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1 Introduction

The physics and driving mechanisms in aeroelastic simulations have to be understood and modelled

correctly. This is not likely to be achieved without the ability to consider the impact of uncertainties in

the modelling. In structural dynamics, methods to assess uncertainties in modelling parameters are well

established [1]. For instance a probability distribution in one (or many) input parameters is propagated

through the simulation and the effects on the results are investigated. Propagation tools such as interval

analysis, perturbation and polynomial chaos methods, or even brute force Monte Carlo simulations

are routinely used. In recent years these tools have started to be transferred to computational fluid

dynamics. As an early example, Ref. [1] investigates several propagation methods to address parametric

uncertainty in the nonlinear Burgers equation. Approaches considering uncertainties in the physical

modelling assumptions rather than the parameters are rare. Examples of dealing with uncertainties in

the boundary treatment of a physical model include a geometrically uncertain domain boundary for the

two–dimensional Laplace equation [2], or both deterministic and random perturbations on the boundary

condition for the viscous Burgers equation subject to sensitivity to the boundary data [3].

As pointed out in Ref. [4], uncertainty from the aerodynamic model is often considerably larger

than from the structural model. Also, transonic aerodynamics can have a major influence on nonlinear

aeroelastic responses. Two aeroelastic phenomena are particularly associated with the nonlinear flowfield.

One is the transonic dip where the presence of shock waves reduces the stability of the aeroelastic

system. The second is limit–cycle oscillation (LCO) where the limiting mechanisms of the amplitude

of the dynamic response are shock motions and separation. In Ref. [5] the influence of aerodynamic

modelling assumptions on the amplitude of a store–induced LCO was investigated for the Goland wing.

The dependence of LCO amplitudes on the modelling level, considering both inviscid and viscous flow,

was investigated. It was argued that shock/boundary layer interaction in this case causes trailing edge

separation and retards the shock movement (substantial in the inviscid case) thus limiting the LCO

amplitude. Modelling both the inviscid/viscous interaction as well as the extent of the shock–induced

separated regions is important in this case.

Another important contribution to the understanding of transonic LCO is the experimental studies

of the supercritical NLR 7301 aerofoil [6–8]. The impact of shock/boundary layer interaction on LCO

amplitude, and the importance of the correct prediction of the steady state solution, are discussed

and conclusions drawn for the required model fidelity. Nonlinear inviscid aerodynamic modelling should

predict LCO dominated by the shock dynamics, whereas aerodynamic modelling including viscous effects

is required for LCOs associated with shock/boundary layer interaction [8, 9]. A comprehensive review

of nonlinear aeroelastic phenomena including a detailed discussion of possible physical sources for these

nonlinearities is given in Ref. [10].

One point missing from the aerodynamic modelling tools available for aeroelasticity is the ability to

update lower order models with better available information, and to assess the impact of uncertainties

in the prediction of aerodynamic phenomena like shock waves and regions of separation. In structural

dynamics these approaches are routinely used when modelling difficult parts of the structure, such as

joints. Simple parameterised models are used for these features [11] and experiments are used to tune the
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parameters to match observations. The sensitivity to parameters can also be assessed. This approach is

felt better than a highly detailed finite element model since it incorporates both the analysts insight into

the form of the model and the available measurements. In the aerodynamic case, at least when nonlinear

flow models are used, there are no well established methods for exploiting measured data or higher order

predictions. There is also no way to assess the impact of uncertainties in the prediction of, for example,

the shock wave location on the aeroelastic behaviour. The current paper describes an investigation into

developing a method that will address these short–comings for the limited case of transonic aeroelastic

predictions using an aerofoil sections moving in pitch and plunge.

The stability of an aeroelastic system can be inferred from time–accurate simulations following an

initial excitation of the system. Calculations of complete aircraft configurations have been made [12,13].

The time–accurate approach is very capable due to its generality. However, the significant computational

costs, in particular to solve for the unsteady, nonlinear transonic aerodynamics, is a major drawback in

this approach. Emphasizing this point is the requirement to search a space of system parameters and

flight conditions for critical conditions. The issue of cost generally limits the analysis to a few carefully

chosen cases. Alternative approaches have been investigated to obviate the immense computational costs

and to permit routine calculations over larger parameter ranges [14]. One popular method is reduced

order modelling (ROM) based on proper orthogonal decomposition (POD). For a robust and reliable

ROM to exist, the parameter space and flow phenomena of interest have to be covered by the set of

system responses used to establish the ROM, and thus, creating the large number of system responses is

the main cost in the approach. In addition, the reliability of the POD/ROM approach under parameter

changes is a topic of investigation [15].

An alternative approach discussed in the present work uses the theory of dynamical systems to

predict aeroelastic instabilities of the Hopf type commonly leading to flutter or LCO. Here, a stability

problem for a steady state solution of the aeroelastic system is examined instead of performing unsteady

simulations. Stability is lost by a Hopf bifurcation when a pair of complex conjugate eigenvalues of

the system Jacobian matrix crosses the imaginary axis for some value of a critical system parameter.

Following an approach first published in Ref. [16–18], the bifurcation method was successfully tested

on a two–dimensional aerofoil configuration free to move in pitch and plunge. Convergence problems

associated with applying a direct solver to a large linear system were resolved by using an iterative

sparse linear solver [19]. The method was extended to a larger problem investigating a flexible AGARD

445.6 wing using a modal structural model [20]. Later, the shifted inverse power method was adapted

to allow tracing of the critical eigenvalues with changing values of the system parameter. This provides

information about the damping and frequency of the aeroelastic modes [21]. Also, a model reduction

technique based on the centre manifold theory was investigated to simulated an LCO response in the

vicinity of the linear instability point [21].

An improved version of the basic method used a Schur complement formulation to enhance compu-

tational performance [22] and was applied to several wing structures and also complete aircraft config-

urations to study uncertainty in the predicted instability due to structural variability [23]. The current

paper takes a next step in the development of the Schur complement framework by forming a reduced

order model based on an interpolation technique for the representation of the fluid contribution in the
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aeroelastic system and by using a hierarchy of flow models to complement to previous Euler–based re-

sults. Therefore, two aerodynamic codes are discussed, namely an established RANS/Euler code and a

newly developed full potential/integral boundary layer code. Then, the reduced model will be exploited

for aeroelastic prediction and related issues will be discussed.
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2 Governing equations and numerical schemes

In Ref. [24] four main aerodynamic modelling levels are discussed; linear and nonlinear potential,

Euler and Navier–Stokes. The physics in the simulation can be built up from linear potential flow. The

nonlinear potential model adds nonlinear compressible flow effects. The Euler equations add entropy

and vorticity effects, while the Navier–Stokes equations include viscous and heat–conducting effects.

For almost all aerodynamic flows of practical interest, the Reynolds–averaged form of these equations

must be used, introducing the requirement for turbulence models. The impact of the flow modelling

(and discretisation) on aeroelastic stability is addressed in the framework by isolating different physical

effects, in particular viscous and entropy effects, in separate submodels. In the current study, the RANS

and the Euler equations define the high–fidelity models and provide the reference solutions for the update

of the lower–level models which consists of the unsteady full potential equations (with their ability to

represent shock waves), a simple wake model for unsteady convection of vorticity behind a lifting surface,

and an integral boundary layer model to add viscous effects. Additionally, it is planned to include a

shock–correction model to deal with strong shock waves violating the assumptions of the full potential

formulation.

An eigenvalue–based stability module is used to compute aeroelastic stability details of which are

given in Section 4.1. The critical eigenvalues of the Jacobian matrix of the coupled aeroelastic system

are traced to find the crossing with the imaginary axis indicating the loss of stability through a Hopf

bifurcation [22]. This method proves significantly more efficient than the unsteady time domain approach.

2.1 Higher–order models — RANS and Euler equation

For the higher–level modelling, an established research code is used [25]. The governing equations are

discretised using a block–structured, cell–centred, finite–volume scheme. Here, a finite number of non–

overlapping control volumes (grid cells) constitutes the computational domain with the governing equa-

tions applied to each control volume in turn. The governing equations are formulated in a time–varying

curvilinear coordinate system to facilitate the numerical solution. This is convenient since engineering

applications have rather complex geometries which require body–conforming grids of arbitrary local ori-

entation and density. Basic features of the code include; implicit time marching for steady state solves,

dual time stepping for unsteady simulations [26] with second–order temporal accuracy, the approximate

Riemann solver of Osher and Chakravarthy [27] gives the convective fluxes, MUSCL variable extrapola-

tion achieves essentially second–order spatial accuracy, while van Albada’s limiter preserves the monotone

behaviour of a first–order scheme, viscous fluxes are evaluated using central differences, resulting linear

systems are solved by a preconditioned Krylov subspace iterative method. Boundary conditions are set

using two layers of halo cells on the outside of the computational domain. For the interested reader,

details are given in the cited literature.

2.2 Lower–order models — FP and FPv equations

The lower–level modelling of the flowfield contains several submodels to include different physical effects.

The baseline flow model uses the unsteady full potential formulation (FP) [28]. The equations are written
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in terms of the time derivative for density from conservation of mass and of the velocity potential from

the unsteady Bernoulli’s equation. The unknowns are stored at the vertices of an unstructured triangular

grid. Non–overlapping dual cells are formed around the vertices and the equation for conservation of

mass is discretised by a second–order finite volume scheme with the fluxes evaluated at the centres of

dual cell edges using a linear least squares reconstruction. The velocity is reconstructed at the edge

centres whereas a slope limited gradient based upwind formulation is applied for the density. The usual

jump in the velocity potential based on the Kutta condition is applied to the potential function along

the wake cut, and the unsteady convection–based version of this is used. Boundary conditions are set

using a layer of halo vertices. A transpiration boundary condition is applied to solid walls. The Jacobian

matrix for the implicit scheme as well as the eigenvalue solver is evaluated analytically.

Viscous effects (FPv) are added to the FP model by a two–equation, dissipation–type closure, integral

boundary layer formulation for both laminar and turbulent compressible boundary layers as well as free

wakes [29–33]. Transition is fixed and user–defined. The basic integral model is augmented by a third

equation to account for upstream history effects on the turbulent shear stresses. In its original formulation

the model uses the steady integral momentum and mean kinetic energy equations, whereas the present

formulation is meant to solve dynamic aeroelastic problems. Therefore, the unsteady governing integral

equations are derived from the unsteady Prandtl boundary layer equations [34]. The system of equations

contains more unknowns than equations and the additional unknowns have to be expressed in terms of

the primary unknowns. The primary effect of the boundary layer and wake on the outer inviscid flow is

to displace the inviscid flow by a distance equal to the displacement thickness [35]. The approach used

to model this displacing effect is the ’blowing velocity’ concept which calculates a wall–normal velocity

based on the information from the viscous solution and imposes it on the solid wall of the original

geometry and the wake centre line. Derivatives in the integral boundary layer equations are evaluated

by a first–order upwind scheme similar to the wake convection equation, whereas the boundary layer

correlations are evaluated at the current streamwise station. The boundary layer residual as well as

the expressions of the closure correlations are expanded and differentiated with respect to the primary

unknowns to calculate the terms of all blocks in the Jacobian matrix analytically.

