

Sebastian Timme

Kenneth J. Badcock

ECERTA PROJECT

Computational Aeroelasticity based on Bifurcation Theory

- \succ Motivation
- \succ Bifurcation approach and BIFOR Solver
- > Oscillatory Instability Boundary
- \succ Conclusion

Motivation

ECCOMAS 2008 — Timme and Badcock 'Computational Aeroelasticity based on Bifurcation Theory'

> Benchmark case of Isogai, NACA 64A010 aerofoil at zero angle of attack

Time response to initial disturbance

stable (Ma=0.700, $V_F=1.03$)

unstable (Ma=0.700, V_F =1.55)

[Isogai, AIAA Journal 18 (1981) no. 9, pp. 1240-1242]

LIVERPOOL

 \succ Benchmark case of Isogai, NACA 64A010 aerofoil at zero angle of attack

Time response to initial disturbance

ECCOMAS 2008 — Timme and Badcock 'Computational Aeroelasticity based on Bifurcation Theory'

UNIVERSITY OF LIVERPOOL

> Benchmark case of Isogai, NACA 64A010 aerofoil at zero angle of attack

Time response to initial disturbance

UNIVERSITY OF LIVERPOOL

> Benchmark case of Isogai, NACA 64A010 aerofoil at zero angle of attack

Time response to initial disturbance

ECCOMAS 2008 — Timme and Badcock 'Computational Aeroelasticity based on Bifurcation Theory'

BIFOR Solver

- \succ Coupled full–order fluid/structure solver
- \succ Three main parts:
 - Steady state solver (Euler, Euler/BL and Full Potential)
 - Eigenvalue solver (shifted inverse power method algorithm, Newton eigenvalue solver)
 - Unsteady time-accurate solver

- \succ Coupled full-order fluid/structure solver
- ≻ Three main parts
- ≻ Steady state solver (Euler):
 - Implicit time marching
 - Osher's approximate Riemann solver
 - MUSCL variable extrapolation and van Albada's limiter
 - Preconditioned Krylov subspace method
 - Applied within pseudo-time iterations in unsteady calculations

[Badcock et al, Progress in Aerospace Sciences 36 (2000), pp. 351-392]

BIFOR Solver

- \succ Coupled full–order fluid/structure solver
- ≻ Three main parts
- \succ Steady state solver
- \succ Consider coupled fluid-structure system $\Rightarrow \frac{d\boldsymbol{w}}{dt} = \boldsymbol{R}(\boldsymbol{w}(\mu), \mu)$
- \succ Equilibrium \boldsymbol{w}_0 given by $\Rightarrow \boldsymbol{R} \big(\boldsymbol{w}_0(\mu), \mu \big) = 0$
 - Shock nonlinearity (location and strength) defined in steady flow field

BIFOR Solver

- \succ Coupled full-order fluid/structure solver
- ≻ Three main parts
- \succ Steady state solver
- \succ Consider coupled fluid-structure system $\Rightarrow \frac{d\boldsymbol{w}}{dt} = \boldsymbol{R}(\boldsymbol{w}(\mu), \mu)$
- \succ Equilibrium \boldsymbol{w}_0 given by $\Rightarrow \boldsymbol{R} \big(\boldsymbol{w}_0(\mu), \mu \big) = 0$
- \succ Stability determined by eigenvalues $\lambda_j = \gamma_j \pm i\omega_j$ of Jacobian $\Rightarrow A(\boldsymbol{w}_0, \mu) = \frac{\partial \boldsymbol{R}}{\partial \boldsymbol{w}}$
 - Small number of eigenvalues associated with loss of stability
 - Dynamics of system dominated by evolution of these critical modes

- \succ Coupled full-order fluid/structure solver
- ≻ Three main parts
- \succ Steady state solver
- \succ Consider coupled fluid-structure system $\Rightarrow \frac{d\boldsymbol{w}}{dt} = \boldsymbol{R}(\boldsymbol{w}(\mu), \mu)$
- \succ Equilibrium \boldsymbol{w}_0 given by $\Rightarrow \boldsymbol{R} \big(\boldsymbol{w}_0(\mu), \mu \big) = 0$
- \succ Stability determined by eigenvalues $\lambda_j = \gamma_j \pm i\omega_j$ of Jacobian $\Rightarrow A(\boldsymbol{w}_0, \mu) = \frac{\partial \boldsymbol{R}}{\partial \boldsymbol{w}}$
- $\succ \text{ Extended eigenvalue problem } \Rightarrow \mathbf{R}_{EV}(\lambda, \mathbf{p}) = \begin{bmatrix} (A \lambda I) \mathbf{p} \\ \mathbf{q}_s^T \mathbf{p} i \end{bmatrix} = 0$

