
  
 

 
 
 

ECERTA 
Enabling Certification by Analysis 

___ 

Marie Curie Excellence Team 
 Start:  01 January 2007 
 Duration:  48 months 

 
www.cfd4aircraft.com 

 
 

 
Modelling of structural damping 

 
 
 

 
 

Prepared by:   Marco Prandina 
 
 

Document control data 

Deliverable No.: D 5.1 Due date:  01 October 2007 

Version: Draft Version 2 Team Leader:  Prof. Ken Badcock  

Date delivered: 25 October 2007 Host Organisation : University of Liverpool 

 
Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) 

Dissemination Level 
PU Public x 
PP Restricted to other programme participants (including the Commission Services)  
RE Restricted to a group specified by the consortium (including the Commission Services)  
CO Confidential, only for members of the consortium (including the Commission Services)  



 2

1 Introduction 

Damping is the dissipation of energy from a vibrating structure [1] or the energy dissipating 
property of materials and members undergoing time dependant deformations and/or 
displacements [2]. 
 
Damping can be classified into three main categories [3]: 
 
Material damping: the energy dissipation due to microstructural mechanisms as 
irreversible intercrystal heat flux, grain boundary viscosity, etc. 
Boundary damping: the dissipation associated with junctions or interfaces between parts 
of the structure (joints) and contacting surfaces (friction). 
Fluid contact damping: the energy radiation into surrounding medium and dissipation 
associated with local viscous effects. 
 
Damping is often neglected or over-simplified in dynamic design and modelling of 
structures. However, there are many cases where an accurate identification of structural 
damping is very important, especially when the dynamics is dominated by the energy 
dissipation.  
If a model is to be used to predict transient responses, transmissibility of exciting forces 
through the structure or decay times, good modelling of damping is necessary. The flutter 
problem in aircraft wings is an example of a phenomenon dominated by energy dissipation, 
where damping prediction is important. 
Unfortunately, damping is still one of the least well-understood aspects of vibration 
analysis for many reasons. First, there is an absence of a universal mathematical model to 
represent all damping forces. Secondly, it is not clear which state variables the damping 
forces will depend on. Mechanisms that dissipate energy in a system are very different both 
in nature and effect, and engineering choices must be made before starting to develop a 
model. Finally, damping parameters cannot be measured by the static tests used for 
stiffness and inertia; dynamic tests, which are normally more effected by noise, are needed. 
An important consideration in the current work, which is aimed at the prediction of the 
aeroelastic response of aircraft, is the ability to model damping in large structures. 
Computational efficiency is important and it may be difficult to include all sources of 
damping in detail. 
This report describes results obtained by initial experiments with several models derived 
from the literature and proposes a new method based on orthogonality equations of the 
symmetric definite quadratic pencil. 
Firstly, the importance of damping in aeroelasticity is discussed. Secondly a background 
review on some mathematical models is presented in order to introduce two identification 
methods that have been described and numerically tested. 
Then, the new method based on orthogonality equations of the symmetric definite quadratic 
pencil is proposed and tested on the same numerical example. The proposed method is then 
compared with the two other methods by introducing two measures of error. 
Finally, the principle conclusions of this research and suggestions for future work are 
presented. 