Newton’s method is used to converge the solution to a steady state. Jameson’s dual time stepping

[26] with a second–order backward temporal discretisation is applied for unsteady simulations with a

steady state being calculated in pseudo time at each real time step.

2.3 Structural model

The structural part in the aeroelastic problem is described by the dynamics of a two degree–of–freedom

aerofoil [36]. The ’typical section’ aerofoil with oscillating pitching and plunging motion represents the

torsional and bending behaviour of a wing structure. The linear model is idealized as a point mass

defining the centre of gravity as well as a torsional and a translational spring attached to the elastic

centre located some distance away from the centre of gravity.
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3 Benchmark validation results

3.1 Steady state and unsteady results

Standard test cases are presented for building confidence in the developed full potential solver coupled

with an integral boundary layer model. Steady measurements of pressure distributions and boundary

layer quantities in sub– and transonic flow regimes are given in the experimental data base of Ref. [37]

for the supercritical RAE 2822 aerofoil. Results of pressure distributions are shown in Fig. 1 for cases

2 (subsonic) and 9 (transonic). The simulations were done assuming free flight conditions. Hence,

the numerical flow conditions were adjusted to match the experimental data subject to strong wall

interference effects. Table 1 lists numerical as well experimental flow conditions. The RANS simulations

were done on a 3–block C–type structured grid with 524× 78 control volumes whereas an unstructured

grid with 6k control volumes was used for the FPv simulations. The FPv simulations give excellent

agreement to the experiments for both cases just as the RANS results. No differences can be found

between the results of the two turbulence models. For the RANS simlations both the Spalart–Allmaras

(SA) and the k−ω (SST) turbulence models were used. The integrated aerodynamic coefficients of

normal force Cn, pitching moment Cm and drag force Cd are included in the figures and correspond in

their agreement to the experimental data with the pressure distributions.

M / Mexp α / αexp Re xtr

Case 2 0.685 / 0.676 −2.35◦ / −2.18◦ 5.7E+6 0.10

Case 9 0.735 / 0.730 −2.80◦ / −3.19◦ 6.5E+6 0.03

Table 1. Flow conditions for RAE 2822 aerofoil test cases.
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Figure 1. Pressure distributions of RAE 2822 aerofoil showing comparisons of measurements as presented

in Ref. [37] and simulations using RANS and FPv.
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Figure 2 presents results of forced pitching motion simulations of the AGARD CT1 test case and

compares with experimental data [38]. The configuration CT1 is defined for the NACA 0012 aerofoil at a

freestream Mach number of 0.6 and a Reynolds number based on chord length of 4.8 million. The forcing

about the quarter chord is prescribed by a sinusoidal motion with reduced frequency of k = 0.0808, a

mean incidence of αm = 2.89◦ and a pitch amplitude of αa = 2.41◦. The RANS simulation as well the

FPv simulations are assumed to be fully turbulent with a forced transition location in the latter case

at about 3 percent chord length. Five motion cycles with 128 steps each were simulated. The RANS

(Euler) simulations were done on a 3–block C–type structured grid with 30k (15k) control volumes,

and the FP simulations used an unstructured grid with 12k control volumes. The overall agreement of

the FP model with or without BL coupling should be considered as excellent, also in view of results

of coupled inviscid/viscous simulations as presented in Ref. [39]. Also, a quasi–steady (qs) simulation

is shown in Fig. 2(b) where all unsteady terms in the BL model are omitted and a steady boundary

layer is calculated at each real time step of the unsteady simulation. The results suggest indeed that

a quasi–steady assumption of the BL model is a sufficient simplification as it is commonly done for

integral boundary layer simulations. The inviscid results show a consistent trend compared to viscous

simulation results and experiments. To explain the relatively large difference between RANS results and

experiments in Fig. 2 compare to Ref. [40] where the centre for the moment calculation was shifted by

a few percent of the chord length to obtain better agreement.
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Figure 2. Normal force and pitching moment coefficient for AGARD CT1 [38] test case.

The performance of the different flow solver is discussed in terms of the AGARD CT1 case and

summarized in Tabs. 2 and 3. Simulating the steady state flow solution at mean conditions is analysed

first. For the RANS simulation with 30k control volumes (CV) reducing the residual by 6 order of

magnitude takes about 2 minutes of CPU time. Here, 100 explicit steps to smooth out the initial flow

field are followed by 270 implicit steps. The Euler simulation for a grid with 15k cv required about 20

seconds of CPU time to reduce the residual by 6 order of magnitude taking 100 explicit and 160 implicit

updates. The FP code with and without boundary layer model was tested for two grid sizes. Once
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the current approximation is close enough to the converged solution the FP solver achieves quadratic

convergence. An inviscid solution without a strong shock wave is converged to machine accuracy within 6

full Newton updates for both the finer grid (12k cv) and the coarser grid (5k cv) requiring 7 and 2 seconds

of CPU time, respectively. A viscous simulation takes more attention before quadratic convergence is

found. First, an inviscid solution is needed as the initial guess adding to the overall cost of a viscous

simulation. Secondly, the viscous updates have to be underrelaxed for stability reasons until the residual

has dropped a few orders of magnitude (typically 1 to 2). Thus, it takes another 15 and 5 seconds for the

fine and the coarse grids to achieve machine accuracy for a viscous simulation, respectively. An advantage

of the FPv formulation is that the same computational grids can be used as for the FP formulation. The

costs multiply when a strong shock wave is present in the flow field. Then, the updates have to be

underrelaxed to converge to a good approximation required for full Newton updates in both inviscid and

viscous simulations.

Model CV CPUTIME ITIME LSOLV LTOL CFL ITER TOL

Euler 15k 20 0.12 0.08 10−2 50 260 10−6

RANS 30k 120 0.38 0.16 10−2 50 370 10−6

FP 12k (5k) 7 (2) 1.17 (0.34) 1.09 (0.30) / 1 6 (6) 10−13

FPv 12k (5k) 15 (5) 1.28 (0.47) 1.18 (0.42) / 0.5 11 (10) 10−13

Table 2. Performance of different steady flow solver for AGARD CT1 [38] test case.

Model CV CPUTIME ITIME LSOLV LTOL CFL ITER TOL

Euler 15k 660 0.1 0.04 10−2 50 10 10−2

RANS 30k 4800 0.3 0.09 10−2 50 20 10−2

FP 12k (5k) 2755 (675) 1.00 (0.31) 0.90 (0.27) / 1 3–10 10−4

FPv 12k (5k) 6135 (1850) 1.20 (0.43) 1.10 (0.36) / 0.5 6–12 10−4

Table 3. Performance of different unsteady flow solver for AGARD CT1 [38] test case.

Starting from the steady state solutions the unsteady simulations run for 5 cycles with 128 steps each.

The RANS equations require about 20 pseudo iterations at each real time step to achieve the demanded

convergence criteria summing up to about 1.5 hours of CPU time. The Euler model takes about 10

pseudo iterations and runs for 11 minutes of CPU time. The unsteady routine in the low–order model

solver runs about 45 (11) minutes using the finer (coarser) grid for an inviscid simulation taking a few

Newton updates (3–10) depending on the angle of attack to converge to the specified tolerance at each

real time step. The viscous simulations require about 2 to 3 times the inviscid runtime. Although the

given numbers can only be considered as estimates, they indicate a trend. It can be said that the FP

(FPv) solver compares excellent to the established high–level multi–block solver (having been optimized

for more than 10 years) for the subsonic and low transonic regime. However, for the higher transonic

regime the performance of the FP (FPv) reduces more dramatically compared to the multi–block solver
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due to initial underrelaxation of the updates to maintain stable iterations. One of the main issues in

the chosen implicit formulations lies in solving linear systems efficiently. Currently a direct solver is

employed in the potential flow solver whereas the multi–block solver uses a tailored linear solver with

a preconditioned Krylov subspace algorithm outreaching the direct solver dramatically with increasing

problem size. Also, the FP solver uses the exact Jacobian of the spatial scheme to achieve quadratic

convergence while the high–level solver uses approximate Jacobians for efficiency. For the FP solver,

neither an exact Jacobian matrix nor an exact solution to the linear system are useful when the updates

are underrelaxed.

Details are given in the tables; overall CPU time (CPUTIME) for steady state solve and unsteady

simulation for 640 real time steps, CPU time per iteration to evaluate residuals, Jacobian matrices, to

solve the linear system and to update the solution (ITIME), CPU time per one solve of the linear system

(LSOLV), CFL number for high–level solver or underrelaxation factor for low–level solver (CFL), and

number of iterations (ITER) to achieve the specified tolerance (TOL) either for the steady state or for

the current time step in unsteady simulation. The number of iterations includes the number of explicit

or underrelaxed updates. All times are given in seconds and represent a fair average.
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Figure 3. Isogai [41] benchmark case for NACA 64A010 aerofoil configuration compared to numerical

results.

3.2 Aeroelastic stability results

The ‘typical section’ aerofoil of Isogai [41] using the NACA 64A010 aerofoil at zero mean angle of attack

is a numerical benchmark case for methods predicting aeroelastic instabilities. The structural parameters

of the configuration (presented in Table 5) were chosen to represent the dynamics of an outer section of

a swept–back wing. Figure 3(a) shows a comparison between results from different numerical methods

(a detailed discussion of which can be found in Refs. [41–44]) illustrating the instability boundary as

critical flutter speed index VF = Ū/
√

µs versus freestream Mach number. An overall good agreement of

the current Euler–based results can be found compared to the different numerical solutions with varying
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modelling fidelity. The complex s–shape of the curve in the deep transonic region, giving a second stable

branch for higher values of the flutter speed index, is distinct for the inviscid aerodynamic modelling

approaches. This behaviour with a double–valued critical flutter speed index disappears for flow models

considering viscous flow effects such as thin–layer Navier–Stokes (TLNS) [42] or integral boundary layer

(BL) [44] modelling.

