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An efficient approach is presented to search for transonic aeroelastic instability of re-

alistic aircraft structures in multidimensional parameter spaces. Aeroelastic instability is

predicted by a small nonlinear eigenvalue problem for the structural equations which is cor-

rected by the aerodynamic influence. The approximation of this computationally expensive

interaction term, simulated by nonlinear high fidelity computational fluid dynamics, is for-

mulated to allow both the blind search for aeroelastic instability and the update of lower

order predictions with available better information. The approximation is based on a krig-

ing interpolation of exact numerical samples covering the parameter space. The approach

is presented for the Goland and MDO wing configurations and the open source fighter.

I. Introduction

The fast prediction of aeroelastic instability is an important engineering challenge in aircraft design and
certification. Standard approaches in industrial applications to determine the aeroelastic stability of an
aircraft structure are the classical k or p–k methods [1]. These use an inviscid linearised theory in the
frequency domain to determine the unsteady aerodynamic response. Here, the doublet lattice method has
been the single most important tool in large scale production flutter analyses for more than 30 years [2].
Modern aircraft routinely operate in the transonic regime with its mixed sub- and supersonic regions where
a linear aerodynamic theory fails due to the presence of flow nonlinearities such as shock waves and shock
induced flow separation. The linear numerical predictions have to be corrected with data from experimental
campaigns or higher fidelity flow simulations [3, 4].

The transonic aerodynamics have to be modelled by nonlinear methods for satisfactory and accurate
results [5]. The use of computational aeroelasticity employing high fidelity aerodynamics based on nonlinear
computational fluid dynamics (CFD) has matured from a research exercise to a powerful tool in engineering
applications due to advances in algorithms and computer power over the last four decades [6]. The stability
of an aeroelastic system can be inferred from time–accurate simulations following an initial excitation [7,8].
This approach is very capable due to its generality in dealing with dynamically nonlinear systems, while
the significant cost of CFD–based simulations to solve for the unsteady, nonlinear transonic aerodynamics
is a major drawback, thus limiting the analysis to a few carefully chosen cases. This is exacerbated by the
requirement to search a space of system parameters and flight conditions for critical conditions.

To obviate the cost involved in solving complex systems with millions of degrees–of–freedom, and to
permit routine calculations over the flight envelope, alternative approaches have been investigated over the
last decade. There are two distinct directions. One direction, referred to as reduced order modelling,
extracts the essence of the dynamic aeroelastic system to form a low dimensional problem while trying to
keep the accuracy of the full order formulation. Popular approaches are proper orthogonal decomposition
[9–11] and system identification based on the Volterra theory [12, 13]. The second direction keeps the
(spatial) order of the full system while manipulating its solution procedure to reduce the cost. One popular
approach is the harmonic balance method [14, 15] giving a reduction in the computational cost associated
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with simulating dynamically nonlinear, time–periodic, unsteady problems such as limit–cycle oscillation.
Another one, presented in this work, uses the theory of dynamical systems to predict aeroelastic instability
of the Hopf type commonly leading to flutter or limit–cycle oscillation. Here, a (linear) stability problem
for a (nonlinear) steady state solution of the aeroelastic system is examined instead of performing unsteady
simulations.

Following an approach first published in [16, 17], the bifurcation method, solving an augmented system
of equations for the bifurcation point defining the onset of the aeroelastic instability, was successfully tested
on a pitch–and–plunge aerofoil configuration and the flexible AGARD 445.6 wing [18, 19]. However, the
CFD–based aeroelastic system is typically large making it difficult to solve the augmented system for the
bifurcation point directly. Consequently, several major development steps have taken place since this early
work to ease the simulations.

First, the shifted inverse power method was adapted to allow the tracing of the aeroelastic modes,
starting out in the wind–off structural system and typically defining the instability, with changing values of
the independent system parameter, i.e. a representation of the dynamic pressure. This provides information
about the damping and frequency of the aeroelastic modes [20]. Secondly, an improved version of the basic
method used the Schur complement eigenvalue formulation for enhanced computational performance while
avoiding numerical problems associated with the shifted inverse power method [21]. It was applied to several
wing structures and also complete aircraft configurations [22,23]. This approach views the coupled aeroelastic
system as a modified structural eigenvalue problem with the interaction term, which depends on the response
frequency and the parameters defining the steady state solution, correcting for the aerodynamic influence.
The evaluation of the interaction term incurs most of the involved cost as it generally requires operations on
the high dimensional CFD–based system.

Thirdly, the approximation of this interaction term was formulated (for aerofoil cases) to search parameter
spaces for aeroelastic instability and to exploit a hierarchy of nonlinear aerodynamic models, with cheaper
models being used to evaluate possible conditions of interest for more expensive models, whose evaluation
is then used to update the approximation [24]. The approximation of the interaction term, using kriging
interpolation based on true numerical samples covering the parameter space of interest, made the Schur
complement eigenvalue method essentially a reduced order model with the unmodified full order fluid response
projected onto the structural system. This projection of the exact fluid response is different to, for instance,
the aerodynamic representation when using proper orthogonal decomposition. Alternative interpolation
techniques have been discussed to do the task of reconstruction [25]. This paper extends the ideas associated
with reconstructing the interaction matrix to three dimensional test cases under matched conditions.

The paper continues with the details of the aeroelastic stability analysis. The aerodynamic and structural
models used are described, and the Schur complement eigenvalue method including the generation and
approximation of the interaction matrix is outlined. Then, the aeroelastic stability analyses for the Goland
and MDO wings as well as a generic fighter aircraft are presented to illustrate the approach.

II. Eigenvalue Stability Formulation

A. Flow Models

In the current paper, the Euler and Reynolds–averaged Navier–Stokes (RANS) equations are used as the
aerodynamic models. The governing equations are solved using an established research code [26]. The code
uses a block–structured, cell–centred, finite–volume scheme for spatial discretisation. Convective fluxes are
evaluated by the approximate Riemann solver of Osher and Chakravarthy [27] with the MUSCL scheme [28]
achieving essentially second order accuracy and van Albada’s limiter preventing spurious oscillations around
steep gradients. Viscous fluxes are evaluated by central differences. Linear eddy viscosity turbulence models
considered in this work are solved in a fashion similar to the RANS equations with source terms being
evaluated at cell centres. Boundary conditions are enforced using two layers of halo cells.

Spatial discretisation leads to a system of nf first order ordinary differential equations in time written in
semidiscrete state–space representation as ẇf = Rf (wf ,ws) wherew denotes vectors of unknowns andRf is
the fluid residual vector. The subscripts f and s denote fluid and structural contributions, respectively, with
the latter contribution influencing the fluid response due to the moving fluid mesh in unsteady simulations.
Implicit time marching converges to steady state solutions, while a second order dual time stepping is used
for unsteady simulations [29]. Resulting linear systems are solved by a preconditioned Krylov subspace
iterative method.
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B. Modal Structural Model

As is common in computational aeroelasticity, an aircraft structure is represented by a small number of
normal modes, small compared with the large dimension of the CFD system. The deflections �xs of the
structure are defined at a set of points xs by �xs(t) = �(xs)�(t), where the vector � contains the n
generalised coordinates (modal amplitudes). The columns of the matrix � contain the mode shape vectors
evaluated from a finite–element model of the structure using the commercial software package MSC.Nastran.
The finite–element equations are projected onto the mode shapes and an appropriate scaling is applied to
obtain generalised masses of magnitude one according to �TM� = I. A system of 2n scalar equations
is given for the modal structural model in state–space representation, denoted here as ẇs = Rs(wf ,ws),
with ws = [�, �̇ ]T containing the generalised coordinates and their velocities. The corresponding residual
vector, neglecting structural damping, is written as Rs = Dws + �E �Tf(wf ,ws), with the matrices
D = [0, I;−�TK�, 0] and E = [0, I]T , where I is the n×n identity matrix. The generalised stiffness matrix
�TK� contains the n normal mode frequencies squared on the diagonal. The vector f of aerodynamic forces
at the structural grid points follows from the wall pressure, the area of the surface segment and the unit
normal vector. The independent (bifurcation) parameter � is obtained from the nondimensionalisation of
the governing equations and depends on the altitude.