 3

2 Damping in aeroelasticity 

The problem of modelling damping in structures is not well-understood because often in 
traditional structural design it is not actually important, mainly because there are no 
instabilities and there is no reason to accurately model it. In the aeroelastic problem, 
instead, the occurrence of instabilities may strongly depend on damping and catastrophic 
events can occur. 
Flutter is a characteristic form of self-excited oscillations that can arise through the 
interaction of an aerodynamic flow with the elastic modes of a mechanical structure, e.g. 
the bending and torsion modes of an aircraft wing. 
The occurrence of flutter compromises the operational safety, flight performance and 
energy efficiency of the aircraft. By definition, flutter phenomenon can be defined as the 
dynamic instability of a structure in an air stream, characterized by the interactions of 
elastic deformation and aerodynamic loads [4]. 
Consider a cantilever wing mounted in a wind tunnel and with the root rigidly attached to 
the tunnel wall. Suppose that the wing is deliberately deflected and then released. When the 
wind speed is low, the oscillatory motion of the wing is damped; as the wind speed is 
increased up to a certain level, the rate of damping will increase but thereafter will decrease 
as the speed increases. Eventually, if the available wind speed is high enough, the 
oscillation will cease to be damped and a limit cycle oscillation can be maintained. This is 
the critical condition and the wind speed is the critical flutter speed for that wing. In 
general, at a wind speed a little above the critical condition the oscillation will be divergent, 
i.e. its amplitude will increase with time [5]. 
From the structural point of view, the main sources of damping in a wing are the friction in 
joints, viscous damping due to air flow and material damping.  
Modelling of damping is a very difficult issue because the level of damping in a structure 
can depend, for example, on the material damping that is dependent on the type of the 
material, the methods used in manufacturing the material and the final finishing processes. 
The interfacial damping mechanism, instead, results from Coulomb friction between 
members and connections and can depend on clamp force of bolts or welded connections. 
For all these reasons, normally the identification is preferred to modelling because trying to 
extract damping parameters by experiments is simpler than collecting all the information to 
model damping accurately. 
It's important to start from the fundamentals of identification in order to obtain a method 
that is applicable to Ground Vibration Test normally used in aeroelasticity. 

3 Background review 

One of the first attempts to model damping was made by Rayleigh in his monograph 
"Theory of sound" [6] in 1877. The so-called “viscous damping” supposes that 
instantaneous generalized velocities are the only relevant state variables which influence 
damping. 
For a single degree of freedom system, the equation of motion becomes 
 

( )tfxkxcxm =++    &&&  (1) 
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where m and k are respectively the mass and stiffness coefficients, responsible for inertia 
and elastic forces, f(t) and x the excitation force applied to the system and the 
corresponding displacement response; c is the damping coefficient that encapsulates all 
damping sources and is responsible for dissipative forces. 
This model is probably the simplest to represent damping forces, and for some systems is a 
good approximation, especially when fluid viscosity is the main energy dissipation 
mechanism. 
Expanding the problem to an n-degree of freedom system, the equations of motion can be 
written in a matrix form as 
 

( )tfqKqCqM =++    &&&  (2) 
 
where M and K are respectively mass and stiffness which are n x n definite positive 
matrices, responsible for inertia and elastic forces, f(t) and q the vector of the excitation 
forces applied to each degree of freedom and the corresponding vector of displacement 
responses; C is the n x n semi-definite positive viscous damping matrix. 
With the separation of variables 
 

( ) tet λ xq =  (3) 
 
the solutions of eq.(2) can be found by solving the eigenproblem related to the second order 
quadratic pencil 
 

( ) K CM ++= λλλ  2P  (4) 
 
The eigenvalues and the eigenvectors of the second order pencil are respectively the non-
zero scalar λi and the corresponding vector xi that satisfies 
 

( ) ( ) 0   2 =++= iiiiiP xK CMx λλλ  (5) 
 
In order to obtain real eigenvalues and eigenvectors from eq.(5), so the equations of motion 
can be decoupled as for the undamped case, Rayleigh proposed the "proportional damping" 
model. 
Proportional damping may be defined as a dissipative situation where the viscous damping 
matrix C is directly proportional to either the stiffness or mass matrix, or to a linear 
combination of both [7]. 
Considering the more general case of proportional damping, we may write 
 

M KC   νε +=  (6) 
 
where ε and ν are constants. 
Using this model it is now possible to derive n uncoupled damped single degree of freedom 
equations each of which can be solved separately from the others. 
However, there is no physical reason why the damping matrix has to be proportional to the 
mass and stiffness matrices. Also, eigenvalues and eigenvectors of damped systems 
measured from real experiments always lead to complex quantities, so this model is just a 
mathematical way to apply the classic modal undamped analysis to the damped one. 
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This fact gives the idea that damping can be extracted in some way from the imaginary part 
of eigenvectors (or complex mode shapes) and eigenvalues (or complex frequencies). 

