ECERTA PROJECT

Towards the assessment of aerodynamic modelling uncertainty in aeroelastic predictions

Sebastian Timme Kenneth J. Badcock

- \succ Introduction
- \succ Basic concept of framework
- \succ Results
- \succ Outlook

Introduction

Towards the assessment of aerodynamic modelling uncertainty in aeroelastic predictions

- Eigenvalue based stability prediction method and LCO response prediction method
- Development of methods to propagate structural uncertainty (including structural damping)
- Exploitation of eigenvalue based method to search flight envelope for risk of aeroelastic instability
- Exploitation of eigenvalue based method to investigate sensitivity of the stability to trim state and variation in the atmospheric conditions
- Assessing the uncertainty from aerodynamic models and updating the models with more reliable data once available

Towards the assessment of aerodynamic modelling uncertainty in aeroelastic predictions

- \succ Four main levels of aerodynamic modelling considered
 - Level 1: inviscid, irrotational and linear flow
 inear potential methods (Laplace or Prandtl–Glauert equation)
 - Level 2: plus nonlinear effects
 - \implies nonlinear potential methods (TSD or FP equation)
 - Level 3: plus rotational effects
 - \implies Euler (Euler equations)
 - Level 4: plus viscous and heat-conducting effects
 - \implies Navier-Stokes (RANS equations plus turbulence/transition model)

- > Four main levels of aerodynamic modelling considered
 - Level 1: inviscid, irrotational and linear flow
 inear potential methods (Laplace or Prandtl–Glauert equation)
 - Level 2: plus nonlinear effects
 - \implies nonlinear potential methods (TSD or FP equation)
 - Level 3: plus rotational effects
 - \implies Euler (Euler equations)
 - Level 4: plus viscous and heat-conducting effects
 - \implies Navier–Stokes (RANS equations plus turbulence/transition model)
- \succ Basic framework conceived as follows
 - nonlinear potential model as simplest model being able to predict shock waves
 - Clebsch variable model to correct for shock generated entropy and vorticity
 - integral boundary layer model to correct for viscosity (estimate of the boundary layer displacement effect and representation of shallow separations)
- \succ Issue of costs
 - compare 5 (7) unknowns of Euler (RANS) model with 2 unknowns of FP
 - additional models (Clebsch and BL) only add little to costs

 $\succ\,$ Interaction of fluid and structure

$$D rac{d oldsymbol{w}}{dt} = oldsymbol{R}, \qquad oldsymbol{w} = egin{bmatrix} oldsymbol{w}_f, oldsymbol{w}_s \end{bmatrix}^T, \ oldsymbol{R} = egin{bmatrix} oldsymbol{R}_f, oldsymbol{R}_s \end{bmatrix}^T$$

- \succ To solve use Newton's method
 - steady state solution $m{w}_0$ given by vanishing residual $m{R}(m{w}_0)=0$:

$$A\,\delta\boldsymbol{w}^{\nu} = -\boldsymbol{R}\big(\boldsymbol{w}^{\nu}\big)$$

• unsteady simulation by dual time-stepping with pseudo-residual $m{R}^* = m{R}(m{w}) - D rac{dm{w}}{dt}$:

$$\left(A - D\frac{3}{2\Delta t}\right)\delta\boldsymbol{w}^{\nu} = -\boldsymbol{R}^{*}(\boldsymbol{w}^{\nu})$$

• eigenvalue approach

$$A\mathbf{p} = \lambda D \mathbf{p}$$

 $\succ \text{ Jacobian matrix } A = \frac{\partial \boldsymbol{R}}{\partial \boldsymbol{w}}$

 \succ Conveniently partitioned in blocks expressing the dependencies

- Fluid feels the motion (location, speed) of the structure
 Structure feels the pressure distribution of the surrounding fluid
- \succ To address uncertainties in aerodynamic modelling, look at fluid part

 $\succ\,$ Starting point: unsteady full potential model plus circulation convection

- continuity equation with velocity ${\pmb q} = \nabla \phi$
- density relation derived from unsteady Bernoulli equation
- circulation convection to model unsteady shedding of vorticity

$$D_{pp} rac{d oldsymbol{w}_p}{dt} = oldsymbol{R}_p, \qquad oldsymbol{w}_p = \left[
ho, \phi, \Gamma
ight]^T, \ oldsymbol{R}_p = egin{pmatrix} -
abla \cdot (
ho
abla \phi) \ rac{1-q^2}{2} - rac{
ho^{\gamma-1} - 1}{(\gamma-1) M_r^2} \ -u \, \Gamma_{\xi} \end{pmatrix}$$