In the common situation, the structural grid points xs not only do not conform with the aerodynamic
surface grid, but are also defined on different surfaces. This requires the transfer of information between
the fluid and structural grids. The aerodynamic (pressure) forces, defined at the surface grid, have to be
transferred to the structural grid, and the modal deflections �xs have to be communicated back to the CFD
surface mesh. This is achieved using a method called the constant volume tetrahedron transformation [30].
Also, different to a rigid aerofoil formulation, the geometry of interest (and thus the computational mesh)
deforms. This is achieved using a transfinite interpolation of the surface displacements to the internal grid
points [26].

The evaluation of the Jacobian matrix blocks is required for the eigenvalue–based stability analysis. The
matrix Ass is conveniently split into two contributions; one from the normal mode frequencies and one due
to the aerodynamic force vector. It is given by Ass = D + �E �T ∂f/∂ws. The second term is usually
negligible. The Jacobian matrix block Asf describes how the structure responds to changes in the flow field
and is formed as Asf = �E �T ∂f/∂wf . Currently, the evaluation of the derivatives ∂f/∂ws and ∂f/∂wf

is done using finite differences. Conveniently, the bifurcation parameter is set to unity for the evaluation of
the Jacobian matrices and adjusted in a matched fashion once needed as discussed in the following.

C. Schur Complement Eigenvalue Method

The aeroelastic system is written in state–space form as ẇ = R(w, �), with the vectors of unknowns w and
corresponding residuals R containing fluid and structural contributions. The parameter � is the bifurcation
parameter representing the dynamic pressure for the aeroelastic simulations. The expression R(w0, �) = 0
is satisfied by an equilibrium solution w0 of the nonlinear system. Stability is determined by eigenvalues
� = � ± i! of the system Jacobian matrix A(w0, �) evaluated at the steady state and chosen values of �.
Importantly, the Jacobian matrix is exact with respect to the applied spatial discretisation scheme. A stable
system has all its eigenvalues with a negative real part. In many aeroelastic problems a pair of complex
conjugate eigenvalues with zero real part defines the onset of an instability of the Hopf type leading to flutter
and limit–cycle oscillation.

Linear aeroelastic stability is predicted by solving the standard eigenvalue problem, (A−�I)p = 0, where
the Jacobian matrix is conveniently partitioned in blocks expressing the different dependencies

A =
∂R

∂w
=

(
Aff Afs

Asf Ass

)
. (1)

Writing the eigenvector p just as the vector of unknowns in fluid and structural contributions, the Schur
complement eigenvalue method [31] can be given. The expression S(�)ps = 0 defines a small nonlinear
eigenvalue problem for the stability analysis with the Schur complement matrix S(�) explicitly written as,

S(�) = (Ass − �I)−Asf (Aff − �I)−1Afs, (2)

where � is an eigenvalue of the structural part in the uncoupled system. The first term on the right–hand
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side, denoted as Ss = Ass − �I, defines the structural eigenvalue problem, while the second part describes
the interaction (coupling) term, Sc = −Asf (Aff − �I)−1Afs.

To solve this small complex–valued eigenvalue problem, the system is augmented to scale the structural
eigenvector ps against a real–valued constant vector cs, i.e. augment by the expression cTs ps− i = 0 which is
an arbitrary choice. Then, the augmented nonlinear system of the Schur residual is solved for the unknowns[
ps, �

]T
. While the full eigenvalue formulation solves a problem with nf + 2n + 1 unknowns, the Schur

complement formulation only has 2n+ 1 where the number n of relevant normal modes is generally small.
Ways to evaluate the roots of the Schur residual are outlined in the following.

An efficient way of finding the roots of nonlinear systems are Newton methods which require forming
the residual and its Jacobian matrix (or an approximation). The evaluation of the interaction term Sc is
the main cost in either method since it involves operations on the high dimensional fluid system, whereas
the cost to form the structural term Ss is negligible in comparison. Using Newton’s method, the interaction
term in the Schur residual is conveniently evaluated by first forming the product Afs ps for the current
approximation to the eigenvector, and then solving one linear system, (Aff − �I)y = Afs ps, the solution
of which is multiplied against the matrix Asf . Applying finite differences gives the Schur Jacobian matrix
where multiple evaluations of the residual are required.

As there are n relevant solutions of the nonlinear eigenvalue problem, the cost of forming the interaction
term at each Newton iteration, for each value of the independent parameter, and for a range of system
parameters becomes too high without approximations. Thus, a series approximation [32] of the Schur
complement matrix can be written for � = �0 + �" as

S(�) ≈ (Ass − �I)−Asf

( (
Aff − �0I

)
−1

+ �"

(
Aff − �0I

)
−2
)
Afs, (3)

where �" denotes a small variation to the reference value �0, which is, for instance, a structural frequency or
a previously converged solution. Pre–computing the factors in the series against the matrix Afs (requiring
4n linear solves per shift �0 for the first order expansion), allows the application of the expansion in the
vicinity of �0. Two approaches have been discussed [22,31]. The quasi–Newton method evaluates the (exact)
residual by the nonlinear approach given in the previous paragraph, while the series expansion is used for the
Schur Jacobian matrix. The series method also applies the series expansion to the residual which is possible
for small �" and for an independent parameter � not affecting the pre–computed values, i.e. for symmetric
problems.

The big computational challenge in solving the small nonlinear eigenvalue problem is the evaluation of
the Schur interaction matrix Sc to form the Schur residual and Jacobian matrix as this involves operations
on the high dimensional CFD–based fluid system. This matrix depends on the eigenvalue, particularly the
imaginary part, and the steady state solution. The steady state makes it dependent on a large number
of parameters in both the flow model, e.g. Mach number, angle of attack and dynamic pressure, and the
structural model due to structural parameters generally affecting the mode shapes. This means that the
direct evaluation of the matrix Sc (using either of the three described approaches) will become too expensive
if a large space of system parameters has to be searched for aeroelastic instability.

For computationally expensive simulations, such as the generation of the Schur interaction matrix, it is
useful to generate a cheap approximation based on relatively few runs of the expensive full order model to
provide information about its response at untried parameter combinations. An approximation model should
both predict the calculated responses precisely and adapt to the functional behaviour of the responses.
Several approaches to construct response surfaces can be found in the literature. In this study, as introduced
in [24], the Schur interaction matrix is reconstructed based on samples, i.e. full order evaluations of this term
covering the parameter space of interest, using the kriging interpolation technique. Once the interaction
matrix can be represented by the kriging model, the eigenvalue problem can be solved as often as necessary
at very low computational cost using any of the above three approaches.

Approximating the Schur Interaction Matrix: Extracting Samples

The interaction matrix can be formed in both the frequency and time domain. Solving 2n linear systems
of the form (Aff − �I)y = Afs directly (one for each structural unknown of the state–space representation
corresponding to the columns of the matrix Afs) and multiplying the solution by the matrix Asf to form
the Schur interaction matrix is referred to as the (first) linear frequency domain approach. This follows the
original implementation of the eigenvalue solver [31].
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Importantly, the matrix Afs can be written as Afs = [Af�, Af�̇] to illustrate the dependence of the
fluid residual Rf (wf ,x, ẋ) on the structural unknowns ws = [�, �̇] with generalised coordinates � and their
velocities �̇ influencing the grid displacements x(�) and grid velocities ẋ(�̇) of the fluid mesh. Then, the
above relation for the first approach can be rearranged as (Aff − �I)y = (Af� + �Af�̇) to solve half the
number of linear systems, one for each of the n structural degrees–of–freedoma. This relation can be seen
by observing that for the state–space representation the structural eigenvector is written as ps = [p�, �p�]

T

using the expression � = p� e
�t consistent with a linear stability analysis [33]. The alternative is referred to

as the second approach. Either approach in the frequency domain is a preferred choice due to the significant
computational cost involved in time domain simulations.

Alternatively in the time domain, the interaction matrix (i.e. the aerodynamic influence coefficient matrix)
is evaluated from the generalised forces �Tf following an excitation in the structural unknowns. When applied
in the current study, one structural degree–of–freedom at a time is excited in a forced sinusoidal motion at a
fundamental frequency of � = i ! applying a physically meaningful and mathematically consistent relation
between deflection and deflection rate. The generalised forces are Fourier decomposed and divided by the
corresponding Fourier coefficient of the forced structural motion. More elegant and efficient approaches to
evaluate the aerodynamic influence from unsteady CFD–based simulations over a range of frequencies can be
used, such as an exponentially–shaped pulse excitation [34] or unit step/impulse excitation [13,35]. However,
this is not needed as the kriging interpolation technique is applied instead.