4 Identifying the damping matrix 

4.1 Adhikari's method 

In reference [8] a method is presented which is based on the first order perturbational 
method. This method assumes that the damping is small, so eigenvalues and eigenvectors 
of the damped system will be close to the undamped ones.  
The data needed to identify the damping viscous matrix are just the complex frequencies 
(eigenvalues) and mode shapes (eigenvectors) measured by normal modal experiments. 
Defining: 
 

xi    =  mode shapes of the undamped system (real) 
zi    =  mode shapes of the damped system (complex) 
ωi    =  natural frequencies of the undamped system (real) 
λi    =  complex frequencies of the damped system (complex) 

 
under the assumption of “small damping”, the following approximation can be used: 
 

jl   α  (j)
l

j
jl

N

l

j
lj ≠∀<<==∑

=

 1  and      1         where )(

1

)( αα xz  (7) 

 
By saying αj

(j) = 1 and all other coefficients αl
(j)<<1 is meant that the jth damped mode zj is 

close to the corresponding undamped mode xj and the contribution given by all other modes 
is small. 
With the separation of variables 
 

( ) tiet λ zq =  (8) 
 
applied to eq.(2), a new quadratic pencil is obtained in the form 
 

02 =++− jjjjj i z Kz Cz M λλ  (9) 
 
Substituting zj from eq.(7) and premultiplying by xk

T and using the orthogonality properties 
of the undamped mode shapes we obtain  
 

( ) ( ) ( ) 02'

1

2 =++− ∑
=

j
kkkl

N

l

j
lj

j
kj Ci αωαλαλ  (10) 

where 
 

l
T

kklC x Cx='  (11) 
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Now, for the case k = l , neglecting the second order terms involving αl
(j) and C’kl, ∀ k ≠ l, 

we obtain 
 

2

'
jj

jj

iC
+±≈ ωλ  (12) 

 
and for the case k ≠ l , again retaining only the first order terms, we obtain 
 

∑
≠
= −

+≈
N

jk
k

k
kj

kjj
jj

C
i

1
22

'

xxz
ωω

ω
 (13) 

 
From the imaginary part of experimental complex eigenvalues and eigenvectors, using 
eqs.(12) and (13), it is now possible to extract the C’ matrix in modal coordinates and then 
convert it to the original coordinate system by the relation 
 

( ) 1'1 −−
= XCX C T  (14) 

 
The Adhikari's method does not guarantee symmetry in the fitted damping matrix and non-
physical results may be obtained, because the original system is reciprocal. The same 
author proposed a different model [9] based on the same considerations of the original one 
(first order perturbational method) that preserves reciprocity of the system forcing 
 

''
jkkj CC =  (15) 

 
This method gives better results because is known that the original system is reciprocal and 
then it is possible to reduce the uncertainties about the damping matrix including this 
further constraint. 
A very similar method was also proposed in reference [10] using the perturbation analysis 
for complex modes. 

4.2 Pilkey's method 

Another approach to identification of damping was proposed in reference [11]. The method 
is based on Lancaster's work on the quadratic pencil [12] and on the inversion of lambda-
matrices and application to the theory of vibrations [13]. It presents two methods (one 
iterative and one direct) for the identification of the viscous damping matrix in a dynamical 
system. 
Two assumptions are made in this paper: M, C and K are symmetric (M is positive 
definite) and damping is subcritical, so eigenvalues and eigenvectors arise in complex 
conjugate pairs. 
The data needed for this model to identify damping are the complex frequencies 
(eigenvalues) and mode shapes (eigenvectors) from experiments and the M matrix for the 
iterative method. For the direct method, also the K matrix must be known. 
This method considers the second order pencil eigenvalues equation (5) rearranged in the 
Duncan state-space form 
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The eigenvectors can be normalized so that 
 

[ ] I
X

XΛ
CM
M0

XΛX =⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
  TT  (17) 

 
where 
 

( ) nn
i Cdiag 22 ×∈= λΛ  (18) 

 
[ ] nn

n Cxxx 2
221    ×∈= KX  (19) 

