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Interpolation techniques including artificial neural networks and kriging are applied to

predict transonic aeroelastic instability in larger parameter spaces for aerofoil and wing

configurations. The linear stability problem is formulated as a small structural eigenvalue

problem corrected by the aerodynamic influence which is given by the interaction matrix

and modelled by nonlinear computational fluid dynamics using the Euler equations. The

evaluation of the interaction matrix depending on the response frequency and the steady

state solution incurs most of the involved computational cost as it requires operations on

the large fluid system, and hence its approximation is required for routine calculations.

The approximation is done by interpolation based on exact numerical samples which can

be evaluated in either the frequency or time domain. The general applicability of the

interpolation techniques for the analyses is discussed and the approximation models are

exploited for blind search of aeroelastic instability.

1. Introduction

Aircraft aeroelasticity deals with the mutual interaction of aerodynamic, elastic, and inertial forces for a
flexible structure. The resulting aeroelastic phenomena are safety–related and have played an important role
since the beginning of modern aircraft [1]. The flutter phenomenon is one of the most important examples
as this violent unstable structural vibration, usually originating in the coupling of two vibrational modes,
potentially leads to catastrophic structural failure. Aerodynamic and/or structural nonlinearities make an
aeroelastic system susceptible to bounded flutter responses which are commonly referred to as limit–cycle
oscillations or limit–cycle flutter [2]. The aerodynamics in the transonic regime, featuring shock waves and
shock induced separation, are a major source of nonlinearity, and a careful modelling of the flow field is
required to predict aeroelastic instability accurately. However, the nonlinear transonic aerodynamics are
the most difficult to model numerically and experimentally [3]. As modern aircraft operate routinely in
the transonic regime, a considerable effort has been made towards the improvement of current analysis
capabilities. In this work we mostly assume dynamically linear systems and the prediction of the linear
aeroelastic stability limit is the main concern. This means that the steady state flow field may exhibit
nonlinear flow phenomena, such as shock waves and separation, while the dynamic response is time–linearised
about the nonlinear steady state solution assuming there is a linear relationship between the structural motion
and the fluid response. The structural representation is considered to be linear throughout.

The fast prediction and understanding of aeroelastic instability, particularly in the transonic regime, is
an important task in modern aircraft design. Standard approaches in industrial applications to determine
the stability of an aircraft structure are the k or p–k methods [4]. These assume an inviscid linearised
theory in the frequency domain for the unsteady aerodynamic response. Most notably the doublet lattice
method has been the single most important tool in large scale production flutter analyses for more than 30
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years [5]. However, for the important transonic regime with its mixed sub- and supersonic regions, a linear
aerodynamic theory fails due to the presence of flow nonlinearities including shock waves and shock induced
flow separation, and the linear numerical predictions have to be corrected with data from expensive and
time–consuming experimental campaigns or higher fidelity flow simulations.

Inferring the stability of an aeroelastic system from time–accurate simulations is very capable due to its
generality. However, the significant computational cost, in particular to solve for the unsteady, nonlinear
transonic aerodynamics, is a major drawback of this approach which is emphasised by the requirement to
search parameter spaces for critical conditions. To obviate the cost involved in solving complex systems
with millions of degrees–of–freedom, and to permit routine calculations over the flight envelope, alternative
approaches have been investigated over the last decade. There are two distinct directions. One, referred to as
reduced order modelling, extracts the essence of the dynamic aeroelastic system to form a low dimensional
problem while trying to keep the accuracy of the full order formulation. Popular approaches are system
identification based on the Volterra theory [6, 7] and proper orthogonal decomposition [8–10]. The second
direction keeps the order of the full system while manipulating its solution procedure to reduce the cost.
One method, based on dynamical system theory, predicts aeroelastic instability of the Hopf type, commonly
leading to flutter or limit–cycle oscillations, from a steady state solution of the system.

Following an approach first published in [11–13], the bifurcation method, solving an augmented system
of equations for the bifurcation point, was successfully tested on an aerofoil configuration free to move in
pitch and plunge. Convergence problems associated with applying a direct solver to a large linear system
were resolved by using an iterative sparse linear solver [14]. The method was extended to a larger problem
investigating the flexible AGARD 445.6 wing using a modal structural model [15]. However, the aeroelastic
system using computational fluid dynamics (CFD) is typically large making it difficult to solve the augmented
system for the bifurcation point directly. Thus, three major development steps have taken place since this
early work.

First, the shifted inverse power method was adapted to allow the tracing of the critical eigenvalues,
typically emerging from the wind–off structural system, with changing values of the independent system
parameter (i.e. a representation of the dynamic pressure) to provide information about the damping and
frequency of the aeroelastic modes [16].

Secondly, an improved version of the basic method used a Schur complement eigenvalue formulation to
enhance computational performance and to avoid numerical problems associated with the shifted inverse
power method [17]. It was applied to several wing structures and also complete aircraft configurations to
study uncertainty in the predicted instability due to structural variability [18]. This approach views the
coupled aeroelastic system as a modified structural eigenvalue problem with the interaction (correction)
term, which depends on the response frequency, pre–computed. The evaluation of the interaction term
incurs most of the involved cost as it generally requires operations on the high dimensional CFD–based
system.

Thirdly, the approximation of this interaction term was formulated both to search parameter spaces for
aeroelastic instability and to exploit a hierarchy of nonlinear aerodynamic models, with cheaper models being
used to evaluate possible conditions of interest for more expensive models, whose evaluation is then used to
update the approximation [19, 20]. The approximation of the interaction term using kriging interpolation
made the Schur method for aeroelastic stability analysis essentially a reduced order model.

In this paper an alternative to the kriging interpolation is discussed. Artificial neural networks are tested
and compared to the previous results from the kriging–based approach. In Sections 2 and 3 the aerodynamic
and structural models and the tools required for the aeroelastic stability analysis are described. In Section 4
the general applicability of the approximations for the stability analysis using both kriging and artificial
neural networks is presented. The approach of coordinated risk–based sampling is analysed in Section 5 to
search for aeroelastic instability at reduced computational cost.

2. Governing Equations of the Flow and Structure

A. Flow Model

In the current paper, the Euler equations are used as the aerodynamic model. These equations are solved
using an established research code [21]. The code uses a block–structured, cell–centred, finite–volume scheme
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for spatial discretisation. Convective fluxes are evaluated by the approximate Riemann solver of Osher and
Chakravarthy [22] with the MUSCL scheme [23] achieving essentially second order accuracy and van Albada’s
limiter preventing spurious oscillations around steep gradients. Boundary conditions are enforced using two
layers of halo cells.

Spatial discretisation leads to a system of first order ordinary differential equations in time which can
be written in semidiscrete state–space form as ẇf = Rf (w), with wf as the vector of fluid unknowns and
Rf as the corresponding residual vector. The vector w of unknowns contains both fluid and structural
contributions with the latter contribution due to the dependence of the fluid residual on the grid location
and velocity. Implicit time marching converges to steady state solutions, while dual time stepping is used for
unsteady simulations with a second order temporal discretisation [24]. Resulting linear systems are solved
by a preconditioned Krylov subspace iterative method. Details can be found in [21].

B. Structural Model

Aerofoil Structural Model

The “typical section” aerofoil model, with oscillating pitching and plunging motions, represents the torsional
and bending behaviour of a wing structure. The two degrees–of–freedom model is idealised as a point
mass located at the centre of gravity (cg), as well as a torsional and translational spring attached to the
elastic centre (ec) located a dimensionless distance x�/2 from the centre of gravity, where x� is measured in
semichords and negative for an elastic centre ahead of the centre of gravity. The aerofoil model is depicted
in Fig. 1.
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x  /2 α

Figure 1. Depiction of two degrees–of–freedom aerofoil.

