International Workshop on Fluid-Structure Interaction: Theory, Numerics and Applications - Herrsching, September 29 - October 1, 2008

Transonic Flutter Predictions for a Generic Fighter Configuration

S. Marques, H. Khodaparast, K. Badcock, J. Mottershead

ECERTA-Enabling Certification by Analysis

Marie Curie Excellence Team

www.cfd4aircraft.com

CONTENTS

- Motivation
- Schur Complement Method
- Test Cases Description
 - Goland Wing
 - Generic Fighter Configuration
 - Aerodynamics Updating
 - Structural Updating
- Results
- Conclusions

MOTIVATION

F-16 LCO

MOTIVATION

Mach Number

Transonic Flutter Boundary

F-16 LCO

•The coupled CFD-CSD system can be described as:

$$\frac{d\mathbf{w}}{dt} = \mathbf{R}(\mathbf{w}, \mu)$$

•The coupled CFD-CSD system can be described as:

$$\frac{d\mathbf{w}}{dt} = \mathbf{R}(\mathbf{w}, \mu)$$
$$\mathbf{w} = [\mathbf{w}_f, \mathbf{w}_s]^T;$$
$$\mathbf{R} = [\mathbf{R}_f, \mathbf{R}_s]^T$$
$$\mu - \text{Bifurcation}$$
Parameter

•The coupled CFD-CSD system can be described as:

•The coupled CFD-CSD system can be described as:

•The eigenvalue problem can be written as:

$$\begin{bmatrix} A_{ff} & A_{fs} \\ A_{sf} & A_{ss} \end{bmatrix} \begin{bmatrix} p_f \\ p_s \end{bmatrix} = \lambda \begin{bmatrix} p_f \\ p_s \end{bmatrix}$$

•The eigenvalue problem can be written as:

$$\begin{array}{c}
\left[\begin{array}{c}
A_{ff} & A_{fs} \\
A_{sf} & A_{ss}
\end{array}\right] \begin{bmatrix}
p_{f} \\
p_{s}
\end{array} = \lambda \begin{bmatrix}
p_{f} \\
p_{s}
\end{bmatrix}$$

$$\frac{\partial \mathbf{R}_{f}}{\partial \mathbf{w}_{f}}
\end{array}$$

•The eigenvalue problem can be written as:

•The eigenvalue problem can be written as:

$$\frac{\partial \mathbf{R}_{sf}}{\partial \mathbf{w}_{f}} \begin{bmatrix} A_{fs} & A_{fs} \\ A_{sf} & A_{ss} \end{bmatrix} \begin{bmatrix} p_{f} \\ p_{s} \end{bmatrix} = \lambda \begin{bmatrix} p_{f} \\ p_{s} \end{bmatrix}$$

•The eigenvalue problem can be written as:

•The eigenvalue problem can be written as:

$$\begin{bmatrix} A_{ff} & A_{fs} \\ A_{sf} & A_{ss} \end{bmatrix} \begin{bmatrix} p_f \\ p_s \end{bmatrix} = \lambda \begin{bmatrix} p_f \\ p_s \end{bmatrix}$$

Shifted Inverse Power Method

- -System becomes ill-conditioned
- -Solving in Parallel Difficult

$$z_{k} = \begin{bmatrix} A_{ff} - \lambda_{0}I & A_{fs} \\ A_{sf} & A_{ss} - \lambda_{0}I \end{bmatrix}^{-1} x_{k-1}$$

Badcock et al, AIAA J, 45(6), 1370-1381,2007

•The eigenvalue problem can be written as:

$$\begin{bmatrix} A_{ff} & A_{fs} \\ A_{sf} & A_{ss} \end{bmatrix} \begin{bmatrix} p_f \\ p_s \end{bmatrix} = \lambda \begin{bmatrix} p_f \\ p_s \end{bmatrix}$$

•Schur Complement formulation:

$$S(\lambda)p_s = \lambda p_s$$

$$S(\lambda) = A_{ss} - A_{sf} (A_{ff} - \lambda I)^{-1} A_{fs}$$

\(\lambda\) is not an eigenvalue of \(A_{ff} - \lambda I)^{-1} A_{fs}\)

