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The Influence of Structural Parameter Variability on

Aeroelastic LCO Amplitude

K.J. Badcock∗, and H.H. Khodaparast†

Department of Engineering,

University of Liverpool,

L69 3BX, United Kingdom.

I. Introduction

Previous work by the authors has considered the impact of uncertainty in structural parameters on
aeroelastic stability. Particular consideration has been given to how large dimensional systems like those
arising from computational fluid dynamics can be made tractable.?

There is considerable practical interest in evaluating the impact of structural parameter variability on
limit cycle responses.2 This is a demanding task since nonlinearity must be involved in some form (which
tends to render model reduction through methods like proper orthogonal decomposition less effective than for
linear problems). The best current approach seems to be that described in reference.3 This paper contains
a good review of the current state of the art.

The current report has the objective of reconsidering the (nonlinear) model reduction presented in refer-
ences4,5 for application to parametric variability studies. The approach is to calculate the critical eigenspace
of the linearised system and use this as a basis for model reduction. The full order system is manipulated
using a Taylor expansion which is then projected onto the critical eigenspace basis. The extra step here,
after reimplementing the method, is to add the influence of the uncertain parameter to the Taylor Series.
This allows the reduced model (two degrees-of-freedom) to be precomputed, and then exploited for the vari-
ability analysis. The formulation is described and then results are presented. The test case used has some
limitations, but the results are sufficiently encouraging to motivate develop of the method for large scale
problems.

II. Formulation

A. Full order Model

Assume incompressible and inviscid flow. Then Fung6 expressed the coefficients of lift and pitching moment
in terms of integrals of derivatives of the pitch and plunge response, derived from the Wagner function. Lee7

showed that the integrals can be removed by defining the variables

w1 =

∫ t

0

e−ε1(t−σ)α(σ)dσ (1)

w2 =

∫ t

0

e−ε2(t−σ)α(σ)dσ (2)

w3 =

∫ t

0

e−ε1(t−σ)h(σ)dσ (3)
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w4 =

∫ t

0

e−ε2(t−σ)h(σ)dσ (4)

with ε1 = 0.0455 and ε2 = 0.3 being constants. Then the equations of motion are written as

dx

dt
= R (5)

where x = [α, α̇, h, ḣ, w1, w2, w3, w4]
T . Here α is the pitch angle about the elastic axis (positive nose up) and

h is the vertical displacement of the elastic axis (positive down and non-dimensionalised by the semi-chord
b). The residual vector is given by

R =




x2

g(c0H − d0P )

x4

g(−c1H + d1P )

x1 − ε1x5

x1 − ε2x6

x3 − ε1x7

x3 − ε2x8




(6)

where g = 1/(d0c1 − c0d1) and

P = c2x4 + c3x2 + c4x3 + c5x
3
3 + c51x

5
3 + c6x1 + c7x5 + c8x6 + c9x7 + c10x8

H = d2x4 + d3x2 + d4x3 + d5x
3
3 + d51x

5
3 + d6x1 + d7x5 + d8x6 + d9x7 + d10x8

with the effect of the initial conditions on P and H neglected since we are interested in the long time
dynamics. Here the coefficients are defined in terms of the structural parameters as

c0 = 1 + 1/µ

c1 = xα − ah/µ

c2 = 2(1− ψ1 − ψ2)/µ

c3 = (1 + (1− 2ah)(1− ψ1 − ψ2))/µ

c4 = ω2/ū2 + 2(ψ1ε1 + ψ2ε2)/µ

c5 = βh3ω
2/ū2

c51 = βh5ω
2/ū2

c6 = 2((1− ψ1 − ψ2) + (0.5− ah)(ψ1ε1 + ψ2ε2))/µ

c7 = 2ψ1ε1(1− (0.5− ah)ε1)/µ

c8 = 2ψ2ε2(1− (0.5− ah)ε2)/µ

c9 = −2ψ1ε1ε1/µ

c10 = −2ψ2ε2ε2/µ

d0 = xα/(rαrα)− ah/µ
2
r

d1 = 1 + (1 + 8ahah)/(8µ
2
r)

d2 = (1− 2ah)/(2µ
2
r)− (1 + 2ah)(1− 2ah)(1− ψ1 − ψ2)/(2µ

2
r)