The linearised equations of motion are written in state–space representation as ẇs = Rs(w), with
ws = [�, �̇ ]T containing the generalised coordinates of the two degrees–of–freedom and their corresponding
velocities, and w contains both fluid and structural contributions. Ignoring structural damping, the residual
vector is written as Rs = Dws + E f (w), with the matrices D = [0, I;−M−1K, 0] and E = [0,M−1]T ,
where I is the 2× 2 identity matrix. The vector of generalised forces f contains the integrated aerodynamic
loads of lift and pitching moment about the elastic centre. The independent parameter for the aeroelastic
simulations in the current paper is the reduced velocity ū, which is a dimensionless representation of the
freestream velocity and only contained in the stiffness matrix K. Details about the aerofoil structural model
are given in [14, 25].

The evaluation of the Jacobian matrix blocks is required for the eigenvalue–based stability analysis.
Evaluating the structural Jacobian matrix Ass, and the coupling block Asf , is straightforward. The matrix
block Ass simply becomes Ass = D. In this latter expression the dependence of the structural residual
on the structural unknowns through the integrated aerodynamic loads, i.e. E ∂f/∂ws, is ignored. This
contribution, which is due to changes in the surface normal vectors with changes in the structural unknowns
at fixed flow solution, was found to be very small. The matrix block Asf requires the dependence of the
integrated loads on the fluid unknowns, Asf = E ∂f/∂wf , which is evaluated by finite differences.
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Modal Structural Model

The deflections �xs of the structure are defined at a set of points xs by �xs(t) = �(xs)�(t), where the
vector � contains the n generalised coordinates (modal amplitudes). This follows common practice in
computational aeroelasticity [15, 26] by representing an aircraft structure by a small number of normal
modes, small compared with the large dimension of the CFD system. The columns of the matrix � contain
the mode shape vectors evaluated from a finite–element model of the structure using the commercial software
package MSC.Nastran. The finite–element equations are projected onto the mode shapes and an appropriate
scaling is applied to obtain generalised masses of magnitude one according to �TM� = I. Using the trivial
expression �̇I = �̇I, a system of 2n scalar equations is given for the modal structural model in state–space
representation, denoted here as ẇs = Rs(w), with the notation following the aerofoil structural model.
The corresponding residual vector, neglecting structural damping, is written as Rs = Dws + �E �Tf(w),
with the matrices D = [0, I;−�TK�, 0] and E = [0, I]T , where I is the n × n identity matrix. The
generalised stiffness matrix �TK� contains the n normal mode frequencies squared on the diagonal. The
vector f of aerodynamic forces at the structural grid points is evaluated as the wall pressure times the
area of the surface segment and the unit normal vector. The independent (bifurcation) parameter � is
calculated as (reference density)×(reference length)5. This relation follows from the nondimensionalisation
of the governing equations.

The matrix Ass is conveniently split into two contributions; one dominated by the normal mode frequen-
cies and one due to the aerodynamic force vector. It is given by Ass = D + �E �T ∂f/∂ws. The second
term is usually negligible. The Jacobian matrix block Asf is formed as Asf = �E �T∂f/∂wf . Currently,
the evaluation of the derivatives ∂f/∂ws and ∂f/∂wf is done using finite differences. Conveniently, the
bifurcation parameter is set to unity for the evaluation of the Jacobian matrices and adjusted in a matched
fashion once needed as discussed in the following.

3. Eigenvalue Stability Formulation

A. Schur Complement Eigenvalue Method

Write the aeroelastic system in semidiscrete state–space form as ẇ = R(w, �), where the vector of unknowns
w = [wf ,ws]

T contains fluid and structural contributions, and R is the corresponding residual vector.
The system depends on an independent parameter �, typically representating the dynamic pressure. An
equilibrium solution w0 of the nonlinear system satisfies R(w0, �) = 0. The theory of dynamic systems gives
criteria for an equilibrium to be stable. In particular, stability is determined by eigenvalues, � = � ± i!, of
the system Jacobian matrix A(w0, �) evaluated at the steady state and chosen values of �. A stable system
has all its eigenvalues with a negative real part. In many aeroelastic problems a pair of complex conjugate
eigenvalues with zero real part marks the onset of an instability of the Hopf type leading to flutter and
limit–cycle oscillation.

Linear stability is predicted by solving the standard eigenvalue problem (A − �I)p = 0, where the
Jacobian matrix A is conveniently partitioned in blocks expressing the different dependencies,

A =
∂R

∂w
=

⎛
⎝Aff Afs

Asf Ass

⎞
⎠ . (1)

Importantly, the matrix A is the exact Jacobian matrix of the applied spatial discretisation scheme. Details
about the evaluation of the Jacobian matrices can be found in [14–16].

Solving the full standard eigenvalue problem through shift and invert methods results in an increasingly
ill–conditioned system as the converged eigenvalue is approached. To avoid this, the eigenvector p is parti-
tioned into unknowns corresponding to fluid and structural contributions [17]. Then, the Schur complement
eigenvalue problem is given as,

S(�)ps = 0, (2)

which is a small nonlinear eigenvalue problem of dimension 2n where n is the number of the structural
degrees–of–freedom. The Schur complement matrix S(�) is explicitly written as,

S(�) = (Ass − �I)−Asf (Aff − �I)−1 (Af� + �Af�̇), (3)
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with the matrix Afs = [Af�, Af�̇] rearranged to illustrate the dependence of the fluid residual Rf (wf ,x, ẋ)
on the structural unknowns ws = [�, �̇] with generalised coordinates � (according to the structural degrees–
of–freedom) and their velocities �̇ influencing the grid displacements x(�) and grid velocities ẋ(�̇) of the
fluid mesh. This relation can be seen by observing that for the state–space representation the structural
eigenvector is written as ps = [p�, �p�]

T using the expression � = p� e
�t consistent with a linear stability

analysis [27].
In the Schur complement matrix, the first term on the right–hand side, Ss = Ass − �I, defines the

structural eigenvalue problem, while the second part, Sc = −Asf (Aff −�I)−1(Af�+�Af�̇), constitutes the
interaction term, the evaluation of which incurs most of the computational cost due to the large dimension
of the fluid Jacobian matrix Aff . Thus, the stability calculation is formulated as a modified structural
eigenvalue problem corrected by the influence of the fluid system. As the interaction goes to zero, the
structural eigenvalue problem is restored.

To solve the small complex–valued eigenvalue problem in Eq. (2), the system is augmented to scale the
structural eigenvector ps against an arbitrary real–valued constant vector cs to produce a unique solution,
i.e. augment by the (arbitrary) equation cTs ps = i. Then, the augmented nonlinear system is solved for the
unknowns [ps, �]

T using Newton–like methods as described in [17,19]. There are n relevant solutions of the
nonlinear eigenvalue problem. For convenience, a series approximation [28] of the Schur complement matrix
can be written for � = �0 + �" as,

S(�) ≈ (Ass − �I)−Asf

(
(Aff − �0I)

−1 + �"(Aff − �0I)
−2

)
(Af� + �0 Af�̇ + �" Af�̇), (4)

where �" is a small variation to the reference value �0, e.g. a structural frequency or a previous converged
solution. Pre–computing the factors in the series (requiring 4n linear solves for the first order expansion),
allows the application of the expansion in the vicinity of �0. Two approaches have been discussed. The
quasi–Newton method evaluates the (exact) residual by solving one linear system of the form (Aff −�I)y =
(Af� +�Af�̇)p� and multiplying the solution y with the matrix Asf , while the series approximation is used
for the Jacobian matrix. The series method also applies the series expansion to the residual which is possible
for small �" and for an independent parameter � not affecting the pre–computed values, thus excluding
nonsymmetric aerostatic effects.