Bekas and Saad, SIAM Journal of Scientific Computing 27(2) 458, 2005

•The eigenvalue problem can be written as:

$$\begin{bmatrix} A_{ff} & A_{fs} \\ A_{sf} & A_{ss} \end{bmatrix} \begin{bmatrix} p_f \\ p_s \end{bmatrix} = \lambda \begin{bmatrix} p_f \\ p_s \end{bmatrix}$$

•Schur Complement formulation:

$$S(\lambda)p_s = \lambda p_s$$

New formulation for Non-linear Eigenvalue Problem

$$S(\lambda) = A_{ss} - A_{sf} (A_{ff} - \lambda I)^{-1} A_{fs}$$

\lambda is not an eigenvalue of A_{ff}

Bekas and Saad, SIAM Journal of Scientific Computing 27(2) 458, 2005

The new formulation is solved by Newton's Method

$$\frac{\partial \mathbf{F}}{\partial \mathbf{u}} \Delta \mathbf{u} = -\mathbf{F}$$

The new formulation is solved by Newton's Method

•The new formulation is solved by Newton's Method

•The new formulation is solved by Newton's Method

The new formulation is solved by Newton's Method

Badcock and Woodgate, AIAA paper 2008-1820, 2008

UNIVERSITY

- Two test cases are used to demostrate the method presented here:
 - Goland Wing
 - Generic Fighter Configuration

• Aerodynamic updating

 Wing aerodynamic configuration was matched to publicly available data

C. Denegri and J. Dubben, IFASD, Munich, 2005

UNIVERSITY OF

21 Structural Parameters: Directional stiffness, material density, Young modulus, spanwise thickness

21 Structural Parameters: Directional stiffness, material density, Young modulus, spanwise thickness

Mode	Initial FE model (Hz)	Denegri data (Hz)	Updated FE model (Hz)	Mode shape
1	7.329		3.920	symmetric
2	11.983	9.191	9.191	antisymmetric
3	17.165	9.964	9.964	antisymmetric
4	21.396		22.452	antisymmetric
5	31.019		22.608	symmetric
6	34.380		24.020	antisymmetric
7	41.109		26.772	symmetric
8	41.217		31.292	antisymmetric
9	44.905		40.040	symmetric
10	45.504		41.695	antisymmetric

C. Denegri, AIAA J. of Aircraft, 37(5), 2000

• Updated model mode shapes

GOLAND WING

GOLAND WING

Mach 0.5

• Tracking 4 modes

UNIVERSITY OF

- 1 Workstation < 12 minutes;
 - •Steady State 1 min

•
$$A_{sf} A_{ff}^{-1} A_{fs}$$
 and $A_{sf} A_{ff}^{-2} A_{fs}$ - 10 min

•Envelope Sweep < 1min; 5 Full Evaluations- 25 min

GOLAND WING

UNIVERSITY OF

Mach 0.85; AoA 2.12°

3.920 Hz

9.191 Hz

9.964 Hz

22.452Hz

22.608 Hz

24.020 Hz

26.772 Hz

31.292 Hz

Mach 0.85; AoA 0°

•32 Processores

•Steady State – 15 min • $A_{sf}A_{ff}^{-1}A_{fs}$ and $A_{sf}A_{ff}^{-2}A_{fs}$ for 10 Modes - 12 Hours

Mach 0.85; AoA 0°

•32 Processores

•Steady State – 15 min • $A_{sf}A_{ff}^{-1}A_{fs}$ and $A_{sf}A_{ff}^{-2}A_{fs}$ for 8 Modes - 10 Hours

CONCLUSION

- A very fast method to calculate flutter boundary has been developed
 - The method is easilly parallelised
 - It allows for mode tracking at all conditions
 - Series approximation efficient and accurate

CONCLUSION

- A very fast method to calculate flutter boundary has been developed
 - The method is easilly parallelised
 - It allows for mode tracking at all conditions
 - Series approximation efficient and accurate
- A realistic test case has been constructed and evaluated
 - Initial FE model improved considerably, to match experimental data
 - Detailed information about mode shapes and interactions obtained

FUTURE WORK

- Expand Generic Fighter Flutter Envelope
- Effects of Structural Uncertainty on Flutter
 - Compare Monte Carlo simulation with Stochastic Methods

FUTURE WORK

- Expand Generic Fighter Flutter Envelope
- Effects of Structural Uncertainty on Flutter
 - Compare Monte Carlo simulation with Stochastic Methods
 - − 7 Parameters ►1000 cases

Thank you for your attention. Any Questions?