Approximating the Schur Interaction Matrix: Kriging Interpolation

An excellent description on the background to the kriging approach was given in [36]. Herein only a very
brief overview is provided. In the kriging interpolation technique a multidimensional deterministic response
of a simulation is treated as a realisation of a stochastic process. This process is composed of a low order
regression model and a random normally distributed signal with zero mean and a covariance depending on
the variance of the input samples and the correlation between two parameter locations. Thus, the second
term (the error term) is not independent at different locations but is related to the distance between points
in the parameter space. The parameters of the computationally cheap kriging model are determined for a
known set of (typically expensive) numerical samples of the full order formulation by an optimisation process
as given, for instance, in [36, 37]. Importantly, the kriging predictor gives the exact system response at a
sampled location.

III. Application to Aeroelastic Stability Analysis

A. Goland Wing – Symmetric Case without Aerostatic Effects

First, the problem without aerostatic deformation is considered. Conveniently, write the Schur complement
matrix S in Eq. (2) as

S = (C1 + �C2 − �I )− �C3 (Aff − �I)−1Afs (4)

where the matrices C1, C2 and C3 follow directly from the equations of the matrices Ass and Asf given in
the previous section. This form allows the evaluation of the matrices C2 and C3 independently from the
bifurcation parameter �, typically representing the dynamic pressure. The matrices Aff and Afs contain
sensitivities of the fluid system which is, by default, made dimensionless by freestream reference values
making these matrices independent of altitude. This formulation is possible since, at this point, aerostatic
effects are not considered.

The construction of the approximation model without aerostatic effects is simplified in the sense that
a matched simulation only requires the adjustment of the independent parameter to the current value of
the reference density. The other part of the computationally expensive interaction term, S̃c = −C3 (Aff −

�I)−1Afs, is sampled for different values of the eigenvalue and freestream Mach number. The matrix
C1 = D also needs to be matched to the current reference values as the normal mode frequencies are
made dimensionless using the reference freestream velocity. However, this task is trivial. The matrix C2,

aNote that the same rearrangement can be applied to Eqs. (2) and (3) when using the exact eigenvalue solver. However,
this does not result in a cost reduction as the required number of linear solves remains unchanged. For instance, the evaluation
of the alternative factors for the series method still requires 4n linear solves as the right–hand side would be changed according
to (Af� + �0Af�̇) + �"Af�̇. This is therefore not further pursued for the exact eigenvalue solver, while it is a very useful
observation for the sample extraction.
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containing the sensitivities of the force vector with respect to the deformation, is neglected, similar to the
aerofoil formulation [24], as it was found to be several (typically 3 to 5) orders of magnitude smaller than the
other terms. Indeed, the reconstruction of the interaction term is considered as the most significant source
of error.

Thus, the approximated Schur complement matrix used for the stability analysis is written as

S = S̃s(�, ℎr,Mr) + �(ℎr,Mr) Ŝ
c(!,Mr) (5)

where the variable ℎr indicates the dependence on the altitude in addition to the freestream Mach number
Mr. The matrix S̃s = C1 − �I is the modified structural term excluding the dependence on the force vector
and Ŝc is the kriging prediction of the modified interaction term S̃c excluding the bifurcation parameter.
Then, the roots of the approximated Schur residual are found by any Newton method. In the first instance,
the interaction term is evaluated for an eigenvalue with zero real part, as discussed in the aerofoil study [24],
while the structural part uses the complete eigenvalue making it an analogy to the classical p–k method.
This simplification is appropriate for the modal structural model as will be seen in the following discussion.
Using the formulation in Eq. (5), the approaches of sampling and kriging for the matched simulations using
a modal structural model become equivalent to the previous aerofoil study with only minor modifications.
The approach is applied in the following.

Different types of matched simulations are discussed. First, an altitude can be chosen to set the reference
value of the density, influencing the bifurcation parameter �, and then the freestream velocity, only influencing
the matrix C1 through nondimensionalisation, is varied to detect the onset of the instability. Secondly, the
altitude can be varied independently while adjusting the values of the density and speed of sound according
to the standard atmosphere conditions. Then, the velocity follows from the current Mach number. The
latter approach is mainly used herein.

(a) Mode 1 – f=1.69 Hz (b) Mode 2 – f=3.05 Hz

(c) Mode 3 – f=9.17 Hz (d) Mode 4 – f=10.8 Hz

Figure 1. Mode shapes of Goland wing/store configuration.

The Goland wing is a model wing having a chord of 1.8266 m and a span of 6.096 m. It is rectangular and
cantilevered with a constant cross section defined by a 4% thick parabolic–arc aerofoil. The finite–element
model, used to calculate the mode shapes for the modal structural model in the CFD formulation, follows
the description given in [38]. Two cases are discussed, i.e. the clean wing and wing/store configurations,
each retaining the four modes with the lowest frequencies (excluding in–plane modes) for the aeroelastic
simulations. The frequencies as well as the mode shapes mapped to the CFD surface mesh for the wing/store
configuration are shown in Fig. 1. Here, a relatively large value of two is chosen for the modal amplitudes
for illustration purposes. A computational mesh with 200 thousand control volumes is used for the current
Euler simulations while the store aerodynamics are not modelled.

Figure 2 gives one representative element of the Schur interaction matrix (excluding the bifurcation
parameter) for the wing/store configuration showing real and imaginary parts individually. The black dots
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in the figure indicate sample locations while the coloured surfaces represent the kriging predictions used for
the stability analysis. Herein, the reconstruction is based on 40 samples covering a Mach number range
between 0.7 and 0.95 and a dimensionless frequency range between 0.05 and 0.35. The sample frequencies
were chosen according to the normal mode frequencies of the first two modes, thus not covering the third and
fourth mode. The consequences of this are presented below. In the subsonic region, only small changes can
be found in the response surfaces with respect to the input dimensions of response frequency and freestream
Mach number, while there are significant variations in the transonic range, particularly with respect to
the Mach number. Thus, the response surfaces show a similar behaviour as in the aerofoil study [24]. For
freestream Mach numbers just below 0.9, marking the onset of the transonic range with distinct shock waves,
the applied interpolation technique exhibits some minor difficulties predicting a wave–like oscillation in the
interaction elements. This artefact is due to the (physically meaningful) strong changes in the response
surfaces between Mach numbers of 0.9 and 0.95.
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Figure 2. Extracted and interpolated element S
c

6,1
of Schur interaction matrix for Goland wing/store config-

uration using Euler flow model and first frequency domain approach for sample extraction.

Interestingly, for the flutter analysis using MSC.Nastran the aerodynamic influence coefficient matrix is
evaluated at a limited number of points in the parameter space defined by the reduced frequency and Mach
number. This is necessary as this evaluation significantly contributes to the computational cost. Then, an
interpolation is applied to find the values between these discrete points [39]. Thus, the approach taken in
this study is similar with two important differences. First, nonlinear CFD–based aerodynamic modelling
is applied. Secondly, the parameter space in the current approach can easily be extended to include more
parameter dependencies. Recall that the steady state solution, and consequently the interaction matrix, can
depend on a large number of parameters. At this point of the current study only the dependence on the
response frequency and freestream Mach number is considered, while later on for the MDO wing case the
input parameter space will be extended.

The instability boundaries for the clean wing and wing/store configurations are presented in Fig. 3. Here,
the boundaries are shown for the two types of matched simulations. The results for the instability onset with
increasing velocity at fixed sea level conditions are compared with the numerical predictions in [38]. The
results using the approximation approach are included. Importantly, the kriging approach gives excellent
agreement with the full order predictions based on the series method. The simulation results using the
quasi–Newton approach are not shown herein as they were found to be indistinguishable.