The main task in solving the small nonlinear eigenvalue problem in Eq. (2) is the evaluation of the Schur
interaction matrix Sc as this involves computationally expensive operations on the high dimensional CFD–
based fluid system. This matrix is influenced by the eigenvalue, particularly the frequency, and the steady
state solution making it dependent on a large number of simulation parameters in the flow model, e.g. Mach
number, angle of attack and dynamic pressure, and the structural model with the structural parameters
defining the mode shapes. Hence, the evaluation of the matrix Sc will become prohibitively expensive to
be applied in large scale aeroelastic stability analyses. For the evaluation of a computationally expensive
function, such as the Schur interaction matrix, it is convenient to generate a cheap approximation based on
relatively few runs of the expensive full order model. This surrogate is then used to provide information
about the functional behaviour at untried parameter combinations. Several approaches to construct response
surfaces can be found in the literature. In this study the Schur interaction matrix is reconstructed based
on samples, i.e. full order evaluations of this term covering the parameter space of interest, using both the
kriging interpolation technique and artificial neural networks as described in the following.

B. Extracting Samples of the Schur Interaction Matrix

The interaction matrix can be formed in both the frequency and time domain. Solving a number of n linear
systems of the form (Aff −�I)y = (Af�+�Af�̇) directly and multiplying the solution by the matrix Asf to
form the Schur interaction matrix is referred to as the linear frequency domain approach and is the preferred
choice due to the computational cost involved in time domain simulations.

Alternatively in the time domain, the interaction matrix (i.e. the aerodynamic influence coefficient ma-
trix) can be evaluated from the generalised forces �Tf following an excitation in the structural unknowns.
One structural degree–of–freedom at a time can be excited in a forced sinusoidal motion at a fundamental
frequency of � = i ! applying a physically meaningful and mathematically consistent relation between deflec-
tion and deflection rate. The n generalised forces are Fourier–decomposed and divided by the corresponding
Fourier coefficient of the forced structural motion. More elegant and efficient approaches to evaluate the
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aerodynamic influence from unsteady CFD–based simulations over a range of frequencies can be used, such
as an exponentially–shaped pulse excitation [29] or unit step/impulse excitation [7,30]. However, this is not
needed in this study as powerful interpolation techniques are applied instead.

C. Approximating the Schur Interaction Matrix

Kriging Interpolation Technique

An excellent description on the background to the kriging approach was given in [31]. Herein only a brief
overview is provided. In the kriging interpolation technique a multidimensional deterministic response of
a simulation is treated as a realisation of a stochastic process. This process is composed of a low order
regression model and a random normally distributed signal with zero mean and a covariance depending on
the variance of the input samples and the correlation between two parameter locations. Thus, the second
term (the error term) is not independent at different locations but is related to the distance between points
in the parameter space. The parameters of the computationally cheap kriging model are determined for a
known set of (typically expensive) numerical samples of the full order formulation by an optimisation process
as given, for instance, in [31–33]. Importantly, the kriging predictor gives the exact system response at a
sampled location with zero error in the kriging prediction.

Artificial Neural Network

A neural network is a collection of interconnected neurons or nodes with each node receiving a number of
inputs either from the original input data, or from the output of other neurons in the network. The transfer
of input to the node is weighted. Each node also has a single threshold value. The weighted sum of the
inputs is formed, and the threshold subtracted, to compose the activation of the neuron. The activation
signal is passed through an activation function to produce the output of the neuron.

W
h

11

W
h

12

f W

f W f W

f W

W
h

W
h

W
h

W
h

21

22

31

32

m1

m2

W11

W

W

W

o

o

12

0

21

o

22

1n

2n

Input 1

Input 2

Input 3

Output 2

Ouput 1

Figure 2. A typical ANN topology

Figure 2 shows a typical neural network with a layer of inputs, a hidden layer and an output layer. The
input weights are summed and passed through an activation function, usually a nonlinear function like the
hyperbolic tangent or exponential sigmoid. The output from the hidden layer forms the input to to the
output layer. The weighted sum of the outputs from the hidden layer is once again passed through a linear
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or nonlinear function to obtain the output. If the activation function in the hidden layers is nonlinear then
the network has the capability to map the linear combination of system inputs to a nonlinear output. The
most commonly used activation function is the sigmoid. The layers of nodes between the input and output
are referred to as hidden layers and a network can have as many hidden layers as required. For smooth
functions a few number of hidden units are needed, for fluctuation functions more hidden layers are usually
necessary [34].

4. Application to Aeroelastic Stability Analysis

The interaction term depends on the frequency/damping and the parameters defining the steady state so-
lution, including freestreamMach number, incidence, and the structural parameters influencing the structural
mode shapes. Evaluating this matrix directly for each solution of the small nonlinear eigenvalue problem in
Eq. (2) can become prohibitively expensive to be applied in routine calculations to search a larger parameter
space for instability. The significant advantage of the approximation approach is that, once the interaction
matrix can be represented by the surrogate model, the eigenvalue problem can be solved as often as necessary
at very low computational cost. Then, any Newton–like method is a convenient choice to solve the nonlin-
ear stability problem with the interaction term and its gradient readily available through the interpolation
techniques, in this study using either kriging or artificial neural networks (ANN). The (wind–off) structural
modes can be traced with changing values of the independent parameter and the critical eigenvalue with
zero damping is detected using a bisection method.

In the current formulation the approximation of the interaction term is based on samples for a purely
imaginary eigenvalue with zero damping, whereas the structural part uses the complete eigenvalue including
a nonzero real part making it an analogy to the classical p–k method. In [19,20] it was shown that this is an
appropriate simplification similar to the classical approach used for decades in production flutter analyses.
Interestingly, for the flutter analysis using MSC.Nastran the aerodynamic influence coefficient matrix (which
can be shown to be equivalent to the Schur interaction matrix) is evaluated at a limited number of points
in the parameter space defined by the reduced frequency and freestream Mach number. This is necessary
as this evaluation significantly contributes to the computational cost. An interpolation is applied to find
the values between these discrete points [35]. Thus, the approach taken in this study is similar with two
important differences. First, nonlinear CFD–based aerodynamic modelling is applied instead of the linear
aerodynamic modelling used in MSC.Nastran. Secondly, the parameter space in the current approach can
easily be extended to include more parameter dimensions.

In the following the general applicability of the approach in the transonic aeroelastic stability analysis
is demonstrated using both kriging and ANN. Results are shown for an aerofoil case and two wing cases
including the Goland wing and the multidisciplinary optimisation (MDO) wing.

A. Aerofoil Case

The approximate Schur complement matrix used for the stability analysis with the aerofoil structural model
is written as

S = Ss(�, ū) + Ŝc(!,Mr) (5)

where Ŝc is the approximation of Sc depending on the response frequency ! and the freestream Mach
number Mr. For the considered aerofoil structural model, the correction term Sc is independent of the
chosen bifurcation parameter, i.e. the reduced velocity ū, thus simplifying the discussion. At the critical
eigenvalue �F = i !F the approximation is exact within the limits of the interpolation algorithm, while the
introduced error away from the critical conditions was found to be small [19].

A representative element of the Schur interaction matrix in the frequency/Mach number parameter space
for the Euler flow model is shown in Fig. 3 for the approximations based on both kriging and ANN. The
upper limit of the freestream Mach number is defined by the buffeting boundary for the NACA 0012 aerofoil
according to [36] while the (dimensionless) frequency range is chosen according to the structural frequencies
as these indicate typical flutter frequencies. Note that the response frequency corresponds to the imaginary
part of the eigenvalue. In the figure the real and imaginary parts of the response in the plunge degree–of–
freedom due to changes in the plunge generalised coordinate are given for the NACA 0012 “heavy case”
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(b) Kriging – imaginary part
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(c) ANN – real part
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Figure 3. Extracted and interpolated element S
c

3,1
of Schur interaction matrix for NACA 0012 aerofoil con-

figuration and Euler flow model including projected trace of instability; comparison of interpolations based on
kriging and ANN.

aerofoil configuration, the structural parameters of which can be found in [14]. The black dots indicate
sample locations, which were extracted using the linear frequency domain approach, while the colourful
surfaces are the corresponding interpolations. The red dots describe the trace of the instability, projected
onto the response surface, as critical values of the (dimensionless) response frequency with changing values
of the freestream Mach number. The trace is included to illustrate the important regions of the parameter
space. Recall that the steady state solution, and consequently the interaction matrix, can depend on a large
number of system parameters. At this point of the current study for the demonstration using the simple
aerofoil model problem only the dependence on the frequency and freestream Mach number is considered,
while later on for the wing cases the input parameter space will be extended.