The mode–tracing is visualized in Fig. 3(b) showing the migration of the eigenvalues corresponding to

the two dominant aeroelastic modes originating in the wind–off structural modes. At fixed Mach number

of M = 0.85 the s–shaped appearance of the instability boundary is described. Three bifurcations can

be found; the first (lower frequency) aeroelastic mode experiences its first bifurcation at a low value of

the flutter speed index (VF = 0.52) when entering the unstable region with a positive real part in the

critical eigenvalue. Then, at a higher value of the flutter speed index (VF = 2.39) the first mode goes

back to a stable behaviour having its second bifurcation. The second aeroelastic mode, experiencing

only one bifurcation, is only critical for high values of the flutter speed index and high values of the

freestream Mach number between approximately 0.84 and 0.9. The inlay of the figure presents the

migration of the eigenvalue of the first mode compared to results of the mode–tracing done in Ref. [43]

using a reduced–order model based on a proper orthogonal decomposition technique.
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4 Generating Schur correction matrix

4.1 Schur complement formulation

Write the aeroelastic system in semidiscrete form as

dw

dt
= R(w, µ) (1)

where the vector of unknowns w = [wf , ws]
T contains fluid and structural contributions, and R is

the corresponding residual vector. The system depends on an independent parameter µ representing

for instance dynamic pressure or altitude. An equilibrium solution w̄ of the nonlinear system satisfies

R(w̄, µ) = 0. In transonic flow the importance of the equilibrium manifests itself in the observation that

a shock nonlinearity (strength and location) is defined in the steady flow, while unsteady perturbations

about this steady state can be considered to be linear [45]. The theory of dynamic systems gives criteria

for an equilibrium to be stable. In particular, stability is determined by eigenvalues λ = σ ± iω of the

system Jacobian matrix A(w̄, µ) evaluated at the steady state and arbitrary values of µ. A stable system

has all its eigenvalues with a negative real part. In many aeroelastic applications a pair of complex

conjugate eigenvalues with vanishing real part defines the onset of an instability of the Hopf type. Linear

aeroelastic stability is predicted by solving the general eigenvalue problem,

(A − λI)p = 0 (2)

where the Jacobian matrix is conveniently partitioned in blocks expressing the different dependencies

A =
∂R

∂w
=







Aff Afs

Asf Ass






. (3)

For convenience, the eigenvector p is written just as the vector of unknowns in fluid and structural

contributions [22]. Then, the Schur complement formulation can be given,

S(λ)ps = 0, (4)

which defines a small nonlinear eigenvalue problem for the stability analysis. The method to solve this

system is outlined in detail in Ref. [22]. The Schur complement is explicitly written as

S(λ) = (Ass − λI) − Asf (Aff − λI)−1Afs, (5)

where λ is an eigenvalue of the structural part. This formulation has two major advantages compared

to solving the eigenvalue problem as given in Eq. (2); first the ill–conditioning of the system is avoided

since λ is not an eigenvalue of Aff , secondly a parallel implementation required for realistic problems

is simplified. The Schur complement is formed as the sum of a structural part Ss = (Ass − λI) and

a correction matrix Sc = −Asf (Aff − λI)−1Afs arising from the coupling with the fluid model. As

the coupling is reduced to zero the structural Jacobian is recovered and a structural eigenvalue of the

uncoupled system is then obtained. The correction matrix depending on the eigenvalue produces a

frequency matching with the aerodynamics. There is another convenient aspect of this formulation; the

aerodynamics are stripped free in the Schur complement.
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To solve the small complex–valued nonlinear eigenvalue problem given in Eq. (4), the system is

augmented by

cT
s ps − i = 0 (6)

to scale the structural eigenvector ps against a real–valued constant vector cs. Then, the nonlinear

system of the Schur residual

RS

(

wS

)

=







S
(

λ
)

ps

cT
s ps − i






= 0 (7)

is solved for wS =
[

ps, λ
]T

using Newton’s method. The required Schur Jacobian matrix ∂RS/∂wS is

given by

∂RS

∂wS
=







S Sλ ps

cT
s 0






(8)

with subscript λ expressing a differentiation with respect to the eigenvalue. The improvement is obvious.

While the full formulation in Eq. (2) solves a problem with Nf +Ns+1 unknowns, the Schur complement

formulation only has Ns + 1 where the number of structural unknowns is generally small. While the

correction term of the Schur complement is solved directly for the evaluation of the Schur residual, a

series approximation is used for calculating the Schur Jacobian. Generally, the series approximation

reads
(

Aff − λI
)

−1
= A−1

ff + λA−1
ff A−1

ff + λ2A−1
ff A−1

ff A−1
ff + . . . (9)

where λ must be small for the series to converge [46]. To overcome this restriction, write the eigenvalue

as λ = λ0 + λε where λ0 is the initial guess, e.g. a natural frequency or a previous converged solution,

and λε is a small variation to the initial guess, and solve the system for the variation instead of the

eigenvalue itself. Then, the series can be written as

(

Aff − λI
)

−1 ≈
(

Aff − λ0I
)

−1
+ λε

(

Aff − λ0I
)

−1(
Aff − λ0I

)

−1
(10)

to form the term Sλ in the Schur Jacobian. Details about approximations to decrease the computational

costs as well as the parallel implementation are given in Ref. [22].

Evaluating the correction term Sc accounts for the highest cost of the stability analysis since 2n

linear system have to be solved on the fluid Jacobian matrix for a system with n degree–of–freedom

whereas the costs to form the term Ss are negligible. For the 2 degree–of–freedom aerofoil structural

model the size of the Schur complement matrix is 4 × 4. Out of these 16 elements there are 6 nonzero

complex–valued elements in the correction term,

Sc = −Asf (Aff − λI)−1Afs =



















0 0 0 0

0 Sc
22 Sc

23 Sc
24

0 0 0 0

0 Sc
42 Sc

43 Sc
44



















. (11)

Here, the structural unknowns are ordered as ws = [h, ḣ, α, α̇]T . The first column of the correction

matrix is found to be zero due to the independence of the fluid response on the plunge state h. The first

and the third row are zero due to the composition of matrix Asf projecting the fluid response onto the

structural states.
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4.2 Extracting elements based on Fourier series

Solving the linear systems for the steady state fluid Jacobian matrix Aff to form the Schur correction

matrix directly is referred to as linear frequency domain approach. Alternatively, it is also possible to

evaluate the correction matrix from a Fourier analysis of unsteady time–domain responses forced in the

structural states. Therefore, write the unknowns as the sum of a steady state solution w̄ and an unsteady

perturbation w about this mean;

wf (t) = w̄f + wf (t) and ws(t) = w̄s + ws(t). (12)

Then, the fluid contribution of the aeroelastic system in Eq. (1) can be given in its time–linearized form

as
dwf

dt
= Aff (w̄)wf + Afs(w̄)ws, (13)

where the fixed Jacobian matrices Aff and Afs are evaluated at the steady state. The latter equation

essentially constitutes a standard state–space representation, where ws acts as the input vector of external

forcing. This system is solved for forced periodic motions in the structural unknowns driving the solution

of the unsteady fluid perturbation. Write the unsteady perturbation in a truncated Fourier series [47]

wf =

N
∑

n=−N

αn ei n ω t and ws =

N
∑

n=−N

α̂n ei n ω t, (14)

where ω is the fundamental frequency of the problem, and substitute latter expressions into Eq. (13).

Rearranging gives
N

∑

n=−N

αn = −
N

∑

n=−N

(Aff − i n ωI)−1 Afs α̂n. (15)

The vector of complex–valued Fourier coefficients αn (and α̂n) is evaluated from the time signal over a

period T = 2π/ω as

αn =
1

T

T/2
∫

−T/2

wf (t) e−i n ω t dt, n = 0,±1,±2, . . . (16)

and accordingly for the structural contribution. There are 2N + 1 equations for the Fourier coefficients

with n = 0 corresponding to mean flow which is automatically satisfied since the unsteady perturbation

about the steady state is considered.

Comparing to Eq. (5) it can be seen that, after multiplying with the Jacobian matrix Asf , the

Fourier coefficients of the fluid responses in each control volume of the computational domain constitute

the correction term in the Schur matrix with a purely imaginary eigenvalue. More precisely, the fluid

responses in the control volumes contributing to the aerodynamic forces acting on the structure have

to be analysed. Evaluating the Fourier coefficients at integer multiples of the fundamental frequency

(provided the system was excited accordingly) gives the correction matrix at these discrete frequencies.

The matrix Asf used to project the fluid response onto the structural states can be evaluated easily by

finite differences. The Fourier coefficients of the forced excitation α̂n set the column of the correction

matrix and scale for the amplitude of the excitation; for instance forcing the system of the 2 degree–

of–freedom aerofoil with ws = [0, 0, â sin (ω t), 0]T gives the third column of the 4 × 4 matrix at the

frequency ω.
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Solutions of a fully nonlinear system approach the time–linearized results if the amplitude of the

forced motion is sufficiently small. This is that the assumptions of a linearized solution hold where the

unsteadiness in the flow is linearly dependent on the structural motion. The step of using the nonlinear

aeroelastic system or more precisely the nonlinear aerodynamic system with a forcing applied in the

structural unknowns ws,
dwf

dt
= Rf (wf , ws), (17)

is required if the Jacobian matrices for the fluid contribution, as given in the linearised system in Eq. (13),

are not available explicitly. Also, it is possible to apply this method to arbitrary flow solver giving access

to an arbitrary fidelity in the flow modelling.
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ws =[0, â sin(2ωt), â sin(3ωt), â sin(ωt)]T

Figure 4. One period of motion with simultaneous forcing in three relevant structural states showing

integrated aerodynamic coefficient of lift to represent fluid response in all control volumes.

An example simulation to demonstrate the three approaches of linear frequency domain, linearized

time domain and nonlinear time domain is presented in Figs. 4 and 5. Here, a NACA 0012 aerofoil

configuration as defined in Ref. [19] was excited in all three structural states of interest simultaneously

at a fundamental frequency of ω = 0.15 and an amplitude of â = 1.0 × 10−4. Three simulations were

required to obtain the complete correction matrices at three frequencies while swapping around the

factors multiplying the fundamental frequency, for instance

ws = [h, ḣ, α, α̇]T

= [0, â sin(2 ω t), â sin(3 ωt), â sin(ωt)]T .
(18)

Exciting the plunge coordinate h is irrelevant. Following the transition to stable periodic cycles, one

motion cycle of period T = 2π/ω is simulated with 128 time steps and used for the extraction of the

Fourier coefficients. Two freestream Mach numbers at 0.7 and 0.8 are considered and represent a subsonic

and a transonic case with strong shock wave. Figure 5 describe the development of two elements of the

Schur correction matrix showing the real and the imaginary parts individually. The agreement is excellent

between the three approaches.

Figure 5 also includes results for a nonlinear time domain simulation with a higher excitation ampli-

tude of â = 1.0×10−2. Intuitively, looking at the results for higher excitation amplitudes suggests that at
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Figure 5. Extracted elements of Schur correction matrix for NACA 0012 configuration using the Euler

equations; linearised and nonlinear time–domain simulations compared to linear frequency domain results.

Mach 0.8 the nonlinear time domain results lose accuracy compared to the linear frequency or linearized

time domain results. However, at Mach 0.8 the appearance of a transonic shock wave introduces an

additional issue in the analysis. In Ref. [48,49] an oscillatory behaviour in transonic flow was discussed.