In Fig. 3(a) the clean wing configuration develops a clear transonic dip with a minimum critical velocity
of about 110 m/s. Similarly, a somewhat flatter transonic dip is obtained for the wing/store configuration
with a minimum velocity of about 180 m/s (stabilising the system). The basic features of the instability
boundary, as discussed in [38], are found. At a freestream Mach number of about 0.9 the boundaries rapidly
increase in both cases which is related to the formation of a strong shock wave. For the wing/store case, it is
followed by a bucket of shock induced limit–cycle oscillation (LCO) at about Mach 0.92. Here, the dominant
aeroelastic response changes from the (until then) first bending mode to the first torsion mode, which was
confirmed in the present study through the critical eigenvalues. Note that the peak before the bucket of LCO
is characterised by the third mode [38]. The results of time–accurate simulations, included in the figure at
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Figure 3. Instability boundaries of Goland wing for matched simulations showing critical values of velocity
and altitude compared with numerical results (where available) in [38]; TSD – transonic small disturbance.

two freestream Mach numbers, support the eigenvalue–based predictions with the plus (tilde) sign indicating
a stable (unstable) response. In contrast to the lower Mach number at 0.85, the response signals of the
generalised coordinates describe an instability strongly dominated by the second mode at Mach 0.925. The
reasons for the discrepancy in the results with the transonic small disturbance (TSD) prediction from [38],
particularly for the wing/store case, are not discussed further though as the most important target in this
study, i.e. the agreement between the full order and approximation models, is achieved.

Similarly in Fig. 3(b), showing the instability boundaries with respect to altitude changes, the wing/store
configuration gives a more benign response allowing flight operations at lower altitudes compared with the
clean wing. Between freestreamMach numbers of 0.91 and 0.94 the aeroelastic system is unstable (dominated
by the second mode) right from the start of the considered altitude range at 30 km. As above, the agreement
between the full order results and the kriging approach is excellent. Also, the time–accurate results match
the eigenvalue–based predictions. Figure 3(b) includes an additional set of results, denoted “TAU”, which
is taken from a preliminary study aimed at combining the Schur complement eigenvalue method, using the
approach based on sampling and reconstruction, with the DLR TAU code [40].

Figure 4 shows the tracing of the four aeroelastic modes with respect to altitude changes and compares
the different predictions. The full order predictions were obtained by applying the series method with a
second order expansion. The agreement in both the mode tracing and the onset of the instability should
be considered as excellent. The results show a classical binary instability mechanism with an instability
occurring alongside the interaction of two aeroelastic modes involving the first bending and first torsion
mode. In addition, the wing/store case gives a second instability at lower altitudes following the interaction
of the third and fourth mode. There are two interesting aspects concerning the kriging formulation. First,
as for the aerofoil case [24], the simplification of using an approximate Schur interaction matrix based on
samples with zero damping is appropriate. The modes can be traced accurately even away from the imaginary
axis (where the approximation is exact within the limits of the interpolation algorithm) suggesting that the
variation of the structural part, Ss(�), with respect to the eigenvalue’s real part is more dominant compared
with the variation of the interaction term Sc(!). Secondly, it must be remarked that the samples, used in this
study for the reconstruction of the response surfaces, cover only the frequency range of the first and second
wind–off structural modes up to a dimensionless frequency of 0.35. Thus, the kriging model extrapolates to
deal with the two higher frequency modes while doing a good job. This also suggests that the influence of
the interaction term on the structural eigenvalue problem for the higher frequency modes is relatively small.
The sensitivity of the modes with respect to changes in the components of the interaction matrix will be
addressed in the discussion of the MDO wing case.
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Figure 4. Mode tracing at Mach 0.8 with respect to altitude for Goland wing/store configuration; eigenvalues
given in dimensionless form.

For the reconstruction of the response surfaces in Fig. 2, 40 samples are used corresponding to the cost
of 40× 2n linear solves against the fluid system (using the first frequency domain extraction approach) once
the steady state solution is available. In the following one linear solve is taken as an equivalent cost factor
because the solutions of the large sparse linear systems incur most of the involved cost. These samples allow
the stability analysis covering an entire range of freestream Mach numbers between 0.7 and 0.95. Using the
series method with a first order expansion, the evaluation of the series factors (for all four normal modes)
takes n× 4n linear solves per Mach number, while tracing the modes can then be done essentially without
additional cost. Recall that the series factors are valid only in the vicinity of the chosen shift �0, i.e. the
normal mode frequency. Thus, with the fifth Mach number the cost invested in constructing the kriging
model pays off. Also, the reconstruction approach becomes more powerful with an increasing number of
normal modes as every individual sample supports the analysis/tracing of all modes while the series factors
are only valid close to the shift they have been evaluated for. Note that the second frequency domain
approach to extract the samples incurs half the cost of the first approach while giving identical results.

Once the approximation model is established, the stability analysis can be done essentially without
additional cost no matter how large the original CFD–based system becomes. The aim of using kriging to
interpolate the elements of the interaction matrix is to reduce the number of calculations for a blind search
stability analysis over the flight envelope, i.e. for a range of flow conditions, as will be seen in the following.
However, for a single point analysis excluding aerostatic effects it seems to be more advantageous to use the
series method as the kriging model requires a minimum number of samples.

B. MDO Wing – Nonsymmetric Case with Aerostatic Effects

To include the effects of aerostatic deformation, the approximate Schur complement matrix used for the
stability analysis is written in a fashion similar to Eq. (5),

S = S̃s(�, ℎr ,Mr) + �(ℎr,Mr) Ŝ
c(!, ℎr,Mr), (6)

with the difference that the modified interaction term now depends on the altitude ℎr. As a consequence, the
sampling has to cover the altitude range of interest. This however is equivalent to the requirements of the
exact (full order) eigenvalue solver. Using the series method, the factors have to be re–evaluated constantly
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as the modes are traced with changing altitude. Here, the altitude change before re–evaluation depends on
the demanded accuracy. As will be seen below, the reconstruction of the interaction term using interpolation
becomes very attractive concerning the cost.

The multidisciplinary optimisation (MDO) wing is a highly flexible, commerical transport wing designed
to operate in the transonic range. It has a span of 36 m and a thick supercritical section. The nonsymmetric
section makes the steady state solution dependent on the altitude, which is attractive for the current discus-
sion. A computational mesh with 65 thousand control volumes is used for the current Euler simulations. The
finite–element model is given by a wing box along the central portion of the wing [21]. For the aeroelastic
stability analysis a total number of eight normal modes is considered with the mode shapes, mapped to the
CFD surface grid, and the normal mode frequencies given in Fig. 5. This case is chosen to demonstrate the
applicability of the kriging interpolation for the sampling and reconstruction approach to a higher number
of normal modes and independent parameter dimensions. Due to the theoretical origins of the MDO wing,
experimental data are not available [41].

(a) Mode 1 – f=0.84 Hz (b) Mode 2 – f=2.16 Hz (c) Mode 3 – f=3.56 Hz

(d) Mode 4 – f=3.99 Hz (e) Mode 5 – f=5.01 Hz (f) Mode 6 – f=5.37 Hz

(g) Mode 7 – f=6.57 Hz (h) Mode 8 – f=7.30 Hz

Figure 5. Mode shapes of MDO wing configuration.

The influence of the aerostatic deformation on the steady state solution with varying altitude is presented
in Fig. 6 and compared with the results of a rigid wing simulation. The flow is simulated at a fixed transonic
freestream Mach number of 0.85 and zero degrees angle of attack. It can be seen that a decreasing altitude,
corresponding to an increase in the dynamic pressure, causes the wing to bend up and to twist the nose down
slightly at the wing tip. The aerostatic deformation results in a weakened shock wave, present on the upper
surface of the wing. Note the differences in the colour legends for the (dimensionless) pressure between the
rigid and deformed wing cases.

Figure 7(a) gives one representative element of the Schur interaction matrix in the frequency/altitude
parameter space with a freestreamMach number of 0.85 and zero degrees angle of attack corresponding to the
conditions shown in Fig. 6. The reconstruction is based on 32 samples covering dimensionless frequencies
of up to 2.2 (according to the structural frequencies) and an altitude range of up to 15 km for normal
operational flight conditions. In the figure, the magnitude of the modified interaction term should not be
misinterpreted. The results are plotted for the bifurcation parameter set to unity. Multiplication with the
actual value of this parameter introduces a factor of the order 106 in the region of the instability. As the
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Figure 6. Effect of aerostatic deformation on surface pressure distribution at Mach 0.85 and zero degrees angle
of attack for MDO wing.

shape of the shown response surface is not particularly intuitive, in contrast to a Mach number dependence,
an attempt is not made to interpret it further. The kriging approximation of the interaction matrix is then
applied to the aeroelastic stability analysis.