In Fig. 3 it can be seen that the two interpolation algorithms give indistinguishable response surfaces
which should be expected considering the large number of true system evaluations. In the subsonic range the
flow response (as expressed by the matrix elements) only has small changes with varying system parameters,
while in the transonic range clear variations, in particular with respect to the freestream Mach number, are
present. This behaviour is consistently found for all nonzero matrix elements and should be attributed to
the formation of transonic shock waves.
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Figure 4. Stability behaviour for NACA 0012 aerofoil configuration comparing interpolations based on kriging
and ANN for Euler flow model and showing (a) critical values of flutter speed index and dimensionless frequency
and (b) mode tracing of first (wind–off) structural mode at Mach 0.8.

Figure 4(a) presents the sub- and transonic instability boundary for the discussed NACA 0012 configu-
ration. Critical values of the flutter speed index VF = ū/

√
�s (where �s is the aerofoil–to–fluid mass ratio

which is set to 100 for this configuration) and dimensionless frequency !F are shown. A comparison of results
from the full order eigenvalue solver, defining the reference solution, and the approximation models is given
and the agreement is excellent as expected considering the high sample resolution. The typical transonic
dip for the bending/torsion type of instability is shown which is related to the formation of shock waves. A
relation with the changes in the elements of the interaction matrix in the transonic range as found in Fig. 3
is evident.

The mode tracing of the least stable aeroelastic mode at Mach 0.8 with respect to changes in the reduced
velocity is presented in Fig. 4(b) comparing the different approaches to the stability analysis. It can be seen
that the trace is followed accurately even away from the imaginary axis. This suggests that the variation of
the interaction elements with respect to the eigenvalue’s real part (damping) is negligible and small compared
with the structural contribution. The evaluation of 60 points on the root locus took less than a second of
CPU time with each of the approximation models, whereas the exact Schur eigenvalue solver having a grid
with 15 thousand control volumes took more than one hour (about one minute per point) on a modern
desktop personal computer using the quasi–Newton method. On the other hand, unsteady time marching at
an individual reduced velocity using a dimensionless time step of 0.05 for temporal accuracy takes more than
10 minutes per cycle of motion (comprising about 500 steps) while typically five to ten cycles are required to
establish a periodic oscillatory motion with negligible nonperiodic transients due to the initial disturbance
of the steady state.

B. Wing Cases

For wing cases the Schur complement matrix S in Eq. (3) is conveniently written as

S =
(
C1 + �C2 − �I

)
− �C3 (Aff − �I)−1 (Af� + �Af�̇) (6)

where the matrices C1, C2 and C3 follow directly from the equations of the matrices Ass and Asf given in the
previous section describing the modal structural model. This form allows the evaluation of the matrices C2
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and C3 independently from the bifurcation parameter �, typically representing the dynamic pressure. The
approximated Schur complement matrix used for the stability analysis, including the parameter dependencies,
is then written as

S = Ss(�, ℎr,Mr) + �(ℎr,Mr) Ŝ
c(!, ℎr,Mr) (7)

where ℎr indicates the dependence on the altitude in addition to the freestream Mach number as matched
simulations are generally discussed. Additional parameters defining the steady state solution, such as the
angle of attack, can be included in this notation. A matched simulation is done by varying the altitude and
adjusting the values of the density and speed of sound according to the standard atmosphere conditions.
Then, the velocity follows from the current freestream Mach number. The matrix Ss = C1 + �C2 − �I is
the structural part where the term �C2 is often (but not generally) negligible as it is orders of magnitude

smaller than the other terms [20]. The expression Ŝc is the interpolation approximation of the modified

interaction term S̃c = −C3 (Aff − �I)−1 (Af� + �Af�̇) excluding the bifurcation parameter. The roots
of the approximated Schur residual are found by any Newton–like method. As for the aerofoil case, the
interaction term is sampled for eigenvalues with zero damping while the structural part uses the complete
eigenvalue. This simplification is appropriate as will be seen in the following discussion.

Symmetric Goland Wing/Store Configuration

First, the symmetric case without aerostatic deflection is discussed which makes the modified interaction
term S̃c independent of the altitude as the matrices Aff and Afs = [Af�, Af�̇] only contain sensitivities of
the fluid system which is, by default, made dimensionless by freestream reference values. Using the notation
in Eq. 6, the construction of the approximation model without aerostatic effects is simplified in the sense that
a matched simulation only requires the adjustment of the independent parameter to the current value of the
reference density while the other part S̃c of the computationally expensive interaction term Sc is sampled
for different values of the response frequency and freestream Mach number. The matrix C1 = D also needs
to be matched to the current reference values as the normal mode frequencies are made dimensionless using
the reference freestream velocity. This is a trivial task. The matrix C2, containing the sensitivity of the
force vector with respect to the deformation at fixed flow solution, is neglected in the first instance as it was
found to be several (typically 3 to 5) orders of magnitude smaller than the other terms.

(a) Mode 1 – f=1.69 Hz (b) Mode 2 – f=3.05 Hz

(c) Mode 3 – f=9.17 Hz (d) Mode 4 – f=10.8 Hz

Figure 5. Mode shapes of Goland wing/store configuration.
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The Goland wing, as such a symmetric case, is a model wing having a chord of 1.8266 m and a span of
6.096 m. It is rectangular and cantilevered with a constant cross section defined by a 4% thick parabolic–arc
aerofoil. The finite–element model, used to calculate the mode shapes for the modal structural model in the
CFD formulation, follows the description given in [37]. The wing/store case is discussed retaining the four
modes with the lowest frequencies (excluding in–plane modes) for the aeroelastic simulations. The frequencies
as well as the mode shapes mapped to the CFD surface mesh are shown in Fig. 5. Here, a relatively large
value of two is chosen for the modal amplitudes for illustration purposes. A computational mesh with 200
thousand control volumes is used for the current Euler simulations while the store aerodynamics are not
modelled.
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Figure 6. Extracted and interpolated element S
c

5,2
of Schur interaction matrix for Goland wing/store config-

uration and Euler flow model; comparison of interpolations based on kriging and ANN.

In the common situation, the structural grid points xs not only do not conform with the aerodynamic
surface grid, but are also defined on different surfaces. This requires the transfer of information between
the fluid and structural grids. The aerodynamic (pressure) forces, defined at the CFD surface grid, have to
be transferred to the structural grid, and the modal deflections �xs have to be communicated back to the
CFD surface mesh. This is achieved in the current formulation using a method called the constant volume
tetrahedron (CVT) transformation [38] which is a local intergrid transfer method. Thus, the grid locations at
the boundaries of structural elements (defined by three structural grid points) are matched while the slope is
not, and it was found that this intergrid transformation performs badly when required to extrapolate [20,39].
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Such an extrapolation to the trailing edge line is required behind the two thirds chord line of the Goland
wing resulting in a zigzag–like mapping of the trailing edge region. To improve the situation and to eliminate
a possible pollution of the results, the original mode shapes are re–defined to avoid extrapolation using CVT.
The mode shapes are linearly extrapolated to the trailing edge line at each spanwise location (rib) of the
finite–element model as a preprocessing step before they are applied in the intergrid transfer formulation in
the CFD solver.

