 N·s/m, 0.15 N·s/m) and three Coulomb friction devices (in

degrees of freedom 7, 15 and 19 with values respectively 3.2 N, 5.1 N, 1 N).

Viscous damping Coulomb Friction
DOF 3 13 17 7 15 19
Value 0.2 Ns/m 0.5 Ns/m 0.15 Ns/m 3.2 N 5.1 N 1 N

Table 3.5: Dashpot configurations in mixed viscous damping and Coulomb friction case

The method works exactly in the same way of the diagonal viscous damping example, with

two small differencies: firstly, the expansion procedure has to consider eq.(2.19) when dealing

with nonlinearities and secondly the matrix A is now 8 × 40 because the number of unknowns

is doubled due to adding the Coulomb friction coefficients identification to the problem. Matrix

A now contains 20 columns of integrals of x2
i and 20 columns of integrals of xi · sign(xi).

Number of
Dashpots

1
DOF - - - - 13(C) -
Value - - - - 35.3 N -

2
DOF - - - 13(C) 15(C)* -
Value - - - 29.7 N 4.6 N -

3
DOF - 13(V)* - - 15(C)* 19(C)*
Value - 0.45 Ns/m - - 8.4 N 6.2 N

4
DOF 3(V)* 11(V) 13(V)* 17(V)* - -
Value 0.36 Ns/m 0.06 Ns/m 0.51 Ns/m 0.25 Ns/m - -

5
DOF 3(V)* 7(V) 13(V)* 17(V)* 15(C)* -
Value 0.28 Ns/m 0.08 Ns/m 0.52 Ns/m 0.20 Ns/m 3.4 N -

6
DOF 3(V)* 13(V)* 17(V)* 7(C)* 15(C)* 19(C)*
Value 0.20 Ns/m 0.5 Ns/m 0.15 Ns/m 3.18 N 5.08 N 1 N

Table 3.6: Results of mixed viscous damping and Coulomb friction case: (C) indicates that the
degree of freedom identified is related to Coulomb friction, (V) indicates Viscous damping, *
indicates correctly identified location.

At present, the angle selection of the columns of the matrix A when adding nonlinearities

seems to be less efficient than in the case with viscous damping only. For this reason, the

equivalent identification is not always representative of the spatial location of dashpots. This

problem affects the location only whereas the value of damping coefficients can still be well

identified if the locations are known. The next step of the research will be to improve especially

the location of the damping sources and to extend the method to include material damping.
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Chapter 4

Design of the experiment

4.1 Description of the setup

This section presents a description of the design of an experimental setup in order to identify

viscous damping and Coulomb friction parameters separately from vibration test of a clamped

beam. The two different sources of energy dissipation are respectively obtained by an eddy

current magnetic dashpot acting on one side of the beam and two contact friction surfaces on

the opposite side. The aim of the experiment is to demonstrate the possibility of locating and

evaluate the different types of damping in different spatial configurations.

4.2 Description of the setup

Figure 4.1: Sketch of the beam with wings attached

The experimental setup is composed of:

- An aluminium beam (660×40×4 mm) with 19 equidistant holes in order to obtain 18

different locations for the damping devices through the length of the beam. The beam is

clamped at one side and free to move at the other (Figure 4.1).

- 2 aluminium wings (25×20×6 mm) to be connected to the beam by screws.

- 2 NdFeB magnets (10×15×30 mm) with residual magnetic induction equal to 1.2 Tesla to

produce the magnetic field for the eddy current dashpot acting on one of the two wings.
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- Several different material films to be attached to the other wing to obtain different value

for the Coulomb friction

- A small calliper to apply the normal force to the friction device.

4.3 Beam design

The dimensions and material of the beam are designed so that the natural frequencies of the

first 10 modes are well separated from each other to minimise the effect of each mode on those

closest to it. Starting from a beam with a rectangular 40×4 mm section, an eigenvalue analysis

based on a finite element model provides an optimal length of about 560 mm (Figure 4.2). The

beam is made of aluminium to avoid magnetic interactions with the magnets, even if they are

sufficiently far from the beam itself.

Figure 4.2: Effect of the length of the beam (section 40×4 mm) on the natural frequencies

The weight of the wings is designed using the same criteria so that the modes are well

separated for most of the possible different configurations. The calculations provide an optimal

mass of about 0.014 Kg. The effect of the added mass of the wings at the free end of the beam

is shown in Figure 4.3.