 
Another orthogonality relation can be written as 
 

[ ] Λ
X

XΛ
K0
0M

XΛX −=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡−
  TT  (20) 

 
From the eigenvector normalization equations (17) and (20) we can extract two 
normalization conditions for the iterative and the direct method respectively, 
 

( ) 1 2 =+ ii
T
i xx CMλ  (21) 

 
( ) iii

T
i xx λλ =−  2 KM  (22) 

 
Eq.(21) is used in the iterative method because the C matrix, which is the one that has to be 
identified, is not known when the normalization is performed for the first time. So after an 
initial guess, iteration is necessary in order to identify the C matrix until the error between 
successive damping matrices is small enough to imply convergence. 
At the same time, eq.(22) is used in the direct method without iteration, but the K matrix 
must be known. 
From equation (17) we get 
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⎠
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  TT  (23) 

 
and expanding the inverse on the right hand side and rearranging leads to 
 

[ ]TT XΛX
X

XΛ
CM
M0

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−1

 (24) 

 
or 
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⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

0  

   
21

T

TT

XΛX
XΛXXΛX

CM
M0

 (25) 

 
It can be proven that the left hand side matrix inverse is 
 

⎥
⎦

⎤
⎢
⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡
−

−−−−

01

1111

M
MCMM

CM
M0

 (26) 

 
By comparing the right hand sides in eqs.(25) and (26) 
 

TXΛXCMM 2
  

11 =− −−  (27) 
 
which gives 
 

MXΛMXC T2
  −=  (28) 

5 Numerical problems 

There are some practical issues in solving the inverse problem of damping identification for 
a real structure, the most important being: 
 
- Spatial and modal incompleteness of data 
- Ill-conditioning of matrices 
- Non-uniqueness of solutions 
- Computational time for large structural models 
- Noise and errors in measurement 
 
The spatial incompleteness of data occurs when the number of degrees of freedom (dof) 
measurable by experiments is less than the number of dof in the finite element model 
(FEM). Normally a FEM has thousands of dof but in experiments just a few accelerometers 
are usually available and rotational dof are very hard to measure. To avoid this type of 
incompleteness, several reduction techniques were developed to reduce system matrices to 
the number of measurable dof (Guyan or Static Reduction [15], Dynamic Reduction [16], 
Improved Reduced System IRS [17], System Equivalent Reduction Expansion Process 
SEREP [18]) or to expand the data obtained from experiments to the dof of the FEM (using 
mass and stiffness matrices or using modal data [14]). 
Modal incompleteness, instead, deals with the frequency range of measurements. Normally 
only some mode shapes and natural frequencies can be accurately measured because of 
noise and other factors, especially at high frequencies. For this reason, the number of mode 
shapes available for identification is always smaller than the number of mode shapes 
available in theory. 
Ill-conditioning of matrices is another important issue when dealing with real data. In 
inverse problems this arises when an inversion of the matrix has to be made and some 
columns or rows of the matrix are close to being linearly dependent or very different in 
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amplitude. This can result in errors in identification of damping parameters and well-
conditioning optimization techniques can be necessary.  
Non-uniqueness of solutions arises when the number of equations available is less than the 
number of unknowns and so it is possible to have different solutions that solve the problem. 
A solution to this phenomenon can be adding redundant equations derived from the original 
ones or introduce constraints based on engineering knowledge. 

6 Numerical tests 

In order to evaluate how much existing methods are affected by numerical problems, some 
numerical tests were performed using MATLAB codes. The first analyzed problem is the 
modal incompleteness of data that always occurs in experiments with real structures. 
 