Figure 6 gives one representative element of the (modified) Schur interaction matrix for the wing/store
configuration showing real and imaginary parts individually. The reconstruction of the response in the first
degree–of–freedom with respect to changes in the second generalised coordinate is presented using both
kriging and ANN interpolation. The reconstruction is based on 42 samples covering a Mach number range
between 0.8 and 0.95 and a dimensionless frequency range between 0.05 and 0.45. For a defined number n
of considered normal modes, a 2n× 2n Schur complement matrix is formed with n2 nonzero complex–valued
elements corresponding to an output dimension of 2n2 for the interpolation models. The differences between
the two interpolation techniques is small and the response surface shows a similar behaviour as for the
aerofoil case. In the subsonic region, only small changes can be found with respect to the input dimensions
of frequency and freestream Mach number, while there are significant variations in the transonic range.
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Figure 7. Stability behaviour for Goland wing/store configuration comparing interpolations based on kriging
and ANN for Euler flow model and showing critical values of altitude and dimensionless frequency including
instability points for all modes.

The more distinct changes in the response surfaces above a freestream Mach number of 0.9 are related
to the formation of shock waves and result in significant changes in the instability boundary, leading to
shock induced limit–cycle oscillation (LCO) for this wing/store case [37]. The instability boundary for
the configuration is presented in Fig. 7 showing critical values of the altitude and dimensionless response
frequency for all four modes originating in the wind–off structural modes. Importantly, the approximation
approaches using both kriging and ANN give excellent agreement with the full order predictions based on
the series method. Between freestream Mach numbers of 0.905 and 0.945 the aeroelastic system is unstable
right from the start of the considered altitude range at 30 km. The instability is dominated by the second
mode which is a torsion mode. In this range for the second mode instability the differences in the third
mode instability as obtained from the three prediction methods are not of immediate interest for the linear
stability analysis and are not discussed in more detail. The time–accurate results included in the figure
match the eigenvalue–based predictions precisely.
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Figure 8 shows the tracing of the four wind–off structural modes with respect to altitude changes at a
freestreamMach number of 0.875 and compares the full order predictions with results from the approximation
models using both kriging and ANN. The interpolation models are based on the samples shown in Fig. 6.
The full order predictions were obtained by applying the series method with a second order expansion. The
agreement in both the mode tracing and the onset of the instability is excellent. The results show a classical
binary instability mechanism with an instability occurring alongside the interaction of two aeroelastic modes
involving the first bending and first torsion mode. In addition, the wing/store case gives a second instability
at lower altitudes following the interaction of the third and fourth mode.
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Figure 8. Mode tracing at Mach 0.875 with respect to altitude for Goland wing/store configuration comparing
full order series results with approximation results using kriging and ANN; eigenvalues given in dimensionless
form.

For the reconstruction of the response surface in Fig. 6, a number of 42 samples is used corresponding to
the cost of 42 × n linear solves against the high dimensional fluid system once the steady state solution is
available. In the following one linear solve is taken as an equivalent cost factor because the solutions of the
large sparse linear systems incur most of the involved computational cost. These samples allow the stability
analysis covering an entire range of freestream Mach numbers between 0.8 and 0.95. Using the series method
with a first order expansion only, the evaluation of the series factors for all n normal modes takes n×4n linear
solves per steady state solution, i.e. per freestream Mach number in this example, while tracing the modes
can then be done essentially without additional cost with available series factors. Thus, the cost invested in
constructing the approximation models pays off with a full order stability analysis at the third freestream
Mach number. Also, the reconstruction approach becomes more powerful with an increasing number of
normal modes as every individual sample supports the analysis/tracing of all modes while the series factors
are only valid close to the shift, e.g. the normal mode frequency, they have been evaluated for. Once the
approximation model is established, the stability analysis can be done essentially without additional cost
no matter how large the original CFD–based system becomes. The aim of using either kriging or ANN to

13 of 26



interpolate the elements of the interaction matrix is to reduce the number of calculations for a blind search
stability analysis over the flight envelope, i.e. for a range of flow conditions. However, for a single point
analysis excluding the effects of aerostatic deformation it seems to be more efficient to use the series method
as the surrogate models require a minimum number of samples.

Nonsymmetric MDO Wing Configuration

Secondly, the nonsymmetric case including the effects of aerostatic deflection is discussed. The general
influence of the aerostatic deformation on the transonic steady state solution with varying altitude is that
a decreasing altitude, corresponding to an increase in the dynamic pressure, causes the wing to bend up
and to twist the nose down slightly at the wing tip, resulting in a weakened shock wave. The modified
interaction term S̃c in Eq. 7 becomes dependent on the altitude. As a consequence, the sampling has to
cover the altitude range of interest. This however is equivalent to the requirements of the exact (full order)
eigenvalue solver. Using the series method, the factors have to be re–evaluated constantly as the modes are
traced with changing altitude. Here, the altitude change before re–evaluating the series factors depends on
the demanded accuracy. As will be seen below, the approximation of the (modified) interaction term using
the interpolation approaches becomes very attractive concerning the cost.

(a) Mode 1 – f=0.84 Hz (b) Mode 2 – f=2.16 Hz (c) Mode 3 – f=3.56 Hz

(d) Mode 4 – f=3.99 Hz (e) Mode 5 – f=5.01 Hz (f) Mode 6 – f=5.37 Hz

(g) Mode 7 – f=6.57 Hz (h) Mode 8 – f=7.30 Hz

Figure 9. Mode shapes of MDO wing configuration.

The multidisciplinary optimisation (MDO) wing is a highly flexible, commercial transport wing designed
to operate in the transonic range. It has a span of 36 m and a thick supercritical section. The nonsymmetric
section makes the steady state solution dependent on the altitude as the nonzero force vector in the governing
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structural equations has to be balanced by the stiffness terms. The finite–element model is given by a wing
box along the central portion of the wing [17]. For the aeroelastic stability analysis a total number of eight
normal modes is considered with the mode shapes, mapped to the CFD surface grid, and the normal mode
frequencies given in Fig. 9. A computational mesh with 65 thousand control volumes is used for the discussed
Euler simulations. This case is chosen to demonstrate the applicability of the presented approximation
approaches both to a higher number of normal modes and to an expanded space of independent parameters.
Due to the virtual design of the MDO wing, experimental data are not available.

The challenge for the interpolation techniques as discussed up to this point is not the inclusion of aerostatic
effects at fixed freestream Mach number but the search for aeroelastic instability over the flight envelope,
i.e. a range of freestream Mach numbers. Therefore, a three dimensional parameter space including the
response frequency, altitude and freestream Mach number is considered in Fig. 10. The distribution of 252
samples for the reconstruction of the interaction matrix is shown including the trace of the first and second
mode instabilities with changing values of the freestream Mach number to illustrate the important part of
the parameter space. The samples were distributed using uniform grid sampling covering the parameter
space of interest (concerning the altitude and Mach number) and relevance (concerning the dimensionless
response frequency which follows the structural frequencies). The contour slice for one representative element
of the interaction matrix at the freestream Mach number of 0.80 is included. The differences in the contour
slices obtained from the two interpolation approaches are rather small as are the stability results which are
discussed in the following.
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Figure 10. Three dimensional grid sampling for MDO wing configuration and Euler flow model showing
approximated element real(Sc

10,1
) of Schur interaction matrix including instability points; interpolations based

on kriging and ANN.

The stability limit of the MDO wing configuration over a range of freestream Mach numbers between
0.7 and 0.9 is presented in Fig. 11 as critical values of altitude and dimensionless response frequency. The
effects of the aerostatic deformation are fully accounted for. The results of the approximation approaches are
compared with full order evaluations, and an accurate agreement between the kriging, ANN and full order
results is found. For freestream Mach numbers below 0.75, the configuration only encounters aeroelastic
instability below sea level while at common cruise conditions the critical region starts at about 5 km.
The first mode instability is the critical mode in most parts of the considered Mach number range. In
addition, the first mode exhibits a second bifurcation at the highest Mach numbers which is below the
second mode instability, and therefore not of immediate interest. This second bifurcation is not found with
the approximation approaches for the chosen sample distribution. Time–accurate results at one freestream
Mach number, herein only shown for the response frequency but not the altitude, match the eigenvalue–based
results precisely.