The results of such a stability analysis including aerostatic effects are presented in Fig. 8. The figure gives
an accurate tracing of all considered modes compared with the full order results using the series method.
Here, the series factors (just as the steady states) were re–evaluated at each new altitude for reasons of
accuracy for the comparisons with an applied decrement of 500 m. The first mode goes unstable at an
altitude of about 4.5 km, closely followed by the second mode crossing the imaginary axis at about 3.8 km.
The differences in the frequency at lower altitudes for the fourth mode are due to the strongly damped
character of this mode. The assumption of a simple harmonic aerodynamic response, i.e. Sc(!) instead of
Sc(�), does not hold in this case. However, this behaviour is irrelevant for the stability prediction.

For the sake of completeness, the influence of the small second term �C2 in the structural part of Eq. (4)
is considered. Therefore, a second kriging model was formed based on full order samples which are routinely
evaluated alongside the samples of the interaction term. These samples allow the reconstruction of the
corresponding response surfaces depending on the altitude. This dependence is then included in the stability
analysis. However, these “improved” predictions are within plotting accuracy compared with the results
given in Fig. 8, and hence they are neither shown nor further discussed.

The issue of cost is analysed for the case with aerostatic deflection. For the reconstruction of the response
surface in Fig. 7(a) using the first frequency domain approach, 32 samples are used which is equivalent to
the cost of 32 × 2n linear solves plus the evaluation of the steady state at each altitude. Evaluating one
steady state corresponds to solving approximately 2n linear systems in this case. The achieved resolution of
the reconstructed response surfaces is sufficient to trace the eight normal modes accurately compared with
the full order results. Using the series approach in the full order formulation on the other hand, the series
factors (just as the steady states) have to be recalculated several times as the altitude is decreased due to
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Figure 7. Extracted and interpolated element imag(Sc
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) of Schur interaction matrix for MDO wing configu-

ration showing (a) two dimensional grid sampling depending on altitude and dimensionless frequency at Mach
0.85 and zero degrees angle of attack and (b) three dimensional grid sampling at zero degrees angle of attack
including trace of instabilities.
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Figure 8. Mode tracing for MDO wing configuration with respect to altitude at Mach 0.85 and zero degrees
angle of attack; eigenvalues in dimensionless form.

the included aerostatic deformation. One evaluation of the factors (for an expansion up to first order) for
all eight modes takes n× 4n linear solves. Thus, the cost of forming the approximation model pays off after
only the second re–evaluation of the series factors (or, when using the second extraction approach, after the
first re–evaluation). Note, for the demonstration shown in Fig. 8, the series factors were calculated at each
new altitude (which makes it quasi–Newton) for reasons of accuracy.

The challenge for the kriging approach as discussed up to this point is not the inclusion of aerostatic
effects at fixed freestreamMach number but the search for aeroelastic instability over the flight envelope, i.e. a
range of freestream Mach numbers. Figure 7(b) shows the distribution of 140 samples for the reconstruction
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Figure 9. Stability results for MDO wing configuration using three dimensional grid sampling showing critical
values of altitude and dimensionless frequency.

of the interaction matrix depending on altitude, frequency and Mach number. The contour slice for one
representative interaction element at the freestream Mach number of 0.85 clearly resembles the response
surface given in Fig. 7(a). Also, the traces of the first and second mode instabilities are included in the figure
to illustrate the important region of the parameter space.

This stability limit over a range of freestream Mach numbers between 0.7 and 0.9 is presented in Fig. 9
as critical values of altitude and dimensionless frequency. For freestream Mach numbers below 0.75, the
configuration only encounters aeroelastic instability below sea level while at common cruise conditions the
critical region starts at about 5 km. In addition, the first mode exhibits a second bifurcation at the highest
Mach numbers, which is below the second mode instability and therefore not of immediate interest. As can
be seen in the figure, a reasonable agreement between the kriging and full order results is achieved. In the
previous aerofoil study [24] it was found that changes in the interaction matrix with respect to the freestream
Mach number (due to the formation of shock waves) are often more significant compared with frequency
changes which would require more samples in the dimension of the Mach number to resolve the changes. In
the current case for the MDO wing configuration, samples are calculated at five Mach numbers between 0.7
and 0.9 posing a challenge to the interpolation as this parameter dimension might be undersampled.

To support the eigenvalue predictions, time–accurate simulations were done at Mach 0.85 with the plus
(tilde) sign in the figure indicating a stable (unstable) response. The agreement is excellent and the time–
accurate responses are dominated by the first unstable mode. The time–accurate simulations run with a
dimensionless time step of 0.05 for temporal accuracy given 210 steps per cycle of motion for a dimensionless
response frequency of about 0.6. Then, one motion cycle corresponds to two steady state simulations. Close
to the instability point however the time–accurate transient covers several motion cycles, and several time
domain runs are required per Mach number to bracket the instability point.

Assume that four Mach numbers along a flight envelope are to be investigated while considering aerostatic
effects. Generously, for an altitude search range of 15 km the series factors are re–evaluated only four times
creating an equivalent cost of 4×4×n×4n linear solves for the eight normal modes. Thus, the 140 samples,
requiring 140 × 2n linear solves, generate about half the cost while giving competitive results. Recall the
further cost reduction using the second approach. In the next section, the powerful approach of coordinated
sampling shows how the prediction is improved with less samples.

Importantly, the stability limit for the rigid MDO wing without the effects of aerostatic deforma-
tion is presented in Fig. 10. The results demonstrate the importance of including the effects of aero-
static deformation in the transonic aeroelastic stability analysis. The stability characteristics are signifi-
cantly changed as can be seen in the figure. The typical transonic dip, related to the first bending mode
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Figure 10. Stability analysis for rigid MDO wing con-
figuration at zero degrees angle of attack showing crit-
ical values of altitude comparing full order and kriging
approximation results.

going unstable, is formed and shifted to lower Mach
numbers compared with the results including aero-
static deformation in Fig. 9. This should be at-
tributed to the formation of the transonic shock
waves. The shock strengths are reduced by the
aerostatic deformation compared with the rigid wing
case as can be seen in the pressure distribution given
in Fig. 6.

Several observations concerning the presented
eigenvalue–based stability analysis can be given.
First, note the differences in the results from the ex-
act eigenvalue solver using the series method (with
a second order series expansion) and the quasi–
Newton approach. Here, distinct differences are
found, particularly for the instability associated
with the first bending mode. This demonstrates
the limits of the series expansion in some situations
for larger variations in the response frequency (rela-
tive to a chosen shift). Thus, the series approach is
very useful and efficient but the robustness and ac-
curacy should always be considered. Secondly, the
agreement of the kriging–based simulations with the
quasi–Newton results is excellent as expected since

the kriging approximation is based on exact numerical samples. Thirdly, a second kriging simulation is
shown. These additional results consider the effect of the second term �C2 in the structural part of the
Schur complement matrix in Eq. (4) on the stability analysis. The influence on the first mode is negligible
while, surprisingly, the second mode instability is significantly changed correcting the prediction towards
the full order reference results. In this case, the variation of the force vector with respect to the structural
unknowns cannot be neglected.

Now it is assumed that the kriging model does a good job to precisely reconstruct the response surfaces
of the interaction matrix elements giving an exact representation of the physics from the full order model.
Further, it is assumed that the uncertainty in the aerodynamic modelling is reflected in the response surfaces.
Then, the cheap approximation model can be exploited to analyse the sensitivity of the eigenvalue problem
on the elements of the interaction matrix. Figure 11 shows the sensitivity of the mode tracing with respect
to a 20% variation randomly distributed over the nonzero elements of the interaction matrix. In the figure
the sensitivity is expressed by one standard deviation about the mean. Theoretically, it is possible to find
the sensitivity of the system response with respect to each element individually due to the low cost of the
approximation model. However, this is not attempted at this point for two reasons. First, it should always
be possible to evaluate one complete sample (i.e. one complete interaction matrix). Secondly, it seems to be
more important to place complete samples in the right spot in the parameter space, the information of which
can be derived from the sensitivity of the traces. In this case the results demonstrate that the relatively
large variation does not give any tendency of the six higher frequency modes to go unstable while the first
and second mode give rise to some uncertainty about the onset of the instability. The predicted frequencies
are basically unaffected. In addition, this information would allow the estimation of the importance of
using higher fidelity (more expensive) aerodynamic models, and, if considered to be important, the relevant
locations to place the better samples.