 $\succ\,$ Limitation: no strong shock waves, no viscous effects

- > Viscous effects modelled by integral boundary layer model
 - two equation dissipation-type closure model plus stress transport equation
 - fixed transition (original model contains free transition model)
 - used for free wakes by setting skin friction to zero
 - fully-simultaneously coupled with inviscid solver

$$D_{vv}\frac{d\boldsymbol{w}_{v}}{dt} + D_{vp}\frac{d\boldsymbol{w}_{p}}{dt} + D_{ps}\frac{d\boldsymbol{w}_{s}}{dt} = \boldsymbol{R}_{v}$$
$$\boldsymbol{w}_{v} = \left[\delta^{*}, \theta, \tilde{C}_{\tau}\right]^{T}, \, \boldsymbol{w}_{s} = \left[h, \dot{h}, \alpha, \dot{\alpha}\right]^{T}, \, \boldsymbol{R}_{v} = \left[\mathcal{R}_{\delta^{*}}, \mathcal{R}_{\theta}, \mathcal{R}_{\tilde{C}_{\tau}}\right]^{T}$$

$$\begin{split} \mathcal{R}_{\delta^*} &= -u_e \left(\frac{\partial \ln \theta}{\partial \ln \xi} + \left(H + 2 - Ma_e^2 \right) \frac{\partial \ln u_e}{\partial \ln \xi} - \frac{\xi}{\theta} \frac{C_f}{2} \right) \frac{\theta}{\xi} \\ \mathcal{R}_{\theta} &= -u_e \left(\frac{\partial \ln H^*}{\partial \ln \xi} + \frac{\partial \ln \theta}{\partial \ln \xi} + \left(2H^{**} + H^* \left(3 - Ma_e^2 \right) \right) \frac{1}{H^*} \frac{\partial \ln u_e}{\partial \ln \xi} - \frac{\xi}{\theta} \frac{2C_D}{H^*} \right) \frac{\theta}{\xi} H^* - \mathcal{R}_{\delta^*} \\ \mathcal{R}_{\tilde{C}\tau} &= -u_e \left(\frac{\partial \ln \tilde{C}_{\tau}}{\partial \ln \xi} - \xi \frac{K_c}{2\delta} \left(\tilde{C}_{\tau eq} - a_2 \tilde{C}_{\tau} \right) - \xi Q_{eq} - \frac{\partial \ln u_e}{\partial \ln \xi} \right) \frac{u}{u_e} \frac{\tilde{C}_{\tau}}{\xi} \,. \end{split}$$

\succ Modification to Jacobian matrix

- A_{pv} : displacement effect of BL modelled by blowing velocity, $v_n \approx u_e \frac{d\delta^*}{d\xi}$
- A_{sv} : zero in current formulation
- A_{vp}, A_{vs} : BL feels inviscid edge solution, ϕ_e and ρ_e

 \succ fully-simultaneous inviscid/viscous coupling matrix in upper-left 2×2 block

• derived from continuity, unsteady Crocco equation and entropy equation • velocity rewritten as $q = \nabla \phi + S \nabla \psi$ with S as entropy and ψ as Clebsch variable

• two convection equations

$$egin{aligned} D_{cc}rac{doldsymbol{w}_c}{dt} &= oldsymbol{R}_c, \qquad oldsymbol{w}_c &= egin{bmatrix} S, \psi \end{bmatrix}^T \ oldsymbol{R}_c &= egin{pmatrix} -oldsymbol{q} \cdot
abla S \
ho^{\gamma-1} &= oldsymbol{q} \cdot
abla S \end{pmatrix} \end{aligned}$$

• upstream boundary condition: define location and speed of shock wave

> Vorticity and entropy effects added by Clebsch variable formulation

Basic concept of framework

V LIVERPO

NIVERSITY

$u\iota$

- - upstream boundary condition: define location and speed of shock wave
- \succ Implementation
 - derivatives along streamlines could be approximated by derivatives in x-direction
 - streamlines could be defined from initial isentropic calculation, and auxiliary grid defined for solution of extra two variables
 - full convection equations could be solved on the same grid used for the full potential equations