15 of 26



Mach number

al
tit

ud
e

in
km

.7 .75 .8 .85 .9
0

1

2

3

4

5

inci 0.0 deg

black lines: kriging
red lines: ANN
symbols: full

mode 2

mode 1

rigid wing

(a) Critical altitude

+
~

Mach number

fr
eq

ue
nc

y

.7 .75 .8 .85 .9

.6

.8

1

1.2

inci 0.0 deg

black lines: kriging
red lines: ANN
symbols: full

mode 2

mode 1

time-accurate

(b) Critical frequency

Figure 11. Stability behaviour for MDO wing configuration comparing interpolations based on kriging and
ANN for Euler flow model and showing critical values of altitude and dimensionless frequency

The influence of the small second term �C2 in the structural part of Eq. (6) was considered for the
kriging approach for the sake of completeness. Therefore, a second kriging model was formed based on full
order samples which are routinely evaluated alongside the samples of the interaction term. These samples
allow the reconstruction of the corresponding response surfaces depending on the altitude and freestream
Mach number. These “improved” predictions are within plotting accuracy compared with the results given
in Fig. 11 reflecting the dominance of the stiffness and interaction terms in this example. These results are
neither shown nor further discussed.

The number of 252 samples used to represent the physics in the parameter space for the reconstruction of
the interaction matrix seems to be large. This is discussed now. Using the full order series method, assume
that four Mach numbers along a flight envelope are to be investigated while accounting for aerostatic effects.
For an altitude search range of 15 km, re–evaluating the series factors (for a first order series expansion) only
four times creates an equivalent cost of 4× 4× n× 4n linear solves for the eight normal modes. The chosen
decrement in altitude of about 4 km before re–evaluation clearly introduces uncertainty and inaccuracy in
the predictions. Thus, the 252 samples, requiring 252×n linear solves, generate about half the cost compared
with the series method while giving accurate results. Note, for the current results the series factors were
calculated at each new altitude (which makes it quasi–Newton) for reasons of accuracy when comparing with
the approximation models.

Importantly, in Fig. 11(a) an additional set of results, labelled “rigid wing” and taken from [20], is shown
to illustrate the importance of considering the effects of aerostatic deformation in transonic aeroelastic
stability analysis. For the rigid wing results, the geometry is not allowed to deform for the steady state
solution which strictly does not balance the nonzero force vector with the stiffness terms resulting in a
nonzero structural residual Rs. It can be seen that the first mode instability forms the typical transonic dip
shifted to lower freestream Mach numbers which can be explained by recalling the effect of the aerostatic
deformation on the steady state solution. The aerostatic deformation causes the wing to bend up and to
twist the nose down slightly at the wing tip. This results in a weakened shock wave compared with the
aerostatically rigid wing. In the figure it can be seen that aerostatic deformation cannot be ignored.

The tracing of the eight wind–off structural modes with changing values of the altitude at a freestream
Mach number of 0.8 is presented in Fig. 12. Compared with the full order results using the series method,
the figure shows an accurate tracing of all considered modes using both the kriging and ANN approximation
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Figure 12. Mode tracing at Mach 0.8 with respect to altitude for MDO wing configuration comparing full
order series with approximation results using kriging and ANN; eigenvalues given in dimensionless form.

of the interaction matrix elements. Here, the series factors (just as the steady states) were re–evaluated at
each new altitude for reasons of accuracy for the comparisons with an applied decrement of 500 m. The
first mode goes unstable at an altitude of about 2.5 km, closely followed by the second mode crossing the
imaginary axis at about 1.5 km. The differences in the frequency at lower altitudes for the fourth mode
are due to the strongly damped character of this mode. The assumption of a simple harmonic aerodynamic
response, i.e. Sc(!) instead of Sc(�), does not hold in this case. However, this behaviour is irrelevant for
the stability prediction.

C. Summary for General Applicability

The task in this preceding section was to demonstrate the applicability of approximating the computation-
ally expensive Schur interaction matrix, representing the aerodynamic influence on the modified structural
eigenvalue problem, in transonic aeroelastic stability analyses. The results from the approximations based
on kriging and ANN were compared with those from the full order eigenvalue solver. Three test cases were
discussed including a NACA 0012 aerofoil configuration and the Goland and MDO wing cases. Importantly,
both interpolation techniques give excellent agreement with the full order results, and neither approximation
approach seems to be superior to the other. This observation is not too surprising considering the densely
sampled parameter spaces used so far in this paper. Most likely, any robust interpolation algorithm would
allow a similar conclusion.

The stability calculations using the approximation models are very cheap. However, the approximation
models require true (expensive) samples for the Schur interaction matrix from the exact eigenvalue solver
while covering the parameter space of interest to represent the important physics. Up to this point the large
number of samples, corresponding to a relatively high cost, are distributed over the parameter space using
a very basic, brute force, rectangular grid sampling approach. In the next section more efficient sampling
techniques, which are tailored for the purpose of this study to search parameter spaces for instability, will
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be presented making the approach of sampling and reconstruction for the stability analysis very attractive
in terms of cost. It is important to remark that, despite the large number of samples used for the test
cases shown above, the approximation models have already been demonstrated to be computationally more
efficient than the full order approach when applied over a larger parameter space.

5. Instability Searches Using Coordinated Sampling

The cost to create an approximation model, i.e. the required number of samples to adequately represent
the variation in the elements of the interaction matrix within the parameter space, is an important factor in
the aeroelastic stability analysis especially for an expensive high fidelity aerodynamic model. It is a standard
practice to replace a computationally expensive multidimensional model by an inexpensive surrogate using,
for instance, artificial neural networks or kriging tools. This is the topic of the current paper. Then,
the two main tasks of the analysis are to distribute a few true evaluations of the expensive function over
the parameter space in order to allow an accurate representation of the important physics, and to use
the surrogate to reconstruct/approximate the functional behaviour efficiently, robustly and precisely. The
important task of sampling is analysed in the following.

Space–filling algorithms, such as grid sampling used in the preceding section, tend to require an excessive
number of samples to achieve the demanded accuracy. Studying the eigenvalue–based aeroelastic stability
analysis, it was found that it is neither necessary to accurately approximate the response surfaces of the
interaction matrix components globally, nor useful to apply an optimisation algorithm to locate a global
extremum in the interaction matrix components. Here, the expression “global” refers to covering the en-
tire parameter space within its bounds. A globally accurate approximation of the interaction matrix is not
required for the linear stability problem as the interest focusses on detecting the most critical conditions.
Particularly, analysing both the structural governing equations and the modified structural eigenvalue prob-
lem of the Schur method, it is clear that the influence of the computationally expensive interaction term
on the eigenvalue problem can be quite different. Low values of the dynamic pressure (represented in this
study by either the reduced velocity or the altitude) cause the influence of the fluid interaction to be low.
As a consequence an inaccurate approximation of the interaction matrix can still give precise results. High
dynamic pressures, on the other hand, result in a strong fluid/structure interaction demanding a better
approximation. Also, individual aeroelastic modes can be rather insensitive to the fluid response. A global
optimisation, on the other hand, is not useful because an extremum in the Schur interaction matrix elements
not only does not necessarily correspond to the point of instability but also the functional extrema of the
interaction term are commonly outside the relevant region (and outside the specified parameter bounds) as
can be seen in the example results given in the previous section.

Thus, the sample distribution should be tailored to the aeroelastic problem. The approach chosen, intro-
duced in [19] as risk–based sampling, exploits the approximation models to focus new sample locations in the
vicinity of the converged instability boundary. Here, starting from the corner points of the parameter space
giving 2m initial samples (with m as the number of independent parameter dimensions), an approximation
model is always formed for the current set of samples which is then used to run the complete instability
search. This is possible because of the low computational cost using the approximation model. A new sample
is selected along the current approximation to the converged instability boundary, and this selection process
is distinct for the two interpolation techniques discussed. As will be seen in the following, the sampling
approach converges rapidly to satisfy predefined stopping criteria.