IV. Coordinated Sampling and Model Updating

The main computational task for the Schur complement eigenvalue method is to approximate the in-
teraction matrix to describe the fluid response accurately. The goal of the research is to enable aeroelastic
instability searches over the flight envelope, and in this section it is achieved by introducing searches for the
approximation of the interaction matrix. The stability analysis is demonstrated using aerodynamic models
of variable fidelity.
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Figure 11. Sensitivity of mode tracing for MDO wing configuration at Mach 0.85 and zero degrees angle of
attack showing one standard deviation due to 20% variation in elements of interaction matrix.

A. Coordinated Sampling

MDO Wing Configuration

The risk–based sampling approach, introduced in the previous aerofoil study [24], is now examined for the
MDO wing configuration using the modal structural model and including the effects of aerostatic deformation.
First, the possible reduction of required samples at fixed Mach number is discussed. Then, additional input
parameter dimensions are added to demonstrate the generality of the approach.

In Figs. 12 and 13, the risk–based sampling is presented for the MDO wing case at Mach 0.85 and zero
degrees angle of attack, corresponding to the above discussion. The effects of aerostatic deformation are fully
accounted for. The sampling proceeds in a fashion similar to the aerofoil cases [24]. First, a search space is
defined by the corner samples covering the altitude range of interest and the frequency range according to
the structural frequencies giving 2m initial samples for the m = 2 independent parameter dimensions. Then,
the eight modes are traced with varying altitude under matched conditions using the cheap approximation
model based on the current set of samples, and the instability points are detected. Having more than one
bifurcation point, the location with the highest standard error in the kriging prediction gives the new sample
location, or alternatively the most critical condition, i.e. the highest altitude, can be chosen. Alternative
sampling criteria, for example a positive gradient in the eigenvalue’s real part with respect to the altitude,
are possible. Such a risk–based sampling guarantees that samples are always placed at locations where they
support the prediction most in terms of risk, i.e. at previously evaluated instability points, and improvement,
i.e. at the location of the maximum error in the kriging model. Changes in the instability prediction between
two consecutive iterations define a possible convergence criterion.

The sampling converges rapidly as can be seen in Fig. 12(a) showing one representative element of the
interaction matrix, the sample distribution and the instability points for the first and second mode projected
onto the response surface. After the third iteration, starting from the four samples of the initial search space,
a new sample location matches the predicted instability points very closely. Continuing to iterate is neither
necessary nor useful as the correlation matrix of the kriging model becomes increasingly ill–conditioned for
sample points near previously sampled points [36]. Thus, the seven sufficient risk–based samples mean a
cost reduction by a factor of about five compared with the grid sampling shown in Fig. 7(a).
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Figure 12. Two and three dimensional risk–based sampling for MDO wing configuration showing approximated
element imag(Sc

10,1
) of Schur interaction matrix including projected instability points.
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Figure 13. Risk–based sampling technique showing mode tracing for MDO wing configuration with respect to
altitude at Mach 0.85 and zero degrees angle of attack; eigenvalues given in dimensionless form.

Figure 13 compares the mode tracing using the kriging models based on 32 samples from the uniform grid
sampling in the previous section and the seven samples from the current risk–based sampling. Interestingly,
the agreement is excellent also for the higher frequency modes throughout both the altitude and frequency
range, even though large parts of the parameter space are essentially uncovered by samples. Consequently,
accurate response surfaces are not evaluated globally. There are two points to this observation. First, at
high altitudes the influence of the interaction term is relatively small compared with the structural part
as the density, defining the bifurcation parameter, is low. Secondly, the higher frequency modes are very
insensitive to changes in the interaction matrix elements and the initial search space already gives a good
enough approximation. Looking at the equations of the structural model and the Schur complement matrix
in Section II, it is clear that the higher the normal mode frequencies, the more dominant the structural part
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Ss on the eigenvalue problem becomes. A sensitivity study for the interaction matrix elements, as described
in the previous section, was done to confirm the latter point and to reduce the risk of missing an additional
(possibly more critical) bifurcation point for the higher frequency modes. In this case neither of the higher
frequency modes showed any tendency to go unstable, while the uncertainty in the first two modes was
similar to the results in Fig. 11.

In the previous section the prediction of transonic aeroelastic instability over a range of freestream Mach
numbers was demonstrated using three dimensional uniform grid sampling. The risk–based sampling for
higher parameter dimensions proceeds in the same fashion. First, the initial (multidimensional) search space
is defined with the corner samples. Then, the instability points for the range of freestream Mach numbers
and a chosen angle of attack are evaluated with the kriging model based on the current set of samples.
The predicted instability point maximising the corresponding kriging error of the approximated interaction
term defines the new sample location. Iteration converges the prediction. The risk–based sampling is herein
demonstrated for three and four dimensional parameter search spaces with the parameters influencing the
aerodynamic model. The initial sets of samples to define the search space are as follows. The third dimension
for the freestream Mach number covers a range between 0.7 and 0.89. The fourth dimension covers angles
of attack between minus and plus half a degree. For the current study, the chosen angle of attack to predict
the stability limit is then set to zero degrees according to the preceding discussion.
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Figure 14. Instability boundary from three and four dimensional risk–based sampling for MDO wing config-
uration showing critical values of altitude.

Results are presented in Figs. 12(b) and 14. An impression of both the sample distribution and the
response surface at Mach 0.85 is given in Fig. 12(b). The instability boundaries as critical values of altitude
and dimensionless frequency for the three and four dimensional search spaces are given in Fig. 14. The
three dimensional risk–based sampling, requiring 30 samples for accurate results, gives excellent agreement
with the full order predictions. The 30 samples correspond to a cost reduction by a factor of about five
compared with the three dimensional grid sampling. Also the second bifurcation of the first mode is found.
The four dimensional sampling is less accurate at the higher freestream Mach numbers requiring more
samples to converge. Note that for the current results the sampling criterion focuses on all instability points.
Alternatively, it is possible to search only for the most critical condition which would be either the first or
second mode in this case depending on the freestream Mach number. Adding the fourth dimension to the
sampling problem demonstrates an interesting point about the approach. The approximation model can be
updated for changes in the system parameters by adding additional samples that account for these changes,
e.g. additional samples for different angles of attack. All the previously sampled points are kept to support
the prediction as the approximation model grows gradually depending on the requirements. Thus, the re–use
of samples is a major advantage of the kriging approach.
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Open Source Fighter

A realistically sized aircraft model is considered next to demonstrate the presented approach for such cases.
The idea was to establish a test caseb with an aeroelastic behaviour representative of an aircraft, and thus
the presented open source fighter, previously discussed in [22, 23], was built on data publically available for
the F–16 aircraft. Available data for the wing geometry (dimensions and aerofoil section) together with
published data from ground vibration and wind tunnel tests were used.

(a) Mode 1 – f=3.739 Hz (b) Mode 2 – f=4.480 Hz (c) Mode 3 – f=5.029 Hz

(d) Mode 4 – f=5.916 Hz (e) Mode 5 – f=7.994 Hz (f) Mode 6 – f=8.124 Hz

(g) Mode 7 – f=11.00 Hz (h) Mode 8 – f=11.40 Hz

(i) Mode 9 – f=11.51 Hz (j) Mode 10 – f=13.97 Hz

Figure 15. Mode shapes of open source fighter configuration.