Therein, the instability boundary of the NACA 0012 aerofoil configuration showed an oscillatory trend

with changes in Mach number caused by a discrete movement of the shock wave. Due to the discrete

numerical representation the movement of the shock wave is restricted to the resolution of the compu-

tational grid. The oscillatory instability boundary was related to an oscillation in the elements of the

Jacobian matrix. Figure 6 presents such a nonsmooth behaviour for one element with real and imaginary

parts of the Schur correction matrix using the Euler and the RANS flow models where the two turbulene

model are shown for the RANS results. Nonlinear time domain results at a range of Mach numbers and

four different excitation amplitudes â with increasing strength are presented. The time domain results
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are compared to linear frequency domain predictions for the Euler flow model. As discussed in Ref. [49]

for the influence of the initial disturbance on the unsteady simulations, a dependence on the amplitude

can be found. Small excitation amplitudes give results very close to the linear frequency analysis with

the distinct oscillatory phenomenon, whereas higher values eliminate the oscillations. This was related

to the location of the shock wave depending on the deflection of the structure. A weak variation of the

pressure distribution is found for small motion amplitudes with a strong influence of the discrete steady–

state shock resolution throughout the unsteady forcing. The dynamic effects due to larger amplitudes

on the other hand dominate the influence of the steady state. It seems to be more meaningful physically

to use a higher excitation amplitude since the nonsmooth behaviour, which cannot be explained with

arguments of a continuous change of a system parameter, disappears as seen in Fig. 6. However, if such

a nonsmooth trend is also found in viscous simulations then more consideration is necessary due to the

presence of possible boundary layer separation.
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Figure 6. Effect of excitation amplitude on oscillatory behaviour in transonic regime showing results of

Euler flow model.

The integrated aerodynamic loads showed the same oscillatory behaviour in the transonic regime

not only for inviscid [49] but also for viscous simulations (not presented herein). Thus, this unwelcome

oscillatory phenomenon should also be expected for RANS simulations as presented in Fig. 7. The

figure shows such a nonsmooth behaviour for one element of the Schur correction matrix using the

RANS flow model with two different turbulence models. Three distinct regions can be distinguished; a

shock free region (subsonic and very low transonic), a region with a distinct shock wave, and a region

with shock–induced boundary layer separation. For shock free flow, in the figure shown at Mach 0.75,

the excitation amplitude (chosen within reason) is irrelevant. If at all, slight differences can be found

between different turbulence models. Having a distinct shock wave between Mach 0.78 and 0.81, the

amplitude of the forcing becomes an important factor and an oscillatory behaviour as for the Euler

simulations is found. The two smaller amplitudes clearly scatter around a “mean value”. Interestingly,

the assumed peaks and troughs for the Schur correction element are different for the two considered
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turbulence models. This should be attributed to the differences in how the boundary layer is predicted,

and consequently to the slight differences in shock wave location at a given Mach number. The results

for the two higher amplitudes, leaving the constraints of the discrete grid resolution, show a converging

trend in the prediction. As for the Euler results this smooth trend for the elements should be considered

as physically more meaningful. A trend for the last region with shock–induced boundary layer separation

at Mach 0.83 is less easy to establish. While the real part of the considered element shows relatively little

(SA model) to essentially no spread (SST model) between the different amplitudes, the imaginary part

behaves more or less like in the second region of interest. Also, the real part gives a distinct difference

between the two turbulence model which should be related to the behaviour of the individual turbulence

model in separated flow. It must also be said that more than one Mach number would be required

to establish a clear picture of whether or not there is large spread since it is not known where on the

nonsmooth curve the simulation is done.

When dealing with uncertainty in the prediction of aeroelastic stability, the impact of this nonsmooth

trend should be included in the discussion in particluar when using an analysis algorithm based on steady

state flow solutions. For the extraction of elements for the Schur correction matrix based on forced time

domain simulations, an excitation amplitude with an order of about 10−2 seems to be sufficient and will

be used.
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Figure 7. Effect of excitation amplitude on oscillatory behaviour in transonic regime showing results of

RANS flow models using Spalart–Allmaras (SA) and Menter’s shear–stress transport (SST) turbulence

modelling.

Alternatively, instead of exciting all structural states simultaneously, the structural state of interest

could be forced at several frequencies at once which would give the corresponding column of the cor-

rection matrix at these distinct frequencies, or each structural state could be excited at each frequency

individually. Of course, the time–step ∆t for the forced motion simulation has to be chosen to resolve

the dynamic content of the highest frequency accurately. Therefore, a number of simulations has been

made with the target to extract the Schur correction matrix at four discrete frequencies using different
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Mach 0.6 Mach 0.8

32 steps 64 steps 128 steps 32 steps 64 steps 128 steps

1f (ltd) 1.26 0.32 0.10 1.01 0.33 0.25

4f (ltd) 7.12 1.87 0.46 14.6 2.78 0.61

4f (ntd) / / 0.49 / / 0.66

fp (lfd) 17.5 108

Table 4. Root mean square error of different approaches to extract Schur correction elements compared

to linear frequency domain Euler results; lfd – linear frequency domain, ltd – linear time domain, ntd –

nonlinear time domain.

approaches. In Table 4 the root mean square error (RMSE) of the different approaches is summed for

all Schur elements and for all four discrete frequencies and compared to a linear frequency domain Euler

solution as reference. Mach numbers at 0.6 and 0.8 are considered. The discussed approaches include

linear time domain simulations exciting one frequency per structural state at a time (1f) and exciting

four frequencies per structural state simultaneously (4f). Obviously, exciting only one frequency at a

time requires four unsteady simulations per structural state. Also, a nonlinear time domain solution with

a simultaneous excitation in four frequencies and a linear frequency domain solution for a FP simulation

are presented. The RMSE is calculated as

RMSE =

√

√

√

√

1

N

N
∑

n

(

1 − Sc
n

Sc,ref
n

)2

× 100 [%] (19)

where the index n runs over all elements of the correction matrix at all frequencies. The large error

of the lower–level FP simulations compared to the higher–level Euler formulation is distinct building

confidence in the quality of the time domain based extraction. Also, the table gives an good impression

that a finer time step is required to have a comparable error when exciting several frequencies at the

same time. The method of choice would depend on the information that is sought, for instance if there

is a dominant term in the matrix then it is useful to excite this term at several frequency to get many

data points.

Another interesting point was observed. It appears that the correction elements in the second column

(sensitivity to plunge rate) have the same absolute value with opposite sign compared to the elements

of the third column (sensitivity to pitch angle). An explanation to this can be found for instance by

looking at the classical aerodynamic theory of Theodorsen [36]. Here, an increment in the pitch angle

produces a contribution to the overall lift equal to an increment in the plunge rate but with opposite

sign. Thus, a positive deflection in the pitch angle produces a positive lift whereas a positive deflection

in the plunge rate (positive upward) produces a negative lift. This is illustrated in Fig. 8 for two relevant

elements showing real and imaginary part for the Euler and the FP models at a Mach number of 0.75. It

can be seen that the real part of the chosen elements have almost identical absolute values for the Euler

formulation while the difference in the FP results is more distinct. The imaginary part also shows a

bigger difference for the Euler model. It is interesting to remark that the response to the pitch deflection

(coloured black) of the FP model agrees better to the Euler values than the response to the plunge rate

(coloured red). This behaviour has been found to be consistent for all considered Mach numbers. The
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question is whether this is a feature of the flow model, the discretisation or an indicator of an error in

the code.
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Figure 8. Illustrating the effect of deflections in plunge rate and in pitch angle for the NACA 0012 aerofoil

configuration.

Apparently, the forced time domain simulations contain the main cost of the approach considering that

the eigenvalue–based formulation was developed in the first place to avoid excessive unsteady simulations

in predicting aeroelastic instabilities. For how much it accounts is considered next. As discussed in

Section 3.1, an Euler steady state solution in subsonic and low transonic flow on a grid with 15k control

volumes is found in less than half a minute of CPU time. In the higher transonic regime this should

be multiplied by a factor of about three. Performing the forced motion simulations was found to be

more or less independent of the considered Mach number. Creating the Schur correction matrix at one

distinct combination of Mach number and frequency requires one unsteady simulation for each relevant

column of matrix Afs, i.e. states of the structural model with plunge rate, pitch and pitch rate. The

plunge state is irrelevant. With the time–linearized formulation it involves about 3 to 5 times the cost

of a subsonic (or low transonic) steady simulation for one structural state. Here, the simulation is run

for four forced motion cycles with 32 time steps each while the Fourier coefficients are evaluated only

from the response during the last cycle. The nonlinear time domain approach has about twice the cost

of the linearized version. The linear formulation is faster since the unsteady residual is evaluated by a

simple matrix vector multiplication. Evaluating the Jacobian matrices and one Schur correction matrix

at an individual frequency with the linear frequency domain solver is about the same cost as simulating

a steady state. It involves solving a linear system on the second–order fluid Jacobian matrix against

each relevant column of matrix Afs.

Summarizing, the linearized time domain approach involves the costs of about 9 to 15 steady state

simulations to extract one Schur correction matrix at an individual frequency, while the nonlinear version

is about 18 to 30 steady state simulations. These results however should only be considered as estimates.

Also, the costs of the time–domain approach can be decreased by reducing the number of forced motion
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cycles (while a converged motion cycle is still required). Using the observation that the responses to

plunge rate and to pitch angle produce results of the same absolute value could be useful as well, however

this needs to be confirmed for cases with very strong shock waves and flow separation.
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5 Constructing a reduced order model

In the previous section different approaches to create the Schur correction matrix have been discussed.

Even though the Schur complement eigenvalue–based approach to predict aeroelastic stability is already

by many order of magnitude more efficient than common brute force time marching simulations, especially

when sensitivity to parameters requires a large number of evaluations, an alternative reduced order model

of the Schur complement formulation is introduced. Solving the full order Schur problem requires solving

2n linear systems on the exact (second–order) fluid Jacobian matrix where n is the number of DOF of

the structure. Generating the Schur Jacobian matrix to apply Newton’s method takes some considerable

computing time extra; in the current formulation another 2n linear solves are needed to build the series

as given in Eq. (10). Ways to approximate both the residual and the Jacobian matrix for the Schur

complement formulation are discussed in Ref. [23]. The reduced order model (ROM) of the Schur

correction matrix uses an interpolation technique which is based on samples of the full order model. The

kriging interpolation technique will be discussed first. Then, the ROM applied to the aeroelastic stability

analysis is presented.

5.1 Approximating the Schur correction matrix (the kriging predictor)

For computationally expensive simulations (numerical experiments) it is useful to generate a cheap

approximation (surrogate) based on relatively few runs of the expensive model to provide information

about its response at untried locations (parameter combinations of the model). Numerical experiments

are different from physical experiments in a sense that a repeated (deterministic) simulation gives exactly

the same result whereas replicated physical trials at the same conditions scatter around a mean answer

due to inherent variability. Computational experiments lack the random error. Thus, an approximation

model should both predict the calculated responses exactly and adapt to the functional behaviour of

the responses. The kriging (nonlinear least squares) interpolation technique (first developed in the field

of geostatistics) was introduced in Ref. [50] for deterministic simulations in computer–based disciplines.