 
Figure 1 - Ten-element FEM of a clamped beam with viscous dashpot on its free end 

 
The modal incompleteness of data has been included in numerical testing on a simple 
structure: a ten-element FEM of a clamped beam with a viscous dashpot on its free end 
(Figure 1). 
A clamped ten-element beam with 22 dof (2 of them constraints by the clamp) has 20 
analytical natural frequencies and 20 mode shapes. 
The known mass, stiffness and damping matrices of the FEM were used to calculate 
eigenvalues and eigenvectors of the problem, using the Duncan state-space equations. 
Then, to simulate modal incompleteness of data from experiments, just some of the 
frequencies and mode shapes obtained were used for the identification inverse problem. 
In this system, the viscous damping matrix has the form 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0............0
......
.........
.........
.........
0............0

c

C  (29) 
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All components of C are zero except for the value of the damping coefficient of the viscous 
dashpot in the 19th row and column. This is illustrated in Figure 2. 
The results were obtained using the symmetry variation of Adhikari's method and the 
Pilkey's direct method. The results obtained using respectively all 20 modes, the first 15 
and the first 10 are shown in figures 3-5. 
Using all the information available (Figure 3), both methods work perfectly as expected 
using numerical data. When the number of modes available decrease (Figure 4) Adhikari's 
method starts showing some problems: the biggest value of the damping matrix is not in the 
right place and there are many off-diagonal elements very far from the exact solution. 

 

 
 

Figure 2 - Graphical representation of the viscous damping matrix 
 
Surprisingly, further reduction in the number of modes available used in Adhikari's method 
seems to reduce the error (Figure 5), matching again the right column and row for the 
biggest value, but still showing many wrong values.  
 

 
 

Figure 3 - Damping matrix by Adhikari's method (left) and Pilkey's method (right), 20/20 modes 
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Figure 4 - Damping matrix by Adhikari's method (left) and Pilkey's method (right), 15/20 modes 
 

 
 

Figure 5 - Damping matrix by Adhikari's method (left) and Pilkey's method (right), 10/20 modes 
 
 
These results show that Pilkey's method is less affected by this type of incompleteness than 
Adhikari's one. However the Frequency Response Function (FRF) obtained by using the 
damping matrix identified by Adhikari's method in Figure 5 reproduces well the response 
of the original system (Figure 6). 
The FRF is obtained exciting the structure with a harmonic force  
  

( ) tiet ω Ff =  (30) 
 
Substituting (30) into (2), the particular solution of the differential equation is given by 
 

( ) tiet ω Yx =  (31) 
 
The equations of motion become: 
 

( ) titi eei ωωωω        - 2 FYKCM =++  (32) 
 
The FRF is the mathematical expression relating the output to the input; in this case it 
relates displacements to exciting forces: 
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[ ] ( )
( ) [ ]        - 1-2 KCM

F
Y

f
x

++=== ωωω i
t
t)H(  (33) 

 

 
Figure 6 - FRF of the original system (blue line) and FRF of the identified (red dashed line) system using 

Adhikari's method, 10/20 modes 
 

7 New method 

Studying the mathematics behind Pilkey's method based on Lancaster's works [13] on the 
inversion of lambda-matrices and application to the theory of vibrations, a new approach 
was considered. 
Some equations for a new model updating approach are given in reference [19]: starting 
from eq.(9) and rearranging eigenvalues and eigenvectors in a matrix form (Λ and X 
defined in eq.(18) and (19)) it is possible to derive some useful relations between the three 
system matrices: 
 

( ) 0  2 =++ XKΛCΛM  (34) 
 
In particular, three orthogonality equations can be directly derived from eq.(34) by several 
matrix manipulations   
 

1DXKXΛXMΛX =−   TT  (35) 
 

2   DΛXKXXKXΛΛXCΛX =++ TTT  (36) 
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3   DXCXΛXMXXMΛX =++ TTT  (37) 
 
where D1, D2 and D3 are diagonal matrices. Equations (35)-(37) are related to each other by 
 

ΛDD1 3=  (38) 
 

2
32 ΛDD −=  (39) 

 
ΛDD 12 −=  (40) 

 
It can be shown that the modal parameters a and b [20] from the Duncan state space 
analysis defined as 
 

j
T

jjj
T

jj xxxxa  2 MC λ+=  (41) 
 

j
T

jjj
T

jj xxxxb   2 MK λ−=  (42) 
 
The a and b parameters are two constants that characterize each mode and they can be 
measured by traditional modal analysis experiments. They are related to the diagonal 
matrices as 
 