The aerofoil section consists of a NACA 64A204 profile, with a wing root angle of −1.0 degree and a
wing tip angle of −2.4 degrees. The twist was chosen by comparing with published surface pressures for
the F–16 aircraft. The finite–element model of the configuration was built in MSC.Nastran based on the
model proposed in [42]. The structural model consists of four parts including the fuselage, wing, pylon and
stores. The fuselage, pylon and stores are considered to be effectively rigid. The mass properties of the
pylon and stores are represented by lumped masses. The pylon is rigidly connected to the wing. The store
is connected to the pylon by six spring elements (three translational and three rotational). The wing is
modelled using shell elements and is divided into three regions including the root, pylon, and tip. In order
to match the natural frequencies of the finite–element model to those found in ground vibration tests [43],
the Young’s modulus and density of each wing region are considered as updating parameters. Ten normal
modes participating in the aeroelastic mechanism are retained for the current analysis. Figure 15 shows
the mode shapes mapped to the CFD surface grid and the normal mode frequencies. For the current Euler
simulations a relatively coarse grid with about 850 thousand control volumes is used.

bFiles defining the model are available at http://cfd4aircraft.com/
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Figure 16 shows the tracing of the ten normal modes with respect to changes in the altitude and compares
the results from the full order simulation (using the series method) with the kriging approximation. The
approximation model of the Schur interaction matrix is based on 40 samples uniformly distributed over the
frequency/Mach number parameter space covering dimensionless frequencies of up to 1.0 and freestreamMach
numbers between 0.7 and 0.9. The samples were extracted using the second frequency domain approach. The
effects of aerostatic deformation are currently not considered, eliminating the dependence of the modified
interaction term on the altitude as discussed for the Goland wing. An excellent agreement is found between
the series and kriging results. At the chosen conditions the configuration goes unstable with the interaction
of the second and third mode at an altitude of about 1450m. This is followed by a second instability at
about −4000m due to the first and fourth mode interacting.

-2E-05 00.7

0.75

0.8

0.85
Modes 5 & 6

real (λ)

im
ag

(λ
)

-.04 -.02 0 .02 .04
0

.2

.4

.6

.8

1

1.2

1.4

OSF
Mach 0.8
inci 1.0 deg

lines: kriging
symbols: series

(a) Root loci

altitude in m

re
al

(λ
)

0 5000 10000
-.03

-.02

-.01

0

.01

(b) Mode damping

altitude in m

im
ag

(λ
)

0 5000 10000
0

.5

1

1.5

(c) Mode frequency

Figure 16. Mode tracing with respect to altitude for open source fighter (OSF) configuration at Mach 0.8 and
one degree angle of attack; eigenvalues given in dimensionless form.

Figure 17 gives the instability boundary for the considered range of freestream Mach numbers showing
critical values of altitude and dimensionless frequency for the first and third mode instabilities. The results
from the kriging approximation using both grid and risk–based sampling are compared. Following the
agreement between the series and kriging predictions at Mach 0.8, additional Mach numbers have not been
analysed for the current study using the full order approach. The instability behaviour is rather simple for the
discussed conditions. Interestingly, using risk–based sampling the four initial samples to define the search
space already give a very good approximation of the interaction matrix elements (not shown) to predict
the instability boundary. Note that the search criterion for the analysis of the open source fighter only
considers the most critical conditions, thus focussing the samples to predict the third mode instability. This
is different to Fig. 14 where samples were chosen by the sampling criterion to predict all possible instability
points precisely.

The discussion of cost is very interesting for the open source fighter retaining ten normal modes. For
the approximation of the interaction matrix in this example using the grid sampling a total number of
40 samples was used. These samples correspond to 40 × n linear solves for the second frequency domain
extraction approach. This is about the same cost as using the series method (with a first order expansion)
to evaluate the series factor for the ten relevant structural frequencies per steady state solution, i.e. n× 4n
linear solves. The ten risk–based samples required to give an excellent prediction of the instability boundary
in Fig. 17 result in a further cost reduction by a factor of four.
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Figure 17. Instability boundary from kriging–based analysis using grid and risk–based sampling for open
source fighter (OSF) configuration showing critical values of altitude and dimensionless frequency.

B. Model Updating – Goland Wing/Store Configuration

In [24] it was demonstrated for an aerofoil case how aerodynamic models of variable fidelity can be exploited
to update a lower fidelity prediction with higher fidelity information. Three basic steps were shown to be
useful. First, a few high fidelity samples of the interaction matrix were calculated based on the information
provided by a lower fidelity stability analysis to avoid a blind search with the computationally expensive
model. Secondly, the small set of high fidelity samples was augmented by the lower fidelity samples at the
corners of the initial search space to support the construction of the high fidelity kriging model. This follows
the observation of the risk–based sampling where the samples close to the aeroelastic instability are of most
importance for accuracy. This is approximately satisfied by the high fidelity samples. Thirdly, the trend
information of the response surfaces as provided by the lower fidelity prediction is used to support the high
fidelity model assuming there is a correlation in the response surfaces for changing values of the system
parameters. This correlation is found if the dominant flow physics are captured by the relevant aerodynamic
models. The technique referred to as co–kriging was applied.

Next, the co–kriging approach is applied to the Goland wing/store configuration using the Euler and
RANS equations from the model hierarchy. The Euler results follow the above discussion, while the RANS
simulations are done using the two equation k−! turbulence model and an H–type computational grid
with about three million control volumes. The first wall normal grid spacing is 6 × 10−6 in dimensionless
units. Also, a coarser level with about 350 thousand control volumes was extracted from the finer level
grid maintaining a first grid spacing of 1.4× 10−5. The chord Reynolds number is specified to be 15 million
following [38] and is not varied in this study strictly violating matched conditions according to the freestream
Mach number and altitude. Representative surface pressure distributions for the Euler and RANS simulations
are shown in Fig. 18(a) at a freestream Mach number of 0.9 and two locations in the spanwise direction
close to the wing root and wing tip. A strong shock wave is formed near the wing root weakening towards
the tip. The differences between the two flow models are relatively small as expected considering the high
reference Reynolds number. The shock location moves marginally upstream in the RANS results while the
characteristic inviscid overshoot at the bottom of the shock wave is corrected by the viscous effects.

The constant volume tetrahedron (CVT) transformation [30] is applied in the multiblock flow solver
to transfer information, i.e. pressure forces and deflections, between the fluid and structural grids. It is a
local intergrid transfer method which means that the grid locations at the boundaries of structural elements
(defined by three structural grid points) are matched while the slope is not. One can imagine that linear
extrapolation, which is required for the Goland wing behind the two thirds chord line, amplifies the effects
of this slope difference causing a zigzag–like mapping at the trailing edge for fine fluid grids. The problems
caused by extrapolation using CVT are also found for the Euler computational grids. However, as the Euler
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Figure 18. Surface pressure distribution for Goland wing comparing Euler and RANS flow models at two
freestream Mach numbers and two spanwise locations, and instability boundary for Goland wing/store config-
uration showing critical values of velocity at sea level condition.

grid resolution is coarser compared with the RANS requirements, this was not deemed as a serious obstacle
in the preceding discussion. To improve the situation for the RANS grid and to avoid a possible pollution
of the results, the mode shapes are re–defined to avoid extrapolation using CVT. The mode shapes are
linearly extrapolated to the trailing edge line at each spanwise location (rib) of the finite–element model as
a preprocessing step before they are applied in the intergrid transfer formulation in the CFD solver.

The influence of this mode shape modification on the Euler results is analysed shortly. Euler kriging
results are shown in Fig. 18(b) with the kriging reference solution taken from Fig. 3. Results of the exact
eigenvalue solver are not included at this point as excellent agreement was demonstrated above. The results
denoted “new mode shapes” use the second frequency domain extraction approach for the re–defined mode
shapes. Clear differences compared with the reference results can be found around the bucket of shock
induced limit–cycle oscillation (LCO) bringing the current results closer to the prediction in [38]. This can
be explained by the effects of the improved mode shapes. It was found that the extrapolation using CVT
does not significantly pollute the intergrid transformation for the first mode which has a dominant bending
behaviour. The first mode is the unstable mode in the lower Mach number range where the differences to the
reference solution are small. The differences to the results in [38] are small but distinct and are not simply
explained by the intergrid transformation. The three higher modes have a stronger torsional character with
the CVT transformation giving poorer results when extrapolating to the trailing edge. The dynamics in the
LCO bucket are dominated by the second mode (dominant torsion) which could explain the differences to
the reference solution using the original mode shapes. The results indicate two points. First, the numerical
implementation of an intergrid transfer method (such as CVT) is important and can result in uncertainty
for the stability prediction as presented in [44]. Secondly, the mode shapes themselves are important. As
these depend on the structural model, variability in the structural model parameters should be considered
routinely. This latter issue was previously investigated in [22] for the Goland wing.