It is also referred to as DACE (design and analysis of computer experiments) model. Different kriging

methods can be described which are distinguished by the way a functional trend is modelled; for instance

simple, ordinary and universal kriging. Simple kriging is applied for a constant and known mean value

whereas ordinary kriging estimates an unknown constant mean in the vicinity of interest. Universal

kriging (kriging with a trend) uses a smoothly varying low–order polynomial regression model which is

identical to ordinary kriging for a zeroth–order polynomial.

In the kriging approach a multidimensional deterministic response y(x) of a simulation is treated as

a realisation of a stochastic process composed of a low–order regression model and a random normally

distributed signal with zero mean and covariance σ2R. Here, σ2 denotes the process variance, i.e. the

variance of the input samples, and R = R(x, w) is the correlation between locations x and w. Thus,

the second term (the error term) is not independent at different locations but is related to the distance

between points in the parameter space. Focusing on the correlation structure rather than on a more

sophisticated regression model is an important feature of the kriging approach to reconstruct response

surfaces. The parameters of the computationally cheap kriging model are fitted to a provided set of
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numerical samples of the full order formulation by an optimisation process a detailed discussion of which

can be found for instance in Ref. [50, 51].

Consider a given set of n numerical experiments (samples) as S =
[

s1, . . . , sn

]T
and the corresponding

system response ys =
[

y(s1), . . . , y(sn)
]T

. For convenience a single scalar response y is assumed to be a

function of the m–dimensional input vector s. The expressions generalize for multidimensional responses.

The best linear unbiased predictor, herein referred to as the kriging predictor, minimizes the error of the

interpolation and was given in Ref. [50] as

ŷ(x) = f(x) · β + r(x) ·
(

R−1(ys − Fβ)
)

, (20)

where the first term is the regression model and the second term adjusts the prediction based on the

correlation. The kriging predictor approximates the system response at an unsampled location x in the

parameter space at the expense of only two scalar products on f(x) and r(x) once the model is formed.

It can be shown that the exact system response with zero error is interpolated at a sampled location.

The mean squared error ϕ2 of the predictor is evaluated by

ϕ2(x) = σ2
(

1 − r(x) · R−1r(x) + u ·
(

FT R−1F
)

−1
u

)

(21)

with the vector u(x) = FT R−1r(x) − f (x) and the process variance

σ2 =
1

n
(ys − Fβ)T R−1(ys − Fβ). (22)

The root mean squared error ϕ is referred to as standard error of the model and is a measure of uncertainty

in the prediction. The second term in Eq. (21) reduces the prediction error since the unsampled location

x is correlated with the design samples S, whereas the third terms adjust for errors in estimating the

regression model [51]. The vector of regression parameters β is the generalized least squares estimator

of the overdetermined regression problem Fβ = ys and is given by the expression

β =
(

FT R−1F
)

−1
FT R−1ys, (23)

as can be found in literature of statistics. Here, the n × p regression matrix F is written as

F =
[

f(s1), . . . , f (sn)
]T

(24)

with f as the basis vector of the regression model. For a zeroth–order regression model with p = 0,

matrix F is a n× 1 column vector filled with ones, whereas in the case of a linear regression model with

p = m + 1 the columns of the matrix are given by

f(s) =
[

1, s1, . . . , sm

]T
. (25)

For many situations a regression model with zeroth–order was found to be sufficient while a higher order

did not offer advantages [52]. The n × n correlation matrix R of the samples is built from the elements

Rij(θ, p, si, sj) =

m
∏

k=1

scf
(

θk, pk, s
(i)
k − s

(j)
k

)

1 ≤ i, j ≤ n (26)

where scf is a spatial correlation function of the arguments θ, p and the difference between samples si

and sj . The correlation parameter θk indicates the activity of the independent variable k, while pk is
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Aerofoil Ref. xcg xα rα ωr ζh ζα α0 µs

NACA 64A010 [41] 0.4 −1.8 1.865 1 0 0 0 60

NACA 0012 [19] 0.5 −0.2 0.539 0.343 0 0 0 100

Table 5. Parameters of aeroelastic aerofoil configurations.

a measure of the smoothness of the predictions in coordinate direction k. Several correlation functions

have been given in the literature reflecting characteristics of the system output. In this study exponential

and spline functions are used [53]. The exponential correlation function is written as

scf = exp
(

− θk

∣

∣s
(i)
k − s

(j)
k

∣

∣

pk

)

pk ∈ [1, 2] (27)

whereas the spline function is given by

scf =























1 − 15 ξ2
k + 30 ξ3

k for 0 ≤ ξk ≤ 0.2

1.25 (1− ξk)3 for 0.2 < ξk < 1

0 for ξk ≥ 1

(28)

with argument ξk = θk

∣

∣s
(i)
k − s

(j)
k

∣

∣. The optimal correlation coefficients θ and p are given by the

maximum likelihood estimate [50, 52] and minimize the expression det
(

R1/nσ2
)

having the vector of

regression coefficients β and process variance σ2. Finally, the vector r is written as

r(x) =
[

R1,1(θ, p, s1, x), . . . ,Rn,1(θ, p, sn, x)
]T

, (29)

and contains the correlations between the samples S and an unsampled location x.

The gradient of the predicted system response is

∇ ŷ(x) =

[

∂ŷ

∂x1
, . . . ,

∂ŷ

∂xm

]T

(30)

where the subscripts denote differentiation of the scalar system response with respect to the input

parameters. It is given as

∇ ŷ(x) = AT
f β + AT

r

(

R−1(ys − Fβ)
)

, (31)

with Af and Ar expressing the analytically evaluated Jacobian matrices of the vector of basis functions

f and the vector of correlations r with respect to the unsampled location x.

5.2 Model validation

In Ref. [51] the authors expressed the need to validate the kriging prediction, and therefore introduced a

number of diagnostic tests. Apparently, the best way to validate the model is to compare the prediction

with true response surfaces. This however is not feasible in general since if it was possible to evaluate the

true response surface then there is no need in evaluating the approximation. Instead the true response

could be evaluated at a few additional locations and compared to the kriging prediction. Since the latter

test requires additional runs of the expensive full order model, the technique of leaving–one–out cross

validation was discussed. Here, one design sample at a time is left out for evaluating the approximation
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model denoted by ŷ
−i(x) and the prediction of the model based on n − 1 samples is compared to the

true response of the left–out sample. This is done n times. Additionally, the so–called standardized

cross–validated residual was given as a second test and is written as,

cvr(si) =
y(si) − ŷ−i(si)

ϕ−i(si)
1 ≤ i ≤ n. (32)

A valid model should have the cross–validated residual in the interval from about −3 to 3 expressing a

confidence interval of 99.7%. These two diagnostic test are visualised in Fig. 9 for the kriging evaluations

of the Schur correction elements for the FPv and the RANS flow models as shown in Fig. 10.
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(d) RANS – second test

Figure 9. Two diagnostic tests for prediction model of Schur correction elements showing FPv and RANS

flow models; first test showing actual values vs cross–validated prediction and second test showing stan-

dardized cross validated residual vs cross–validated prediction.

Figure 10 shows the samples extracted from the full order solver and the corresponding kriging

evaluation of the element Sc
22 of the Schur correction matrix for a range of Mach numbers and frequencies

including real and imaginary parts. The considered structural model belongs to the NACA 0012 aerofoil
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aeroelastic configuration as shown in Table 5. Four aerodynamic modelling levels are presented including

FP, FPv, Euler and RANS. The samples were extracted using either one of the three discussed approaches

of linear frequency domain, linearized time domain, or nonlinear time domain. For the RANS nonlinear

time domain extraction the excitation amplitude was chosen to 7.5×10−3 following the results presented

in Section 4.2. The Euler results compare all three ways and include samples created in the Section 4.2.

Also, the Euler interpolation results show an exponential correlation function whereas the responses

of the other three flow models are correlated by the spline function. This is simply done to illustrate

the two correlation functions. For the relatively large number of samples presented in the figure either

correlation model gives good results as can be seen in the figure with the diagnostic tests. It was found

however that the exponential model proved to be more robust for the majority of cases considered at the

expense of losing smoothness compared to the spline model.
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Figure 10. Extracted and interpolated element Sc
22

of Schur correction matrix including real and imaginary

parts and using four levels of aerodynamic modelling; lfd – linear frequency domain, ltd – linear time

domain, ntd – nonlinear time domain.

The diagnostic tests shown in Fig. 9 include all 12 nonzero complex–valued elements of the matrix

using a zeroth–order regression model with exponential and spline correlation functions. The first test

shows very good agreement between the prediction and the true value as can be seen by the close scatter

around the 45 degree line. Especially for the FPv results this should not be too surprising since the

prediction is based on a very dense sampling. The less densely sampled RANS results build confidence
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in the approximation model. The second test also shows good agreement for both the spline and the

exponential correlation model. A few values are scattered outside the 99.7% interval for the second

diagnostic test. In Ref. [51] the target function is transformed by a simple logarithmic or inverse scaling

to improve the kriging model. However, this should not be attempted at this point since the vast

majority of test points lie well within the 99.7% confidence interval and in the following the constructed

approximation models applied to the aeroelastic stability analysis give excellent agreement to the full

order results.
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Figure 10. (con’t)

5.3 Application to aeroelastic stability analysis

As discussed in Section 4.1, evaluating the Schur correction matrix Sc based on the full order model

(FOM) of the flow solver accounts for the highest costs in the stability analysis. The kriging interpolation

technique makes it possible to form a reduced order model (ROM) of the Schur correction matrix based

on full order samples. Once the kriging predictor is evaluated the stability problem can be solved

without relying on the FOM solver. To solve the ROM for the prediction of instabilities the same

approach (using Newton’s method) as outlined in Section 4.1 is applied with the Schur correction matrix

readily available through the kriging predictor. The critical eigenvalue with zero damping is detected

using a bisection method applied to the bifurcation parameter at fixed Mach number. There is another

convenient aspect of the kriging method as discussed in Section 5.1. The derivative of the correction
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term in the Schur complement Sc
λ required in forming the Schur Jacobian matrix for Newton’s method

is evaluated analytically from the chosen regression model and the correlation function as part of the

kriging prediction as shown in Eq. (31). This avoids using finite differences to obtain the Schur Jacobian

matrix.