- \succ Coupled full-order fluid/structure solver
- ≻ Three main parts
- \succ Steady state solver
- $\succ \text{ Consider coupled fluid-structure system } \Rightarrow \frac{d\boldsymbol{w}}{dt} = \boldsymbol{R} \big(\boldsymbol{w}(\mu), \mu \big)$
- \succ Equilibrium \boldsymbol{w}_0 given by $\Rightarrow \boldsymbol{R} \big(\boldsymbol{w}_0(\mu), \mu \big) = 0$
- \succ Stability determined by eigenvalues $\lambda_j = \gamma_j \pm i\omega_j$ of Jacobian $\Rightarrow A(\boldsymbol{w}_0, \mu) = \frac{\partial \boldsymbol{R}}{\partial \boldsymbol{w}}$

$$\succ \text{ Extended eigenvalue problem } \Rightarrow \mathbf{R}_{EV}(\lambda, \mathbf{p}) = \begin{bmatrix} (A - \lambda I) \mathbf{p} \\ \mathbf{q}_s^T \mathbf{p} - i \end{bmatrix} = 0$$

- \succ BIFOR solver used for two tasks
 - Tracking of aeroelastic modes $\Rightarrow \lambda_j = \lambda_j(\mu) = \gamma_j \pm i\omega_j$
 - Detecting of instability point $\ \Rightarrow \ \lambda_j = \pm i \omega_j$ for $\mu = \mu^*$

 \succ Benchmark case of Isogai, NACA 64A010 aerofoil at zero angle of attack

Highly-resolved transonic instability boundary

Computational costs

Grid dimension	Steady state solver	Eigenvalue solver	Unsteady solver
	(CFL=100, conv.=1.e-10)	$(\gamma_{j}{=}1.\text{e-07})$	$(\Delta t{=}0.05, N_{step}{=}6.e{+}06)$
129 x 33 (4.2k)	б s	70 s	7 h
257 x 65 (16.7k)	60 s	600 s	30 h
513 x 65 (33.3k)	250 s	1700 s	-

Oscillatory Instability Boundary

ECCOMAS 2008 — Timme and Badcock 'Computational Aeroelasticity based on Bifurcation Theory'

 \succ Oscillatory behaviour observed for transonic flow condition (Ma>Ma*)

Structural parameter

- aerofoil-to-fluid-mass ratio $\mu_{\rm s}{=}100$
- ratio of natural frequencies $\omega_r = 0.343$
- radius of gyration r_{α} =0.539
- center of gravity $x_{cg}=0.5$
- static unbalance $x_{\alpha} = -0.2$

[Badcock et al, AIAA Journal 42 (2004) no. 5, pp. 883-892]

 $\succ\,$ NACA 0012 at zero angle of attack

3 block, C-type grid

 $\succ\,$ NACA 0012 at zero angle of attack

3 block, C-type grid

 $\succ\,$ NACA 00xx at zero angle of attack

3 block, C-type grid

 \succ Time-accurate results crossplotted with bifurcation results

- Time-response due to initial disturbance
- Plunge rate disturbed by $\dot{h}_0=0.001 U_\infty$

Shock wave physically

- Event of very limited spatial extent
- Thickness of normal shock front of order

 $\delta x \approx 5.E - 08c$

[Granger, Fluid Mechanics, Holt, Rinehart & Winston]

Shock wave numerically

• Resolved thickness dependent on grid spacing

 $\Delta x_{\rm grid} \approx 1.E - 0.02c$

• Two grids points best possible

Steady state results at two Mach numbers (3C 129x33)

Steady state results at two Mach numbers (3C 129x33)

Steady state results at two Mach numbers (3C 129x33)

Steady state results at four Mach numbers (3C 129x33)

Steady state results at three Mach numbers (3C 129x33)

 \succ Resolution of shock wave perceived in flow field

Crossplots of instability boundary and steady state results (3C 129x33)

 \succ Resolution of shock wave perceived in flow field

Crossplots of instability boundary and lift coefficient

Conclusion

ECCOMAS 2008 — Timme and Badcock 'Computational Aeroelasticity based on Bifurcation Theory'

Conclusion

- > Bifurcation method using full-order nonlinear aerodynamics
- $\succ\,$ Efficient simulation of aeroelastic instabilities

Conclusion

- > Bifurcation method using full-order nonlinear aerodynamics
- \succ Efficient simulation of aeroelastic instabilities

* * *

- > High resolution of instability boundary revealed oscillatory behaviour
- > Numerical artefact due to shock wave resolution

Sebastian Timme sebastian.timme@liverpool.ac.uk Kenneth J. Badcock k.j.badcock@liverpool.ac.uk

ECERTA PROJECT

Computational Aeroelasticity based on Bifurcation Theory