( )nbbbdiag 221  , ... , , −=1D  (43) 
 

( )nnbbbdiag 2222112  , ... , , λλλ=D  (44) 
 

( )naaadiag 2213  , ... , , =D  (45) 
 
Equations (34)-(37) can be rearranged as 
 

j
T

jjj
T

jj xxxxa  2 MC λ+=  (46) 
 

( ) kjxxxx k
T

jkjk
T

j ≠++= when              0 MC λλ  (47) 
 

j
T

jjj
T

jj xxxxb   2 MK λ−=  (48) 
 

kjxxxx k
T

jkjk
T

j ≠−= n        whe            0 MK λλ  (49) 
 

j
T

jjj
T

jjjj xxxxb  2 2 KC λλλ +=  (50) 
 

( ) kjxxxx k
T

jkjk
T

jkj ≠++=     when    0 KC λλλλ  (51) 
 

( ) 0  2 =++ jjj xKCM λλ  (52) 
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The matrices M, C and K can now be derived from an updating problem, following Link's 
paper [20]. This approach was tested on the clamped beam test case, so the matrices can be 
written using the parameterization: 
 

 i

n

i
iA

s

MMM ∑
=

+=
1
α  (53) 

 

i

n

i
iA

s

KKK ∑
=

+=
1

β  (54) 

 

i
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i
iTi

n

i
iRi
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i
iA

sss

KMMCC ∑∑∑
===

+++=
111

εδγ  (55) 

 
where ns is the number of substructures  
 MA, KA, CA are the initial analytical mass, stiffness and damping matrices, 
 obtained by FEM or simply as empty matrices. 
 Mi, Ki, MRi and MTi are respectively the mass, stiffness, rotational diagonal mass 
 and translational diagonal mass matrices of each substructure, that are defined 
 below. 
 αi , βi , γi , δi , εi are the updating parameters. 
 
In the example of the clamped beam there are no substructures, and so each element of the 
ten-element model is considered as a substructure, so in this particular case, the 
substructure matrices can be related to the finite element model of a beam. 
It's important to say that the shape of all these substructure matrices can be chosen 
depending on the system characteristics and engineering knowledge. 
Considering the FEM mass and stiffness matrix of a beam, we have 
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So, the Mi, Ki, matrices can be chosen as n x n matrices 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0.........0
...............
............
...............
0.........0

beami MM  (58) 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0.........0
...............
............
...............
0.........0

beami KK  (59) 

 
All components of Mi and Ki are zero except for the involved degrees of freedom of the 
substructure, maintaining the proportions between the sixteen values of the beam element 
matrix. 
The MRi and MTi matrices were chosen in a form to allow the identification of the dashpot 
in the translational degree of freedom of the clamped beam. In that case, looking at the 
structure, it's immediately recognizable that there is some damping in the translational 
degree of freedom so the MRi MTi matrices can be chosen using engineering knowledge as 
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This approach is similar to proportional damping but the fact that it's applied to each 
substructure and not on the whole structure allows the existence of complex mode shapes 
and eigenvalues. 
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Substituting parameterizations (58)-(61) into equations (46)-(52) we obtain a set of seven 
updating equations 
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Each of eq. (62)-(68) can be written in a matrix form as 
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For example, equation (64) can be written as 
 

{ } [ ]{ }pGd  33 =  (70) 
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All seven equations can now be put together in a single matrix equation as  
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Finally, to obtain real system matrices, the updating parameters must be real. Writing {d} 
and [G] as complex quantities and {p} as a real quantity we obtain 
 

{ } [ ]{ }pGGdd  imagrealimagreal ii +=+  (74) 
 
and it's possible to separate the real and the imaginary parts obtaining the final matricial 
equation 
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If m modes are correctly measured, we are able to write a total of  8m2 equations. 
The updating parameters can now be calculated using the linear least squares optimization 
technique by the pseudo-inverse 
 

{ } ( ) { }qSSSp TT 1−
=  (76) 
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and is used to reconstruct the three identified matrices. 
This new method was numerically tested on the test problem with modal incompleteness 
and it gave good results using only 4 out of 20 modes (Figure 7). These initial results are 
encouraging. 
 