A. Aerofoil Case

As a first example, the above NACA 0012 “heavy case” aerofoil configuration is analysed. The Euler
equations are applied using a computational mesh with 15 thousand control volumes. The initial search region
is defined in the frequency/Mach number parameter space limiting the frequency range for the structural
frequencies and the sub- and transonic Mach number range according to interest. As mentioned before,
starting from the current set of samples the approximation models (kriging and ANN) are formed/trained and
used to perform complete stability analyses giving an approximation to the converged instability boundary
as critical values of the reduced velocity and response frequency. The selection of a new sample location is
different for kriging and ANN.

18 of 26



A measure of error for the kriging prediction is readily available as integral part of the kriging formulation
as it is based on a stochastic process model [31]. This is a very convenient characteristic of the kriging
approach giving the prediction of the interaction matrix elements together with a measure of the confidence
in this prediction. Naturally, a new sample is placed along the current evaluation of the instability boundary
where the kriging error is highest. This approach allows the placement of samples where it is needed most
to support the stability analysis, i.e. close to the instability, and to improve the kriging approximation, i.e.
at the point of highest error.

Such an analysis is presented in Fig. 13. The distribution of samples in the paramater space demon-
strates how the samples gather around the converged instability boundary. As the kriging error depends
on the distance between samples, the samples are uniformly distributed making the risk–based sampling a
constrained space–filling algorithm, constrained in the sense that a new sample location requires a previous
instability point. The approach converges rapidly as can be seen in the figure. With the sixth iteration
starting from the four initial corner samples, the instability boundary is accurately predicted compared with
the full order reference solution. Importantly, once the iteration results in placing samples close to each other
as the instability boundary is accurately detected, the iteration must stop to avoid a numerically unstable
kriging model which follows from the ill–conditioning of the kriging correlation matrix. Two closely located
samples correspond to two columns in the correlation matrix to be nearly identical giving a nearly singular
matrix [31].
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Figure 13. Risk–based sampling for NACA 0012 aerofoil configuration using kriging interpolation and showing
(a) representative element of Schur interaction matrix including projected trace of instability and (b) critical
flutter speed index compared to reference solution.

As a measure of error is not readily available for the current ANN formulation, a different approach
has been chosen instead to search for aeroelastic instability. Starting from the stability results obtained
from the analysis using the ANN model trained for the initial four corner samples, the first iterative sample
is placed randomly along the current approximation to the converged instability boundary. Following this
startup, new samples are always placed along the current instability boundary at the location where the
difference to the prediction at the previous iteration step is highest. This difference can also be used as one
possible convergence criterion. As shown in Fig. 14, this approach results in the samples being clustered in
the important regions similar to the kriging risk–based sampling discussed above. The convergence of the
instability boundary proceeds in a similar fashion giving an accurate prediction compared with the reference
solution in about ten samples.
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Figure 14. Risk–based sampling for NACA 0012 aerofoil configuration using ANN interpolation and showing
(a) representative element of Schur interaction matrix including projected trace of instability and (b) critical
flutter speed index compared to reference solution.

Evaluating the entire response surface for the interaction matrix elements precisely within the initial
search space is not attempted with the risk–based sampling approach. As a consequence, the mode trac-
ing could become inaccurate further away from the instability which, however, would be a fair trade–off
compared with the cost. If this inaccuracy becomes critical, i.e. resulting in an eigenvalue with a positive
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Figure 15. Mode tracing for risk–based sampling using
twelve samples for kriging and ANN at Mach 0.8.

real part, then the sampling criterion would au-
tomatically place a new sample in this region to
correct the prediction. This is not the case for
the NACA 0012 aerofoil problem discussed herein.
Looking at Fig. 15, it can be said that the root
locus of the critical mode is reproduced well us-
ing the twelve risk–based samples for both kriging
and ANN. In the most important region close to the
imaginary axis the agreement with the results of the
exact eigenvalue solver, referred to as “reference”
and shown in Fig. 4(b), is accurate. This can be ex-
plained by interpreting the governing equations for
the aerofoil structural model given in Section 2. The
reduced velocity ū, as the independent parameter,
enters the eigenvalue problem by its square in the
denominator of the stiffness matrix. Thus, for small
values of ū the influence of the structural part Ss

on the eigenvalue problem is higher, while with in-
creasing values of ū the influence is reduced making
the fluid interaction more important. The approx-
imation of the interaction matrix is good enough
in regions where the structural part dominates the

problem. However, once the interaction term becomes more active closer to the instability, the parameter
space is sufficiently covered by samples. For values of the reduced velocity well beyond the instability onset,
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the agreement between the different approaches is less accurate for two reasons. First, the parameter space is
undersampled to represent the stong fluid/structure interaction. Secondly, the simplification of using exact
numerical samples for zero damping, i.e. Sc(!) instead of Sc(�), naturally loses accuracy. This latter point
was already observed in Fig. 4(b) for the dense uniform grid sampling.

Having the steady state solutions, the cost to extract the ten samples, sufficient in this example to cover
a complete sub- and transonic regime, corresponds to the cost of 10×n linear solves against the fluid system.
On the other hand, the cost to form the factors in the series expansion in Eq. (4) for the two normal modes
of the aerofoil case at one individual freestream Mach number requires n × 4n linear solves. Thus, with
the second Mach number the construction of the approximation models pays off. To compare with time
domain predictions, the simulation of one cycle of motion at one combination of freestream Mach number
and reduced velocity corresponds to about ten to 20 steady state solves using a dimensionless time step of
0.05 for temporal accuracy (where one steady state solution corresponds to about 2n linear solves in this
example). Typically four to five values of the reduced velocity are required per Mach number to bracket
the instability, and more than one cycle of motion is required to identify the system response following
an initial disturbance. Thus, the stability analysis at only five Mach numbers, to trace out the instability
boundary, is at least two orders of magnitude more expensive than the eigenvalue–based approach using the
approximation models.

B. Wing Cases

The risk–based sampling approach for the wing configurations to search larger parameter spaces efficiently
for aeroelastic instability proceeds in a fashion similar to the aerofoil case. First, an initial search space
is defined by the corner samples with the frequency range chosen according to the structural frequencies
and any additional parameter dependencies chosen according to the region of interest. Then, the wind–off
structural modes are traced with varying altitude under matched conditions using the cheap approximation
models always based on the current set of samples, and the instability points are detected in the parameter
space. Alternative sampling criteria, for example a positive gradient in the eigenvalue’s real part with respect
to the altitude, are possible. As for the aerofoil case, the selection of a new sample location is distinct for
the two approximation approaches due to the distinct characteristics of the tools. The selection criteria
follow the aerofoil formulation. Using kriging interpolation, the detected instability point corresponding
to the highest error in the prediction of the interaction matrix gives a new sample location. Using ANN
interpolation, the maximum change in successive instability boundaries defines the new sample location with
the sample being placed according to the most recent instability prediction.

For realistic configurations, multiple instability points can often be found as was presented for both the
Goland wing/store and MDO wing configurations. However, only the most critical condition, i.e. the highest
altitude encountering the instability, is then considered in the current paper as any additional instabilities
within the unstable region are not of immediate interest for the linear aeroelastic stability analysis.

Goland Wing/Store Configuration

In Figs. 16 and 17 the risk–based sampling to search for instability is presented for the Goland wing/store
configuration. The reference solutions are taken from the previous section. Figure 16 gives the convergence
of the instability boundary with increasing numbers of samples for both kriging and ANN. The convergence
behaviour for the two interpolation models is similar. After about 20 samples the instability boundary
giving the most critical altitude is accurately predicted. Note that the bucket of limit–cycle oscillation
between Mach 0.905 and 0.945 defined by the second mode instability is only detected towards the end of
the iterations. Here, the samples are placed initially according to either the first or third mode instabilities
not allowing an appropriate representation of the interaction matrix to detect the second mode instability.
However, even for this rather complicated behaviour the risk–based sampling approach converges.