As a frequency domain solver to extract the samples of the Schur interaction matrix is currently not
available for the RANS equations, forced time domain simulations are required. The response signals of the
generalised forces are analysed directly to evaluate the interaction matrix (i.e. the aerodynamic influence
coefficient matrix). For each numerical sample, four unsteady simulations are required for the four retained
normal modes exciting one mode at a time. Three cycles of motion with 50 real time steps per cycle are
used which allows the decay of startup transients to use the third cycle to extract the response information
from the generalised forces. The excitation amplitude of the sinusoidal motion is defined to be 1.0× 10−3.
At each real time step the solution is converged in pseudo time two orders of magnitude in about 10 to 20
pseudo iterations. The computational requirements for the RANS flow model are more demanding and the
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) of Schur interaction matrix for Goland wing/store

configuration using alternative extraction approach for Euler and RANS flow models.

need to run time domain simulations to extract the samples makes this situation worse. Using the coarser
RANS grid, one steady state solution is simulated by converging the residual six orders of magnitude in
about half an hour running on 16 processors. To extract one sample of the interaction matrix, requiring four
unsteady runs as described in the previous paragraph, corresponds to about eight steady state solves. Using
the finer RANS grid, the simulation of a steady state running on 32 processors takes about six hours, while
the extraction of one sample then corresponds to two steady state simulations. To compare, a steady state
solution for the Euler equations using a grid with 200 thousand control volumes is obtained in less than half
an hour running on four processors with the extraction of one sample in the frequency domain taking less
than one third of this time.

In Figs. 19(b) and 20 the results for coarse grid RANS simulations are presented. The response surface of
one representative element of the Schur interaction matrix is shown in Fig. 19(b). The similarity to the Euler
results in Fig. 19(a) is evident and expected. Within the considered range of freestream Mach numbers up
to 0.95, shock induced flow separation is not yet encountered in the steady state RANS simulations, leaving
the shock nonlinearity as the dominant mechanism of the dynamic response. Note that the differences found
in typical flow characteristics such as surface pressure distributions (indicated in Fig. 18(a)) or skin friction
(not shown herein) between the steady state RANS simulations using the coarser and finer grids are rather
small indicating that the spatial resolution achieved by the coarser grid is acceptable. Figure 20 presents the
corresponding results of the stability analysis. The figure indicates the instability points at fixed sea level
conditions for all four aeroelastic modes originating in the wind–off structural modes. Critical values of the
freestream velocity and the dimensionless frequency are given for the RANS simulations and compared with
the Euler results. The configuration is unstable at a given Mach number once the instability boundary is
first crossed with increasing freestream velocity.

The Euler results show the earlier discussed behaviour. At the lower Mach numbers the first mode is
critical, developing the typical transonic dip, followed by the bucket of shock induced LCO. Also visible
in the figure is the third mode instability dominating the response in the peak following the transonic dip
at a freestream Mach number of about 0.9. The RANS results, using the coarser grid, show a surprising
behaviour for the lower Mach numbers. While the second, third and fourth mode instabilities follow closely
the Euler results, the first mode behaviour is significantly influenced. The RANS prediction, based on the
kriging–reconstructed interaction matrix in Fig. 19(b), suggests that the second mode is critical over a larger
range of Mach numbers below the transonic flow region followed by the first mode near the peak. The
corresponding frequencies however are not effected by this switching of modes. The difference in the critical
velocity is considerable even though a significant influence of the viscous effects would only be expected in
the higher Mach number range due to the stronger shock/boundary layer interaction.

To investigate this behaviour in more detail, RANS simulations on the finer grid are included. Four sam-
ples, covering the first and second mode instabilities, are used initially with their locations in the parameter
space indicated in Fig. 20(b). Then, the set of the four expensive RANS samples is augmented by the corner
samples (limiting the parameter space) from a less expensive flow model. Here, cheaper samples from both
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Figure 20. Instability behaviour of Goland wing/store configuration for Euler and RANS flow models showing
critical values of velocity and dimensionless frequency at sea level conditions.

the Euler and the coarser grid RANS simulations are considered. Also, for the co–kriging approach the input
parameter space of the augmented set of samples is extended by the response of the lower fidelity predictions
to provide the trend information. Note that the step of using the results of RANS simulations on a coarser
grid is important. The basic assumption of the co–kriging approach is the correlation in the parameter space
between the responses of flow simulations having a variable fidelity. This variable fidelity can be established
by using both different levels of the aerodynamic hierarchy and computational grids of different resolution.
Exploiting the aerodynamic hierarchy requires that the dominant physics are captured by the chosen model.
In the case of the Goland wing at zero degrees angle of attack, freestream Mach numbers below 0.95, and
a reference Reynolds number of 15 million, shock induced flow separation was not predicted in the steady
state simulations. This suggests that the shock dynamics are the driving mechanism which would allow the
use of the Euler equations. If separation is encountered, then RANS simulations (or a lower fidelity model
accounting for viscous effects) are required.

The results for the co–kriging approach are presented in Fig. 21. The figure shows the instability boundary
given by the first and second mode obtained from the co–kriging approach based on both the Euler and
coarser grid RANS results acting as the correlated co–variable to provide the trend information for the few
more expensive samples. There are several interesting observations. First, in contrast to the results of the
coarser grid RANS predictions, the lower range of Mach numbers is dominated by a bending–torsion type
of instability, as expected, with the first mode being critical throughout. Secondly, the differences between
the finer grid RANS and Euler predictions in the region of the bending–torsion type instability, forming
the typical transonic dip, are smaller giving a similar behaviour compared with the aerofoil results [24].
The viscous effects have a stabilising influence on the configuration and increase the flutter onset velocity.
Thirdly, for freestream Mach numbers below 0.85 the high fidelity predictions based on co–kriging using
the Euler and coarser grid RANS results as correlated co–variables deviate considerably. This is due to the
required extrapolation of the finer grid RANS response with the first initial sample being located at Mach
0.85 as shown in Fig. 20. Thus, below the freestream Mach number of 0.85 the predictions consequently
either approach the Euler or coarser grid RANS results. Therefore, extrapolation should be avoided by a
careful placement of the expensive high fidelity samples. Using an additional sample located at Mach 0.82,
this latter observation is supported by the stability results as indicated in the figure. And finally, the critical
freestream velocity in the bucket of shock induced LCO is increased by the RANS predictions using the finer
grid compared with the lower fidelity results. Adding a second RANS sample using the finer grid at Mach
0.925 shows a further increase in the critical velocity.

Time–accurate simulations have been done to confirm the Euler and coarser grid RANS predictions. As
with all time–accurate aeroelastic simulations in this study, the system parameters have been chosen following
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the results of the eigenvalue–based linear stability analysis to avoid unnecessary iteration to bracket the
instability. The RANS results are included in Fig. 20 with a plus (tilde) sign indicating a stable (unstable)
response due to an initial disturbance in the structural unknowns. To give an idea of the computational
cost involved for unsteady RANS flow modelling on the coarser grid, the simulation of one cycle of motion,
requiring about 600 real time steps at a dimensionless response frequency of about 0.1 corresponding to a
first mode instability and using a dimensionless time increment of 0.1, takes about six hours running on ten
processors. Several cycles always have to be simulated following an initial excitation.

V. Conclusions

The aeroelastic stability analysis based on nonlinear computational fluid dynamics was investigated for
the modal structural model to describe realistic aircraft structures. Particularly, the search for aeroelas-
tic instability over a proposed transonic flight envelope, while exploiting the hierarchy of flow models, was
addressed. This was demonstrated successfully by introducing searches for the approximation of the inter-
action matrix, modelling the influence of the high dimensional computational fluid dynamics system on the
modified structural eigenvalue problem solved for the stability analysis. The approximation used the kriging
interpolation technique based on exact numerical samples describing the system response. The co–kriging
approach was formulated to allow the correction of a lower fidelity prediction with higher fidelity simula-
tions guided by the lower fidelity results. Several aircraft structures were discussed including the aeroelastic
configurations of the Goland wing, the MDO wing and the open source fighter.

Using kriging interpolation based on exact numerical samples to approximate the influence of the aero-
dynamics makes the approach essentially a model reduction technique. While the basic Schur complement
eigenvalue method is faster than common time–accurate approaches, the reduced formulation proves to be
computationally more efficient despite the cost invested in the construction of the kriging model itself. The
construction of the kriging model using coordinated risk–based sampling to locate new sample locations iter-
atively makes the approach efficient in detecting aeroelastic instability in larger parameter spaces requiring
not more than the cost of several steady state simulations.
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