 
 

Figure 7 - Damping matrix identified by new approach, 4 out of 20 modes 
 

7.1 Comparison between the three methods 

Results obtained by the three methods were compared using two measures of error for the 
number of modes used in identification.  
The first measure is called "amplitude error" and it defines how much the identified matrix 
differs from the original one in terms of amplitude. 
This is simply obtained by dividing the Frobenius norm of the difference between the 
original matrix and the identified one by the Frobenius norm of the original matrix, and 
multiplying by 100. 
 

( ) 100% ⋅
−

=
Foriginal

Fidentifiedoriginal
amp C

CC
e  (77) 

 
Figure 8 shows that Adhikari's method has strange behaviour with bigger error when using 
almost all modes and a sort of stabilization of errors under a certain number (fifteen). 
Results obtained by Pilkey's method, in contrast, increase their quality with an increasing 
number of modes, as expected. 
The new method seems to work perfectly, but it must be said that all the information about 
the structure under consideration were known and it was easy to choose the right 
substructure matrices for this example. 
The second error is called "localization error" and it represents the distance from the 
highest values of the identified matrices to the correct position of the dashpot (in this case: 
19th row and 19th column of the damping matrix). 
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Figure 8 - Amplitude error comparison between the three methods 
 

 
 

Figure 9 - Localization error comparison between the three methods 
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If ro and co are respectively the row and the column where the dashpot is located in the 
original matrix and ri and ci are respectively the row and the column of the identified matrix 
where the highest value is obtained, the "localization error" is defined as a distance by 
 

22
ioioloc ccrre −+−=  (78) 

 
In Figure 9 the same strange behaviour is shown by Adhikari's method which seems to 
work better using less than 5 modes instead of 19. The other two methods show better 
results for increasing the number of modes. 
It could be interesting to investigate not just how many modes could be used to identify 
damping but also which ones are the best to be used in the process, because it is shown that 
adding more modes sometimes gives worst results in the identification.  

8 Conclusions 

In the present report a survey of some existing damping identification methods has been 
presented and a new method based on orthogonality equations has been considered. The 
three methods were evaluated for a test problem to show how much they are affected by 
one of the main problems in identification: the modal incompleteness of data. 
Results shows that Adhikari's method has strange behaviour with bigger error when using 
almost all modes and seems strongly affected by this type of incompleteness. Pilkey's 
method increases its quality with an increasing number of modes, as expected. 
Results obtained by the new method were encouraging and look better than the two existing 
methods. However, the example is simple and further investigations are needed. 
Future work includes a deeper investigation on the new approach and in particular: 

 
− Test the new approach with more complex structures in order to validate it and to 

present standard substructure matrices to be used in real tests. 
− Test the new approach with real structures. 
− Comparing the three different models with real structures. 
− Investigate the spatial incompleteness problem (model reduction or modal 

expansion) in order to optimize the measurement from real experiments (this 
includes criterions to select the best place to put accelerometers). 

− How to separate the different types of damping and how to model each of them. 
 
More complex structures can be designed using more than one beam connected with joints 
that creates different types of damping. 
To obtain hi-fidelity models from the data obtained by Ground Vibration Test, an important 
issue is to separate the different sources of damping in the identification process in order to 
model them separately and more accurately. 
In the recent Ecerta meeting in Turin this idea was discussed and a collaboration with 
Politecnico di Torino could start on this topic with a modal analysis experiment on a beam 
with different sources of damping; the final target will be to define a procedure which 
makes possible the extraction of separated coefficients for viscous damping, Coulomb 
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friction damping and any other source present in a wing using Ground Resonance Tests 
data. 
The separation of the sources of damping is a very important task because is still not clear 
which type of damping is the most important and it could be very useful to evaluate how 
much each type of damping contributes to the global value and which one can be neglected. 
Another idea, still not developed, is to introduce random matrix theory in damping 
identification. 
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