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Introduction

≻ Eigenvalue based stability prediction method
and LCO response prediction method

≻ Development of methods to propagate structural uncertainty
(including structural damping)

≻ Exploitation of eigenvalue based method to search flight envelope
for risk of aeroelastic instability

≻ Exploitation of eigenvalue based method to investigate sensitivity
of the stability to trim state and variation in the atmospheric conditions

≻ Assessing the uncertainty from aerodynamic models
and updating the models with more reliable data once available
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Basic concept of framework

≻ Four main levels of aerodynamic modelling considered

• Level 1: inviscid, irrotational and linear flow

=⇒ linear potential methods (Laplace or Prandtl–Glauert equation)

• Level 2: plus nonlinear effects

=⇒ nonlinear potential methods (TSD or FP equation)

• Level 3: plus rotational effects

=⇒ Euler (Euler equations)

• Level 4: plus viscous and heat–conducting effects

=⇒ Navier–Stokes (RANS equations plus turbulence/transition model)
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• Level 1: inviscid, irrotational and linear flow

=⇒ linear potential methods (Laplace or Prandtl–Glauert equation)

• Level 2: plus nonlinear effects

=⇒ nonlinear potential methods (TSD or FP equation)

• Level 3: plus rotational effects

=⇒ Euler (Euler equations)

• Level 4: plus viscous and heat–conducting effects

=⇒ Navier–Stokes (RANS equations plus turbulence/transition model)

≻ Basic framework conceived as follows

• nonlinear potential model as simplest model being able to predict shock waves

• Clebsch variable model to correct for shock generated entropy and vorticity

• integral boundary layer model to correct for viscosity

(estimate of the boundary layer displacement effect and representation of shallow separations)

≻ Issue of costs

• compare 5 (7) unknowns of Euler (RANS) model with 2 unknowns of FP

• additional models (Clebsch and BL) only add little to costs
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Basic concept of framework

≻ Interaction of fluid and structure
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• eigenvalue approach

Ap = λD p
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Basic concept of framework

≻ Jacobian matrix A =
∂R

∂w

≻ Conveniently partitioned in blocks expressing the dependencies
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≻ Fluid feels the motion (location, speed) of the structure
Structure feels the pressure distribution of the surrounding fluid

≻ To address uncertainties in aerodynamic modelling, look at fluid part
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Basic concept of framework

≻ Starting point: unsteady full potential model plus circulation convection

• continuity equation with velocity q = ∇φ

• density relation derived from unsteady Bernoulli equation

• circulation convection to model unsteady shedding of vorticity
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≻ Limitation: no strong shock waves, no viscous effects
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Basic concept of framework

≻ Viscous effects modelled by integral boundary layer model

• two equation dissipation–type closure model plus stress transport equation

• fixed transition (original model contains free transition model)

• used for free wakes by setting skin friction to zero

• fully–simultaneously coupled with inviscid solver
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Basic concept of framework

≻ Modification to Jacobian matrix
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• Apv: displacement effect of BL modelled by blowing velocity, vn ≈ ue
dδ∗

dξ
• Asv: zero in current formulation

• Avp, Avs: BL feels inviscid edge solution, φe and ρe

≻ fully–simultaneous inviscid/viscous coupling matrix in upper–left 2×2 block
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Basic concept of framework

≻ Vorticity and entropy effects added by Clebsch variable formulation

• derived from continuity, unsteady Crocco equation and entropy equation

• velocity rewritten as q = ∇φ+ S∇ψ with S as entropy and ψ as Clebsch variable

• two convection equations
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• upstream boundary condition: define location and speed of shock wave
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• upstream boundary condition: define location and speed of shock wave

≻ Implementation

• derivatives along streamlines could be approximated by derivatives in x–direction

• streamlines could be defined from initial isentropic calculation, and auxiliary grid defined for solution

of extra two variables

• full convection equations could be solved on the same grid used for the full potential equations
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Basic concept of framework

≻ Modification to Jacobian matrix
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Basic concept of framework

≻ NACA 0012 aerofoil at Mach 0.8 and incidence of 1.25 degree
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(a) Pressure distribution
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Basic concept of framework

≻ Study of uncertainty (boundary layer model)

• approximation of skin friction and velocity profile is needed for attached and separated boundary

layers

• found by empiricism from experimental data (high–fidelity CFD results)

• used to close system of BL equations

• adjust skin friction and velocity profile and investigate influence on aeroelastic stability

≻ Study of uncertainty (Clebsch model)

• influence of approximation to implement the two convection equations
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Results

≻ Forced motion

≻ Free motion

≻ Inviscid/viscous interaction

≻ Eigenvalue approach
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Results

≻ Forced motion

≻ Oscillatory pitching motion about quarter chord

α(t) = αm + α0 sin (ωt) (ω = 2k)

≻ 3 cases

k Ma Re× 106 αm α0

case 1 0.1000 0.500 – 0.000 2.00

case 2 (AGARD CT 5) 0.0814 0.755 5.5 0.016 2.51

case 3 (AGARD CT 1) 0.0808 0.600 4.8 2.890 2.41
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Results

≻ Forced motion – steady state results
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(b) Steady state pressure coefficient
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Results

≻ Forced motion – case 2
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(d) Pitching moment coefficient
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Results

≻ Free motion

≻ NACA 0012 aerofoil configuration

≻ Parameters

• elastic axis xea = 0.4

• offset between center of gravity and elastic axis xα = −0.2

• radius of gyration about the elastic axis rα = 0.539

• aerofoil to fluid mass ratio µs = 100

• ratio of natural frequencies ωr = 0.343
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Results

≻ Free motion – Ū = 2.5
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Results

≻ Free motion – Ū = 5.5
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Results

≻ Inviscid/viscous interaction

• Steady state results

• Variation of

◦ Mach numbers

◦ Reynolds numbers

◦ angle of attack

• Results compared to Xfoil
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Results

≻ Inviscid/viscous interaction
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Results

≻ Eigenvalue approach

• Complete eigenspectra calculated in Matlab and compared to Schur method

• Instability boundaries

• NACA 0012 aerofoil configuration, FP and Euler
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Results

≻ Eigenspectrum for NACA 0012 (medium view)
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(l) Euler formulation
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Results

≻ Eigenspectrum for NACA 0012 (closeup view)
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Results

≻ Eigenspectrum for NACA 0012 (closeup view)
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(b) Euler formulation
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Results

≻ Eigenspectrum for NACA 0012 (details)
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Results

≻ Eigenspectrum for NACA 0012 (details)
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Results

≻ Instability boundary for NACA 0012 configuration
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Outlook

≻ Improve FP spatial discretisation scheme

≻ Implement Clebsch variable formulation

≻ Implement required changes in BL formulation to simulate separated regions

≻ ’Open’ BL closure relations to address uncertainty

Towards the assessment of aerodynamic modelling uncertainty in aeroelastic predictions



ECERTA PROJECT

Towards the assessment of
aerodynamic modelling
uncertainty in aeroelastic
predictions

Sebastian Timme
sebastian.timme@liverpool.ac.uk

Kenneth J. Badcock
k.j.badcock@liverpool.ac.uk