Basic concept of framework

- $\succ\,$ Vorticity and entropy effects added by Clebsch variable formulation
 - derived from continuity, unsteady Crocco equation and entropy equation
 - velocity rewritten as ${\pmb q} = \nabla \phi + S \nabla \psi$ with S as entropy and ψ as Clebsch variable
 - two convection equations

$$D_{cc} \frac{d\boldsymbol{w}_{c}}{dt} = \boldsymbol{R}_{c}, \qquad \boldsymbol{w}_{c} = \begin{bmatrix} S, \psi \end{bmatrix}^{T}$$
$$\boldsymbol{R}_{c} = \begin{pmatrix} -\boldsymbol{q} \cdot \nabla S \\ \rho^{\gamma-1} - \boldsymbol{q} \cdot \nabla \psi \end{pmatrix}$$

 \succ Modification to Jacobian matrix

		(A_{pp})	A_{pv}	A_{pc}	A_{ps}
\Rightarrow	A =	A_{vp}	A_{vv}	A_{vc}	A_{vs}
		A_{cp}	A_{cv}	A_{cc}	A_{cs}
		A_{sp}	A_{sv}	A_{sc}	A_{ss}

 $\succ\,$ NACA 0012 aerofoil at Mach 0.8 and incidence of 1.25 degree

- > Study of uncertainty (boundary layer model)
 - approximation of skin friction and velocity profile is needed for attached and separated boundary layers
 - found by empiricism from experimental data (high-fidelity CFD results)
 - used to close system of BL equations
 - adjust skin friction and velocity profile and investigate influence on aeroelastic stability
- > Study of uncertainty (Clebsch model)
 - influence of approximation to implement the two convection equations

- \succ Forced motion
- \succ Free motion
- \succ Inviscid/viscous interaction
- \succ Eigenvalue approach

- \succ Forced motion
- \succ Oscillatory pitching motion about quarter chord

$$\alpha(t) = \alpha_m + \alpha_0 \sin(\omega t)$$
 $(\omega = 2k)$

\succ 3 cases

	k	Ma	$Re \times 10^6$	$lpha_m$	$lpha_0$
case 1	0.1000	0.500	_	0.000	2.00
case 2 (AGARD CT 5)	0.0814	0.755	5.5	0.016	2.51
case 3 (AGARD CT 1)	0.0808	0.600	4.8	2.890	2.41

 \succ Forced motion – steady state results

 \succ Forced motion – case 2

- \succ Free motion
- \succ NACA 0012 aerofoil configuration
- \succ Parameters
 - elastic axis $x_{ea} = 0.4$
 - offset between center of gravity and elastic axis $x_{lpha}=-0.2$
 - radius of gyration about the elastic axis $r_{lpha}=0.539$
 - aerofoil to fluid mass ratio $\mu_s=100$
 - ratio of natural frequencies $\omega_r = 0.343$

 $\succ\,$ Free motion – $\bar{U}=2.5$

 $\succ\,$ Free motion – $\bar{U}=5.5$

- \succ Inviscid/viscous interaction
 - Steady state results
 - Variation of
 - $\circ \ \ \text{Mach numbers}$
 - $\circ \ \ {\sf Reynolds} \ numbers$
 - $\circ~$ angle of attack
 - Results compared to Xfoil

≻ Inviscid/viscous interaction

- \succ Eigenvalue approach
 - Complete eigenspectra calculated in Matlab and compared to Schur method
 - Instability boundaries
 - NACA 0012 aerofoil configuration, FP and Euler

≻ Eigenspectrum for NACA 0012 (medium view)

≻ Eigenspectrum for NACA 0012 (closeup view)

≻ Eigenspectrum for NACA 0012 (closeup view)

≻ Eigenspectrum for NACA 0012 (details)

≻ Eigenspectrum for NACA 0012 (details)

≻ Instability boundary for NACA 0012 configuration

Outlook

Towards the assessment of aerodynamic modelling uncertainty in aeroelastic predictions

Outlook

- \succ Improve FP spatial discretisation scheme
- ≻ Implement Clebsch variable formulation
- > Implement required changes in BL formulation to simulate separated regions
- ≻ 'Open' BL closure relations to address uncertainty

ECERTA PROJECT

Towards the assessment of aerodynamic modelling uncertainty in aeroelastic predictions

Sebastian Timme sebastian.timme@liverpool.ac.uk Kenneth J. Badcock k.j.badcock@liverpool.ac.uk