In the current formulation the ROM of the correction term is based on a purely imaginary eigenvalue

with zero damping λ = i ω (which allows extracting the Schur correction terms from forced time marching

simulations at the specified frequency ω), whereas the structural part uses the complete eigenvalue

including nonzero real part. Thus, the approximate Schur complement used for the stability analysis is

written as

S = Ss(λ, Ū) + Ŝc(ω, M) (33)

where Ŝc is the kriging predicted correction term of Sc. The dependence of the approximation model on

the Mach number is given by M . Interestingly, for the two degree–of–freedom aerofoil discussed in the

present study the correction term Sc is independent of the bifurcation parameter which is the reduced

velocity Ū . For more general three–dimensional cases the kriging model of the correction term would

then be built for instance at varying values of altitude as additional model dimension. At the critical

eigenvalue λF = i ωF the ROM is exact within the limits of the interpolation algorithm. The implications

of the approximation Ŝc(ω, M) are presented in Fig. 11.
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Figure 11. Mode tracing of least stable mode for NACA 0012 aerofoil configuration using Euler flow

model and showing a comparison between full order model (FOM) and the approximate reduced order

models (ROM) for the Schur correction term with damping terms Ŝc(λ) and without damping terms Ŝc(ω)

included in the design samples.

The figure shows the tracing of the least stable aeroelastic mode at two freestream Mach numbers

for the NACA 0012 aerofoil configuration using the Euler flow model. The structural parameters for

this configuration are described in Table 5. The increment in the reduced velocity Ū is 0.1 (giving

∆V = 0.01) starting from 1.0. The calculation of about 60 points on the root locus with increasing

bifurcation parameter takes less than a second of CPU time with the ROM, whereas the same number

of points with the FOM using a grid with 15k control volumes takes more than an hour of CPU time.

29 of 49



Two simulations using different ROMs are presented in the figure. One uses full order samples with zero

damping and varying frequency to build the kriging predictor and is denoted as ROM (w/o damping),

whereas the second ROM was constructed with samples at fixed Mach numbers for both varying frequency

and damping. All samples were extracted using the linear frequency domain approach.

It can be seen that as a first approximation the relevant eigenvalue with the smallest value of damping

can be traced quite precisely even away from the imaginary axis without including damping in the design

matrix of the predictor. In the discussed case the error for the tracing introduced by the approximate

Schur correction term Ŝc(ω) is very small in the relevant region close to the imaginary axis. This basically

suggests that the variation of the Schur correction elements with the real part of the eigenvalue is small

or at least that the influence of this variation on the eigenvalue problem is small. This observation is

confirmed in Fig. 12 showing the element Sc
22 as a function of damping and frequency. In the figure it

was necessary to remove samples at low damping and low frequency since these adversely affected the

construction of the interpolation model. The discussed samples interferred with fluid eigenvalues and

caused an ill–conditioning of the problem in Eq. (5). The tracing of the ROM based on the cheap model

illustrated in Fig. 12 follows precisely the results of the FOM. Also, it is found for the ROM based on

zero damping samples that outside the coverage with full order samples which is between frequencies of

0.12 and 0.5 the error of the tracing gets worse compared to the FOM. The predictor based on damped

samples covers a larger frequency region.
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Figure 12. Extracted and interpolated element Sc
22

(λ) of Schur correction matrix including trace of eigen-

value for Euler flow model at Mach 0.7.

Figures 13 and 14 present more results of the NACA 0012 aerofoil aeroelastic configuration. Results

for a range of sub- and transonic Mach numbers are given for all four considered aerodynamic modelling

levels. Figure 14 shows one element of the Schur correction matrix obtained by kriging interpolation

from the full order samples together with the trace of the instability points in terms of combinations of

Mach number and critical frequency. In Fig. 13 a comparison between the FOMs and the ROMs is shown

for the instability boundary presented as critical flutter speed index VF = ŪF /
√

µs and the instability

frequency ωF . More than 100 instability points were calculated with the ROM for each flow modelling

level. The agreement between ROMs and FOMs is excellent as should be expected since the resolution

of the full order samples is high as can be seen in Figs. 10 and 14. Also, time–accurate simulations to
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confirm the RANS predictions are included for two Mach numbers with the plus sign (tilde) indicating

a stable (unstable) response due to an initial disturbance. The somewhat constant offset between Euler

and RANS results suggest that the boundary layer as predicted by latter modelling level has a stabilizing

effect on the configuration. Furthermore, it seems that the shock dynamics, which are correctly predicted

by the Euler model, act as the dominant mechanism for the aeroelastic instability compared to viscous

effects (in this case and at the shown Mach number range). Indeed, comparing to the flow solutions it

can be seen that shallow separation due to shock wave impingement is first encountered at about Mach

0.81 to Mach 0.82. The effect of separation on the stability prediction will be discussed in a later section.
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Figure 13. Instability boundaries and frequencies for four levels of aerodynamic modelling showing com-

parison between full order model (FOM) and reduced order models (ROM).

The differences between high–level and low–level results require further attention. First, even for

lower (purely subsonic) Mach numbers there is an offset between both the inviscid (Euler and FP) and

viscous (RANS and FPv) critical flutter speed indices, while the instability frequencies agree better.

The reason for the disagreement in the flutter speed index is not found to be the grid resolution since

the results present grid–converged solutions meaning that inspected finer grids (results of which are not

presented) did not change the results notably. However, the influence of the grid topology (structured

vs unstructured) cannot be estimated. Another possible factor could be in the distinct applied spatial

discretisation schemes including different treatment of boundary conditions for the high–level and the

low–level solver. For instance, the low–level solver uses a transpiration boundary condition with fixed ge-

ometry on solid surface whereas the high–level solver explicitly deflects the geometry. On the other hand,

the discrepancy is about one percent and should not be too much of a concern. Secondly, in the transonic

dip the violation of the isentropic and irrotational assumptions of the FP solver becomes evident. The

formed shock wave is overpredicted by the FP method compared to the Euler prediction resulting in an

increased difference in the instability boundary starting from about Mach 0.75. Interestingly, despite

estimating the shock location quite accurately, the FPv instability prediction also deviates considerably

in the transonic dip region. However, the other side of the dip with the strong rise in the flutter speed
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index is simulated correctly compared to Euler and RANS. These points will need more efforts to be

understood, and including a shock–correction model as an additional submodel in the lower–level solver

may give answers.
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Figure 14. Extracted and interpolated element real(Sc
22

) of Schur correction matrix including trace of

instability boundary; lfd – linear frequency domain, ntd – nonlinear time domain.

As a first attempt to explain the differences, the different boundary conditions are considered. Since

a FP formulation with moving grids is currently not available, a transpiration boundary condition was

included in the Euler formulation. Interestingly, for the stability analysis as presented herein the tran-

spiration boundary condition only affects the Jacobian matrix block Afs in Eq. (3) and implementing

the boundary condition is easily done. Therefore, the computational mesh is rigidly deflected to set the

values in the halo cells used to enforce a tangential flow condition at the solid surface. Then, the original

grid is restored while keeping the updated halo values to evaluate the fluxes. The results for the stability

analysis with the transpiration boundary condition are shown in Fig. 15. Indeed, it can be found that

the modified boundary condition has a slight influence on the aeroelastic stability. Compared to the

results of the original boundary condition the critical flutter speed index is reduced and approaches the

FP results. The differences due to the boundary conditions can be found in the structure of matrix

Afs. Moving the entire computational domain as done for the original boundary condition creates a

dense matrix Afs, i.e. the structural response is felt in the entire flow domain, whereas the transpiration

boundary conditions fills the matrix sparsely for control volumes close to the surface and affected by the
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halo information. The critical flutter speed index of the FP formulation is closely followed until about

Mach 0.75. As discussed before at this point the underlying modelling assumptions are violated by the

forming strong shock wave. Still, the difference in the solid wall boundary condition does not explain

the behaviour in the transonic dip since the FPv formulation predicts the shock location accurately.
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Figure 15. Influence of transpiration boundary condition on aeroelastic stability prediction for Euler flow

modelling; tbc – transpiration boundary condition.

Using the FOM, the prediction of one instability point takes more than 10 minutes of CPU time for

the Euler model with 15k control volumes not including the time to obtain the steady state solution, while

the FP model on a grid with 5k control volumes requires about 15 seconds of CPU time depending on

the number of iteration required to achieve the convergence criterium on the real part of the eigenvalue.

On the other hand, the evaluation of 100 instability points using the ROM takes about 10 seconds of

CPU time independent of the size or fidelity of the original full order model. The difference in CPU

time between the Euler and the FP solver, despite having such an efficient linear solver for the high–level

model as shown in Tables 2 and 3, comes from the way of solving the involved linear system for the fluid

Jacobian matrix of the form Ãy = Afs for each column of the right–hand side matrix to find the Schur

residual and the Schur Jacobian matrix. Here, Ã represents the matrix (Aff −λI). The lower–level code

uses a direct solver which as a first step factorizes the coefficient matrix as Ã = LU . The factorization

done for each new value of the eigenvalue covers most of the costs. Then, the second step is to solve

the linear system by performing forward and back substitution on each of the right–hand sides using the

factors L and U which is cheap compared to the factorization. The higher–level solver uses a tailored

linear solver which does not offer such an initial factorization but solves the complete linear system for

each right–hand side. Thus for the considered cases with about 10k control volumes, the direct solver

performs better especially with increasing number of modes (right–hand sides). However, the costs to

evaluate the factorization directly scale badly with larger dimensional systems. Consider Table 6 showing

the CPU time for one linear solve (LSOLV) on the fluid system (FS) and the eigenvalue problem (EV)

to achieve the required tolerance (LTOL). The CPU time for the eigenvalue part in FP model includes

the LU–factorization and solving for one right–hand side, whereas for the Euler model the CPU times
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Model CV FS–LSOLV FS–LTOL EV–LSOLV EV–LTOL

FP 5k 0.3 / 0.5 + 0.03 /

15k 1.6 / 2.8 + 0.13 /

33k 4.5 / 8.0 + 0.30 /

Euler 15k 0.08 10−2 0.6 + 5.00 10−9

Table 6. Performance of direct and linear solver for one linear solve.

for the preconditioner and one linear solve are given. The FP grid with 33k control volumes creates a

linear system of about the size of the Euler grid with 15k control volumes since there are 4 unknowns in

the two–dimensional Euler equations compared to 2 unknowns in the FP model.

Remarks

Strictly speaking, one contribution is missing in the reduced order models compared to the full order

versions. The structural part of the Schur matrix Ss contains terms of the form ∂Cl/∂α and ∂Cm/∂α, i.e.

the dependence of the structural residual on the structural unknowns through the integrated aerodynamic

forces. However, it was found that these contributions are very small for the considered cases and hardly

affect the Schur complement elements, and thus not justifying the efforts of inclusion at the present

point. This can be seen in the agreement between ROM and FOM results as presented herein. The

uncertainty due to the kriging interpolation is considered to be far more significant.