The value of the natural frequencies of the first 10 modes obtained from a 3D finite element

model are summarized in Table 4.1 for 3 different cases:

- Case 1 : Beam only without added mass of wings

- Case 2 : Beam with wings at 500 mm distance from clamp

- Case 3 : Beam with wings at 200 mm distance from clamp

The frequencies are reasonably separated and it is now possible to design the damping devices

acting on the wings. Keeping the mass of the wings around 0.014 Kg means that the wings are

quite small. This will affect the size of the magnets and the value of the normal load for Coulomb

friction in order to obtain a useful value for damping coefficients.
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Figure 4.3: Effect of the added mass of wings on the natural frequencies

Mode Description Freq.[Hz] Freq.[Hz] Freq.[Hz]
case 1 case 2 case 3

1 1st bending xy 10.38 9.7256 10.536
2 2nd bending xy 65.034 64.271 63.469
3 1st bending xz 103.05 96.679 102.82
4 3rd bending xy 181.98 182.42 177.66
5 1st torsional 269.11 233.66 264.09
6 4th bending xy 356.75 357.91 353.13
7 5th bending xy 588.27 591.69 582.99
8 2nd bending xz 628.73 623.06 606.53
9 2nd torsional 809.35 754.52 684.69
10 6th bending xy 885.38 885.09 873.69

Table 4.1: Natural frequencies of the beam in case 1, 2 and 3

4.4 Viscous dashpot design

In order to simulate the viscous damping, an eddy current dashpot has been designed. The

movement of a conductor (the aluminium wing) through a stationary magnetic field (Figure 4.4)

generates electromagnetic forces that creates a damping effect close to pure viscous damping

[15]. By varying the air gap between the magnets is it possible to vary the damping coefficient

of the dashpot very easily. This coefficient can be estimated if the size of the magnets and

conductor are known [16]. Starting with the assumption that the total mass of wings must

equal 0.014 Kg, the dimensions of the wings are 20×25×6 mm.

The useful section for the eddy current dashpot is 20×15×6 mm. To amplify the effect of the

eddy currents, 2 rare-earth NdFeB magnets (one above and one below the wing) with residual

magnetic induction 1.2 Tesla are used to create the magnetic field. The section parallel to the

wing has been designed so that the damping effect is maximized, according to the calculation

by Nagaya [16], without exceeding the size of the wing to avoid nonlinear edge effects of the
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magnetic field (15×10 mm). The thickness of 30 mm provides a sufficient damping coefficient for

the experiment, increasing this value doesn’t change the damping coefficient considerably. To

obtain bigger coefficients a new beam frequencies design with bigger wings should be required.

Figure 4.5 shows the range of damping coefficient values available using these dimensions varying

the air gap between magnets and wing.

Figure 4.4: Sketch of the eddy current dashpot
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Figure 4.5: Damping coefficient versus air gap between magnets and wing
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4.5 Coulomb friction dashpot design

The Coulomb friction dashpot simply consists of a calliper where different material films are

attached acting on the wing as shown in Figure 4.6 (the thickness of the friction material in

Figure 4.6 is exaggerated to become visible in the sketch). Material films can be applied to the

wings too to provide different combination of materials. The normal force is provided by the

screw in the middle of the calliper and it can be measured by static tests by a dynamometer

applied in the contact point. The tangential force is measured by a force transducer located

between the calliper and the support (the green square in Figure 4.6).

Figure 4.6: Sketch of the Coulomb friction device

Knowing the normal and tangential force is it possible to calculate the Coulomb friction

coefficient to compare to the one obtained by damping identification.

4.6 Experiment photographs

The experimental setup (Figure 4.7) is almost ready, the only missing part is the eddy cur-

rent magnetic dashpot. The magnets must be correctly characterised before being mounted on

the structure so some preliminary tests are needed. Some initial tests were performed on the

undamped structure and with Coulomb friction only.
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Figure 4.7: Experimental setup
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Figure 4.8: Coulomb friction device

21



Chapter 5

Conclusions

In this report a review of the existing damping identification techniques has been presented.

From one of these techniques a new method has been developed to overcome some limitations

of the original method. The method has been numerically validated with several different sim-

ulations. An experimental setup has been designed and built to test the method on a real case.

Experiments started in June 2008.

Future works will include the validation of the method by the experiments and the extension

of the method to include material damping (always present in real structures but still not

implemented in the method). Alternative modelling of damping and different parametrizations

of the matrices will be investigated. If the method is validated with successful results, an

interesting application will be to test it on a Goland wing case, in order to obtain a better

understanding of the effect of damping on aerostructure applications. Estimating the role of

damping in aeroelastic instabilities will complete the research in the next year and a half.
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Appendix A

In the next pages the technical drawings of the beam, the wings and dashpot devices are provided.
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Figure 5.1: Wing
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Figure 5.2: Beam
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Figure 5.3: Wing and beam assembly
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Figure 5.4: Coulomb dashpot part 1
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Figure 5.5: Coulomb dashpot part 2
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Figure 5.6: Coulomb dashpot assembly
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