The distribution of 20 samples together with the approximation of the response surface of a representative
matrix element and the projected trace of the instability is shown in Fig. 17(a). The results are only given
for the kriging approach as the ANN results are similar. The clustering of the samples around the instability
boundary can be seen. The tracing of the normal modes with altitude changes is presented in Fig. 17(b)
at a Mach number of 0.875. The results are shown for the approximation models based on 20 samples and
compared to the above reference solution. The agreement between the different approaches is good.
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Figure 16. Risk–based sampling for Goland wing/store configuration showing critical values of altitude obtained
from approximation models based on kriging and ANN.
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Figure 17. Risk–based sampling for Goland wing/store configuration showing (a) representative element of
Schur interaction matrix including projected trace of instability for kriging interpolation and (b) root loci at
Mach 0.875 for kriging and ANN interpolations compared with reference solution.

The required number of samples correspond to the computational cost of about 20 × n linear solves.
Generally, using the series method a total number of n× 4n linear solves is required to evaluate the series
factors per steady state solution to trace all the n wind–off structural modes. Recall that the series factors
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are valid only in the vicinity of the chosen shift �0, e.g. the normal mode frequencies. Thus, the 20 samples
to detect the instability for a range of sub- and transonic freestream Mach numbers using the interpolation
methods take about an equivalent cost to predict the instability at one individual Mach number using the
series method (which is the most efficient implementation of the full order eigenvalue solver). The savings of
the risk–based sampling compared with the grid sampling in Fig. 7 are not significant as the cost reduction
is only by a factor of two in this example. This is different for the MDO wing configuration discussed next
searching a three dimensional parameter space for instability.

MDO Wing Configuration

The results for the MDO wing configuration, fully accounting for the effects of aerostatic deformation, are
shown in Figs. 18 and 19. Figure 18 gives the convergence of the risk–based sampling approach for both the
kriging and ANN approximations. Critical values of the altitude are shown for different numbers of samples.
Starting from the eight corner samples defining the initial search space, the algorithm converges rapidly and
already the second iteration (10 samples) results in an accurate prediction. The problem is converged in
less than seven iterations (less than 15 samples) for the kriging formulation to search a three dimensional
parameter space for transonic aeroelastic instability. The ANN requires a few more samples for comparable
results. As for the Goland wing/store configuration, the observed differences for the risk–based sampling
using kriging and ANN are rather small despite the distinct ways to select a new risk–based sample location
from intermediate instability points. This emphasises the robustness and generality of the chosen approach.
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Figure 18. Three dimensional risk–based sampling for MDO wing configuration showing critical values of
altitude for interpolations based on kriging and ANN.

The distribution of the samples in the three dimensional parameter space obtained from the kriging
approach together with the trace of the first and second mode instabilities is presented in Fig. 19(a). The
distribution of samples for the ANN–based search was found to be similar as expected following the Goland
results. Comparing the contour slices at Mach 0.8 shown in Figs. 19(a) and 10, it can be seen that the
response surface for this representative interaction element is not accurately reproduced globally by the
risk–based sampling. This has to be expected considering the very low number of samples. However, locally
in the region of the first mode instability, which defines the most critical condition for this configuration
focussing the search, the approximation is accurate. The achieved cost reduction is impressive. While the
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Figure 19. Three dimensional risk–based sampling for MDO wing configuration showing (a) distribution of 20
samples in parameter space for kriging approach including trace of instability points and (b) mode tracing at
Mach 0.8 using approximation models based on 15 samples for kriging and 20 samples for ANN.

grid sampling in Fig. 10 used 252 samples corresponding to the cost of 252 × n linear solves against the
large fluid system, about 15 samples are required with the risk–based sampling to detect the instability in
the three dimensional search space accurately. This is a cost reduction by a factor of about 20. Recall the
requirements when using the series method for the full order eigenvalue solver almost giving a cost reduction
by two orders of magnitude.

Importantly, despite concentrating the samples in the region of the most critical conditions, i.e. the first
mode instability, leaving large parts of the parameter space essentially uncovered, the mode tracing of the
higher frequency modes is not significantly deteriorated. This can be seen in Fig. 19(b) showing the tracing
of the modes at Mach 0.8 using the approximation models based on 15 samples for kriging and 20 samples
for ANN. A good tracing of the modes compared with the above reference solution can be found. As for
the aerofoil case this behaviour can be explained by looking at the governing equations of the structure and
the Schur eigenvalue problem. There are two points. First, at high altitudes the influence of the interaction
term is relatively small compared with the structural part as the density, defining the bifurcation parameter,
is small. Secondly, the higher frequency modes are very insensitive to changes in the interaction matrix
elements and the samples of the initial search space already give a good enough approximation. It is clear
that the higher the normal mode frequencies are, the more dominant the structural part Ss on the eigenvalue
problem becomes. Also, in the figure it is found that the trace of the second mode is not precisely followed.
This mode, describing a second instability at lower altitudes compared with the first mode, is subject to
a stronger fluid/structure interaction which would require more samples to be represented appropriately.
However, the search for all instabilities was not the objective for this demonstration. If the second mode
instability describes the most critical condition, then the sampling criterion would place an appropriate
sample to correct.

C. Summary for Instability Searches

The aeroelastic stability analysis based on the approximation of the interaction matrix is very efficient as
repeated operations on the full order fluid system are avoided. The limiting factor in using either of the two
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discussed approximation formulations (kriging and ANN) is the construction of the surrogate model itself
as this step requires exact numerical samples to represent the physics described by the interaction matrix.
In this preceding section the sampling is tailored for the aeroelastic stability analysis instead to reduce the
required number of expensive evaluations.

For the instability search, it was found to be useful to start from an initial small set of samples defining the
corners of the parameter space, and to run complete stability analyses with the intermediate approximation
models which is possible due to the very low computational cost. New sample locations are chosen according
to high risk of finding an instability, i.e. at intermediate instability points. This approach exploits the
characteristics of the aeroelastic stability problem as globally accurate approximations of the interaction
matrix elements are not required. Low values of the independent parameter result in a dominant structural
eigenvalue problem, whereas higher values give a stronger fluid/structure interaction demanding a better
approximation which is achieved by placing samples accordingly. For the presented test cases, the risk–
based sampling converges the instability boundary in a few iterations while significant differences between
the two interpolation techniques are not observed.

6. Conclusions

The use of interpolation techniques, namely kriging and artificial neural networks, in routine transonic
aeroelastic stability analyses applying high fidelity computational fluids dynamics, currently the Euler equa-
tions, has been presented. The Schur complement eigenvalue formulation solves a small nonlinear eigenvalue
problem for the structural system which is corrected by the aerodynamic influence. As the evaluation of
this aerodynamic influence is computationally very demanding, thus limiting the approach when applied for
large scale analyses, its approximation based on interpolating exact numerical samples to represent the fluid
response is discussed.

The approximation approach for the two interpolation techniques is demonstrated for a two degrees–of–
freedom NACA 0012 aerofoil configuration and two wing cases including the Goland wing/store and MDO
wing configurations. Accurate results are found throughout compared with the exact eigenvalue solver at very
competitive cost. Additionally, the approximation approaches are exploited to search larger parameter spaces
for aeroelastic instability, while assuming little prior knowledge of the configuration, by using an efficient
coordinated risk–based sampling where new samples are placed iteratively at the locations of intermediate
instability points, i.e. at locations of high risk. The approach converges rapidly for the presented test cases
resulting in a further cost reduction compared with the basic, brute–force, grid sampling approach to cover
the parameter space. Importantly, the stability predictions are rather insensitive to the chosen interpolation
tool, herein kriging and artificial neural networks, and the results do not suggest a preferred option.
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