As with any ROM, the costs to construct the ROM have to pay off. The model has to be used in

repeated simulations to establish a picture about aeroelastic stability for the space of parameters that

are covered by the ROM. There are however already two positive aspect justifying the costs in building

the ROM as it stands. One is the access to the RANS modelling level (and flow modelling of any higher

fidelity). Full blown RANS aeroelastic stability analysis over a large range of Mach numbers (i.e. avoiding

time–accurate simulations) has not be done within the Schur framework before. The second aspect is

the observation that evaluating the Schur correction matrix at discrete Mach numbers, frequencies (and

damping values) to build a ROM used in the stability analysis is computationally more efficient than

directly using the FOM since iterating on the full order system to converge the solution is avoided.

On the other hand forming the Schur correction matrix does not require iterations at a given parameter

combination while iterating on the ROM is very cheap. Another aspect will be in addressing aerodynamic

uncertainty in aeroelastic prediction.
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6 Reducing costs to construct reduced order model

The costs to create the reduced order model, i.e. the number of design samples to adequately represent

physics, is a limiting factor in the analysis especially when an expensive high–fidelity flow model is used.

There are two main aspects to this which are discussed in this context. First, the large number of full

order samples as used for the kriging predictor in Fig. 10 does not seem to be necessary, and the number

actually required to accurately build the response surface can be reduced by an appropriate sampling

technique. Secondly, a cheap low–fidelity model can be exploited to get valuable information about the

aeroelastic stability prediction using an expensive high–fidelity model.

6.1 Sampling techniques

Sampling methods to generate valuable information used for the construction of an interpolation (sur-

rogate) model can be divided into a priori and a posteriori methods. A priori methods initially generate

samples without information about the functional behaviour of the considered problem hereby simply

relying on the dimensions of the input parameter space. Using intermediate information of the approxi-

mation model such as a measure of the maximum error allows placing samples in these critical regions.

Thus, the samples are generated sequentially based on the current realisation of the approximation

model. This is referred to as a posteriori.

A first sampling technique has already been presented in Fig. 10. Here, the so–called (rectangular)

grid sampling has been applied. It should be referred to as brute–force sampling due to the (unnecessary)

large number of design sites. Latin hypercube (LH) sampling can be considered as an improved version

of random (Monte Carlo) sampling [54]. While random sampling creates parameter combinations inde-

pendently (and possibly without providing additional information), LH sampling ensures that all parts

of the parameter space are represented. Therefore, each dimension of the parameter space is divided into

a specified number of non–overlapping bins of equal probability. One sample per dimension is randomly

chosen from each bin and then randomly combined with the samples from the other parameter dimen-

sions. LH sampling is presented in Fig. 16 for the FP flow model showing the element real(Sc
22) of the

Schur correction matrix for combinations of Mach number and frequency. Kriging predictions based on

8 and 32 design points are presented.

Initially, four samples have been placed at the corners of the parameter space to avoid extrapolation.

The dimension of the parameter space is defined to provide a good range for initial blind search with

the Mach number limits coverning the region of interest and the frequency limits based on typical flutter

frequencies. The remaining design points have been generated by LH sampling. Looking at the figures

it can said that even a few samples can approximate the target reasonably precisely. However, more

LH samples are required to guarantee that the response surface is constructed correctly. Despite having

some local extrema around the domain boundaries of the parameter space shown in Fig. 16(c) the region

of immediate interest for the aeroelastic stability analysis is located away from the boundaries, and then

the LH samples provide a good basis for the kriging predictor. The latter point is illustrated in Fig. 17(a)

showing the critical flutter speed index (as the true measure for the quality of the approximation) for all

four kriging models based on LH sampling as given in Fig. 16 and compares to the full order reference
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Figure 16. Element real(Sc
22

) of Schur correction matrix for NACA 0012 aerofoil configuration using latin

hypercube (LH) sampling and FP flow modelling.

solution of the FP flow model. The figure shows that the approximation models based on only 8 samples

are not good enough compared to the reference solution, particularly the model denoted by (a) and

corresponding to Fig. 16(a). The kriging predictions based on 32 samples show good agreement until

about Mach 0.8 where model (c) deviates considerably.

Grid sampling and LH sampling are examples of a priori techniques. A first a posteriori sampling

approach would naturally use a standard measure of the kriging predictor error provided in the frame-

work. The location in the parameter space where this measure of error is maximized would then be the

logical choice for the next sample. The technique herein referred to as MSE sampling (for mean squared

error) uses the expression in Eq. (21). It is shown in Fig. 18. Initially a number of LH samples is created

to allow evaluating the kriging model and to provide a somewhat filled parameter space. In the figure

it can be seen that the response surface is well predicted showing less irregularities compared to the LH

sampling with the same number of samples. It should be remarked that MSE sampling is a space–filling

approach just as LH sampling except that the parameter space is filled a posteriori according to the

error of the kriging model. Since the kriging error depends on the chosen correlation model with the

correlation being weighted by the distance between samples, the new sample location is likely to be

found near the point maximizing the distance to all surrounding samples while also including the degree

of correlation between the samples. Compare the expression in Eq. (21). Thus, MSE sampling is an
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Figure 17. Critical flutter speed index shown for different sampling techniques using the FP flow model

and compared to the full order reference solution.

improved space–filling algorithm. The predicted critical flutter speed index important for judging the

quality of the kriging model is presented in Fig. 17(b). The two shown sample resolutions give a very

good agreement to the reference solution. The difference between the two approximations lies in the

number of initial LH samples.

The approach of cross–validation as discussed in Section 5.2 is another useful measure of error to

locate samples for the kriging model. Leaving–one–out cross validation evaluates the kriging predictor as

many times as there are samples while one sample is left out each time. The differences between either the

full and the cross–validated predictions or the associated errors are analysed to give a measure relating

the sample sensitivity and the standard kriging error [55]. However, it was found that sampling based

on cross–validation did not prove to be superior to standard MSE sampling in the current application.

Therefore, it should not be considered further at this point.
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Figure 18. Element real(Sc
22

) of Schur correction matrix for NACA 0012 aerofoil configuration using

sampling based on maximum of mean squared error (MSE) in the kriging formulation with different

numbers of initial latin hypercube (LH) samples.
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Inspecting the figures with the elements of the Schur correction matrix, it can be said that changes

in the freestream Mach number have a more significant influence on the shape of the elements than

changes in the eigenvalue (frequency). The dependence of the Schur elements on the damping part of the

eigenvalue was found to be almost linear in the vicinity of the imaginary axis, compare to Figs. 11 and 12.

Therefore, more samples should be placed in the dimension of the Mach number, less in the dimension of

the eigenvalue. Another observation is that in the subsonic regime the response of the Schur correction

elements can be represented by simple polynomials, and therefore only a few points are required in both

dimensions. Once the steady state flow solution exhibits shock waves sampling in Mach number should

be refined. Lets refer to sampling based on these observations as directed grid sampling; directed in

a sense that general information of the dependencies on the steady state flow solution is included in

choosing sample locations. The relatively little number of samples required for the eigenvalue dimension

is convenient for exciting several frequencies simultaneously in the time domain approach as discussed

in Section 4.2.

The approach of directed grid sampling is presented in Fig. 19 for the FPv flow modelling using the

NACA 0012 aerofoil configuration, and in Fig. 20 for a refined search space since the initial search space

showed that a third of the samples are basically redundant. The corresponding instability boundaries

showing critical flutter speed index and critical frequency are given in Fig. 20. It is evident that the

refined search space provides an even better prediction compared to the results for the initial parameter

space. Both sample resolutions do not precisely predict the bottom of the transonic dip compared to

the full order reference solution. Here, the changes with Mach number would require more samples.

Nevertheless it is a good conservative prediction of either reduced model.
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(a) Directed grid sampling
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(b) Refined directed grid sampling

Figure 19. Element real(Sc
22

) of Schur correction matrix for NACA 0012 aerofoil configuration using

directed grid sampling for the FPv flow model with 30 samples.

6.2 Using lower fidelity information to establish higher fidelity model

The construction of a high fidelity reduced order model could be assisted by information provided by a

lower fidelity model. A lower fidelity model could be established by either using a lower aerodynamic

modelling level or by using the higher fidelity model on a coarser computational mesh. In both cases the

lower fidelity model should capture the relevant physics qualitatively correct (to provide the trend/limits
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Figure 20. Instability boundary of NACA 0012 aerofoil configuration using reduced order model based on

directed grid sampling and showing critical flutter speed index and frequency for FPv flow modelling.

of the prediction) while the higher fidelity model would then refine the prediction at reasonably little

additional costs. For instance the FPv formulation could be used to assist in predicting the effects of

separation on aeroelastic stability. Of course, the fundamental limitations of both the FP formulation

and the integral boundary layer formulation would hemper an accurate prediction compared to RANS.

FPv would provide a general trend though and helps in choosing correctly a Mach number and frequency

interval (or more generally a critical parameter range) for the RANS search which then simulates the

relevant physics correctly.

A first example is shown in Fig. 19 with the directed grid sampling. Imagine not much is known

about the aeroelastic response of a configuration. Then, the response surface is constructed using the

cheaper FPv formulation with a large number of samples to cover a larger parameter range. Doing the

stability analysis on the kriging–based ROM for the FPv flow modelling reduces the parameter domain

of relevance for the sample locations of the higher–fidelity RANS model saving costs instead of searching

a large domain with an expensive model. (Note that Fig. 19(b) shows a refined search using FPv.)

Taking a step further, the shape of the response surfaces of the lower–level flow models clearly shows

similar features compared to the higher–fidelity model as can be seen in Fig. 10. This is not surprising

since the same physics are considered. To speak in terms of the statistical approach used for the kriging

prediction; the low–fidelity response is spatially correlated with the high–fidelity response. This can be

exploited using the co–kriging modelling technique. There is some confusion in the literature across the

different disciplines and subjects about what techniques should be referred to as co–kriging. In this work

all kriging–like techniques that use additional information on the functional behaviour of the response

rather than just the response itself to establish the cheap kriging predictor shall be referred to as co–

kriging. Three distinct approaches have been found in the literature related to aeronautical sciences

and applied to the prediction of aerodynamic loads and in generating aerodynamic look–up tables for

conceptual aircraft design. For convenience, only a single scalar response for a multidimensional input
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is considered in the following, compare Section 5.1.

First, the gradient–enhanced kriging (GEK) approach includes both the function and its gradient in

the model construction,

ys =

[

y(s1), . . . , y(sn),
∂y(s1)

∂s1
, . . . ,

∂y(sn)

∂sn

]T

, (34)

where the scalar response y is differentiated with respect to all input dimensions of s. Since more

information is provided in terms of the gradient this approach is meant to be more efficient in higher

dimensional problems with fewer sample compared to standard kriging.

A second approach uses a spatially correlated co–variable (or auxiliary variable) to augment the input

design parameter space of the primary variable. Generally, the primary variable represents the system

response of a more expensive higher–fidelity (HF) model which, consequently, is only sampled at relatively

few points in the parameter space, whereas the co–variable is found from a cheaper lower–fidelity (LF)

model which can be sampled densely. The cheaper model could be established in this context either by a

lower–level aerodynamic modelling approach or by a higher–level model run on a coarse grid as mentioned

earlier. Apparently, since the HF and the LF models describe the same phenomenon the system response

is generally correlated. Then, the LF model would provide a trend of the system response with the HF

data updating the prediction. Thus, the kriging predictor for the primary variable is constructed using

ys = [y(s̃1), . . . , y(s̃n)]T , (35)

where s̃ =
[

s, ŷlf(s)
]T

. The co–variable response ŷlf is required at the location of the HF samples and

obtained either by an intentionally placed sample or by its kriging–based prediction.

The last approach uses so–called bridge functions (scaling functions) which construct an unknown

function to assist in updating the lower–fidelity model. In this approach essentially two kriging predictors

are formed; one for the lower–fidelity model and one for the additional function. Considering an additive

bridging formulation, the unknown function η is formed as the difference (error or offset) between the

models of variable fidelity,

ηs =
[

yhf(s1) − ŷlf(s1), . . . , yhf(sn) − ŷlf(sn)
]T

(36)

where the LF data are interpolated at the HF sample locations. Then, the HF response at an unsampled

location x is predicted using

ŷhf(x) = ŷlf(x) + η̂(x), (37)

where η̂ is kriging–predicted bridge function. Various variants have been presented including multiplica-

tive and hybrid formulations [56] details of which shall not be given herein.

Theoretically, all flow models give the same response in the sub- and low transonic regime with the

exception of viscous effects, i.e. the Euler model should agree to the FP formulation while RANS and

FPv prediction are accurate compared to each other. The differences as found in the preceeding sections

should be attributed to the applied discretisation schemes as well as the treatment of boundary conditions,

compare for instance Section 5.3. Then, one higher–fidelity modelling sample should be sufficient to give

the correct level of the response while a densely sampled lower–fidelity approximation model provides

the trend in the dimensions of the response surface. Using the co–variable approach with augmenting
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the high–fidelity data with the low–fidelity prediction would require a minimum number of high–fidelity

design samples depending on the order of the regression model, for instance a linear regression model

then requires at least four expensive samples for the three input dimensions (two high–fidelity dimensions

plus the augmented dimension). Instead, a standard low–fidelity kriging model can be used with the

prediction shifted according to the offset between high– and low–fidelity information. This shift however

would be small for most elements of the Schur correction matrix except for the elements that are strongly

dependent on the flow model discretisation. Also, the low–fidelity data would indicate where to put the

important high–fidelity sample. Then, the samples saved in the subsonic and low transonic regime can

be invested in the nonlinear transonic regime. These points however will need further discussion.
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7 Isogai case — strong shock/boundary layer interaction

The NACA 0012 aerofoil aeroelastic configuration used for developing the methods presented a case

with dominant shock dynamics. Now, a case with strong shock/boundary layer interaction is considered.

The Isogai case as introduced in Section 3.2 shows a distinct s–shaped appearance of the instability bound-

ary in the deep transonic regime for inviscid modelling levels. Several authors using either thin–layer

Navier–Stokes (TLNS) [42] or coupled Euler/integral boundary layer [44] modelling have demonstrated

that viscous effects fill the transonic dip and remove the double–valued critical flutter speed indices.
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Figure 21. Instability boundary of Isogai test case showing critical flutter speed index and critical fre-

quency; flow modelling with Euler and RANS equations.

Figure 21 presents the instability boundary showing critical flutter speed index VF and critical fre-

quency ωF . A comparison between Euler predictions from the full order and the reduced order model

is discussed where the full order samples for the construction of the ROM were obtained by the linear

frequency domain approach. The computational grid used for the Euler simulations with 16k control

volumes differs from the grid applied for the discussion in Section 3.2. The RANS predictions are based

on a ROM constructed from forced nonlinear time domain simulations and illustrate the effect of strong

shock/boundary layer interaction on aeroelastic stability. Time–accurate results are included to build

further confidence in the eigenvalue based results and to confirm the RANS prediction.

Figure 22 describes element Sc
22 of the Schur correction matrix for the Euler–based ROM including

the design samples and the trace of the critical eigenvalue. Using this ROM the instability boundary is

correctly predicted for both the critical flutter speed index and the critical flutter frequency compared

to the full order results as can be seen in Fig. 21. The oscillations in the instability boundary found for

the full order predictions have been discussed in Ref. [49] and related to the numerically discrete shock

movement with increments in Mach number. For the used resolution of full order samples it can not be

expected that these oscillations are predicted by the interpolating ROM. The second unstable aeroelastic

mode for high values of the flutter speed index is not completely resolved by the ROM though is still a

very good prediction. The agreement to the time–accurate results is excellent throughout.

42 of 49



0.6 0.65 0.7 0.75 0.8 0.85 0.90.2

0.3

0.4

0.5

0.6

−0.25

−0.2

−0.15

−0.1

−0.05

0  

Mach number

 frequency

re
al

(S
ijc )

samples − lfd
instability point

(a) Real part

0.6

0.7

0.8

0.9 0.2

0.3

0.4

0.5

0.6
−0.2

−0.1

0

0.1

0.2

 

frequency
Mach number

 

im
ag

(S
ijc )

samples − lfd
instability point

(b) Imaginary part

Figure 22. Real and imaginary part of element Sc
22

of Schur correction matrix for Euler flow model

reconstructed by globally defined reduced order models for the Isogai test case including traces of critical

eigenvalue.

The initial guess of the parameter range of interest (blind search) to evaluate the ROM for the RANS

prediction is based on the Euler results. However, the Euler predictions are misleading for the RANS

simulations once strong boundary layer separation due to shock impingement is encountered. This can

be seen in Fig. 23 describing element Sc
22 for the RANS–based ROM including the design samples and

the trace of the critical eigenvalue. Here, the variation in frequency ranges from 0.2 to 0.6 which is

reasonable for the Euler results to include the second branch of the first unstable mode and to find the

second unstable mode. In the figure the trace of the critical eigenvalue leaves the coverage of the full

order RANS samples and one should refrain from using the kriging predictor for extrapolation as can be

seen in Fig. 21 where the time–accurate results clearly deviate from the eigenvalue—based prediction.

Therefore, it was not found to be useful to extend the instability boundary based on the current samples

for the RANS flow modelling beyond about Mach 0.87. The ideas as presented in Section 6.2 about

using a lower–fidelity model that contains the important phenomena, i.e. flow separation, to build a

higher–fidelity model become evident. Instead of basing the critical parameter range on the Euler results

the FPv results should be used since the latter formulation would be able to predict the separated flow

effect.

While the Euler–based ROM can be considered as a global ROM for the whole domain of interest, it

was found to be more convenient to split the RANS–based ROM into two parts; one for lower and one for

higher Mach numbers with an overlap in between. The lower Mach numbers reach from the subsonic to

the transonic regime with slight shock–induced boundary layer separation, whereas the second part covers

strong shock/boundary layer interaction (SBLI). The definition of slight and strong SBLI is somewhat

ambiguous; slight SBLI should include limited separated regions in the vicinity of the shock impingement,

while strong SBLI includes massively separated flow extending to the trailing edge. A globally defined

RANS–based ROM covering the complete Mach number range was difficult to obtain, i.e. an optimal

correlation coefficient θ for the kriging predictor was not found, due to the complexity of the shape in

the response for strongly separated flow and the prediction in the sub- and lower transonic regime were

adversely affected (results of which are not presented herein).
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Figure 23. Real and imaginary part of element Sc
22

of Schur correction matrix for RANS flow model

reconstructed by two locally defined reduced order models for the Isogai test case including traces of

critical eigenvalue.

The RANS–based prediction of aeroelastic stability shows differences to the Euler–based prediction.

As for the NACA 0012 aerofoil configuration for sub- and low transonic Mach numbers the viscous effects

seem to have a slightly stabilizing effect on the configuration. In the Mach number region where the

impinging shock wave causes distinct boundary layer separation the sudden (almost vertical) increase

in the critical flutter speed index can be seen removing the multiple bifurcations, and this is consistent

with the observations given in Refs. [42,44]. A comparison on pressure distributions Cp and skin friction

coefficient Cf is presented in Fig. 24 for three distinct Mach numbers of interest. In the current study

time–marching full blown RANS simulations confirm this trend accurately.

It shall be attempted to interpret the differences in the shape of the predicted Schur correction

element Sc
22 between the Euler and the RANS flow models. For subsonic Mach numbers (critical Mach

number of NACA 64A010 is about 0.765) there are hardly changes to the shape of the predicted element

for both real and imaginary parts. A first order polynomial seems to be appropriate to describe the

changes in the dimensions of Mach number and frequency analytically. Then, with the development of

the transonic shock wave there is a rapid change of the shape more distinct in the dimension of the Mach

number than the frequency. With the development of strong shock–induced flow separation (at about

Mach 0.85) there are clear differences between the RANS and Euler results (especially for the imaginary
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part). The RANS–based elements develop a second plateau stopping the rapid change as found for the

Euler elements which now also describe a stronger variation in the dimension of the frequency. The latter

observation could be related to the multiple bifurcations found in the Euler prediction. A similar trend

is found for all non–zero elements of the Schur correction matrix.
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Figure 24. Pressure distribution and skin friction coefficient at three distinct Mach numbers for Isogai

test case.

The strongly varying shape of the RANS elements for high Mach numbers requires further attention

as it can not be said definitely that the extraction of the Schur elements based on nonlinear forced

motion is precise for strongly separated flow. Repeated simulations at the same Mach number/frequency

combinations but at different motion amplitudes seem to be useful to find an estimate of the involved

error. Also, comparisons between individual vs simultaneous (either in frequency or in structural states)

excitations should be attempted.
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8 Conclusions and Outlook

The approach presented in this paper exploits the formulation of the Schur complement framework

and builds a reduced order model using the kriging interpolation algorithm for the fluid dominated part

of the Schur complement matrix based on samples of the full order model. The flow models are presented

along with benchmark results. Ways to extract the samples are discussed and related issues such as shock–

induced oscillations in the system response are analysed. While the basic Schur complement formulation

is already significantly faster than common time–accurate approaches, the reduced order formulation

proves to be computationally more efficient than the basic formulation despite the costs spent in the

construction of the reduced order model itself. Another convenient aspect of the proposed method is

the access to higher fidelity flow models in the aeroelastic stability analysis such as Reynolds–averaged

Navier–Stokes modelling which has not been done within the framework before.

First ideas to exploit the proposed reduced order formulation have been presented and this work will

continue. For instance, the dimension of independent variables in the kriging prediction can be extended

to include altitude effects for more realistic three–dimensional cases or even structural parameters. Ob-

viously, at this point more efforts have to be put on the sampling techniques and the kriging prediction

than is done now. Also, the important issue of addressing aerodynamic modelling uncertainty will be

considered in more detail and the ideas of model updating using co–kriging will be extended.
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