d3 = 1/ū2 − (1 + 2ah)(1− ψ1 − ψ2)/µ
2
r − (1 + 2ah)(1− 2ah)(ψ1ε1 + ψ2ε2)/(2µ

2
r)

d4 = βα1/ū
2

d41 = βα5/ū
2

d5 = −(1 + 2ah)(1− ψ1 − ψ2)/µ
2
r

d6 = −(1 + 2ah)(ψ1ε1 + ψ2ε2)/µ
2
r

d7 = −(1 + 2ah)ψ1ε1(1− (0.5− ah)ε1)/µ
2
r

d8 = −(1 + 2ah)ψ2ε2(1− (0.5− ah)ε2)/µ
2
r

d9 = (1 + 2ah)ψ1ε1ε1/µ
2
r

d10 = (1 + 2ah)ψ2ε2ε2/µ
2
r
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Here µ2
r = µr2α, rα is the radius of gyration, ω = ωh/ωα is the ratio of the uncoupled plunging (ωh) to

pitching (ωα) frequencies, ū = u/bωα is the reduced velocity, µ is the aerofoil to air mass ratio, the elastic
axis is at a location ahb from the mid chord and the mass centre is a distance xαb from the elastic axis. The
coefficients βh3, βh5, βα3 and βα5 are the elastic restoring force constants, relative to the linear restoring
term, for the plunging and pitching springs, with the subscript 3 denoting the cubic term and the subscript
5 the quintic term. The constants ψ1 = 0.165 and ψ2 = 0.335 arise from the Wagner function used to model
the aerodynamics.

The matlab function

ode45

is used to solve the ordinary differential equation (5). The initial condition used is x = [1o, 0, 0, 0, 0, 0, 0, 0]T .

B. Jacobian Matrices

The model reduction discussed below is based on a Taylor expansion of the residual up to third order terms.
This requires the calculation of matrix vector products against the first, second and third Jacobian matrices.

The first Jacobian is given by

A =




0 1 0 0 0 0 0 0

A21 L2,3 A23 L5,2 L7,7 L8,8 L9,9 L10,10

0 0 0 1 0 0 0 0

A41 M2,3 A43 M5,2 M7,7 M8,8 M9,9 M10,10

1 0 0 0 −ε1 0 0 0

1 0 0 0 0 −ε2 0 0

0 0 1 0 0 0 −ε1 0

0 0 1 0 0 0 0 −ε2




(7)

where Li,j = s1di + s2cj and Mi,j = s3di + s4cj , with s1 = gc0, s2 = −gd0, s3 = −gc1 and s4 = gd1, and

A21 = L3,6 + s1(3d4x
2
1 + 5d41x

4
1)

A23 = L6,4 + s2(3c5x
2
3 + 5c51x

4
3)

A41 = L3,6 + s3(3d4x
2
1 + 5d41x

4
1)

A43 = L6,4 + s4(3c5x
2
3 + 5c51x

4
3)

The second Jacobian is given by B = [Bijk] where

B211 = 6s1d4x1 + 20s1d41x
3
1

B233 = 6s2c5x3 + 20s2c51x
3
3

B411 = 6s3d4x1 + 20s3d41x
3
1

B433 = 6s4c5x3 + 20s4c51x
3
3

and the remaining terms are zero.
The third Jacobian is given by C = [Cijkl] where

C2111 = 6s1d4 + 60s1d41x
2
1

C2333 = 6s2c5 + 60s2c51x
2
3

C4111 = 6s3d4 + 60s3d41x
2
1

C4333 = 6s4c5 + 60s4c51x
2
3

and the remaining terms are zero.
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The derivatives of R with respect to the bifurcation parameter ū are also required. The terms that
depend on ū are c1, c5, c51, d3, d4 and d41. The first derivatives are

∂c4
∂ū

= −2ω2

ū3

∂c5
∂ū

= −2βh3ω
2

ū3

∂c51
∂ū

= −2βh5ω
2

ū3

∂d3
∂ū

= − 2

ū3

∂d4
∂ū

= −2βα3

ū3

∂c51
∂ū

= −2βα5

ū3

The Jacobian terms are obtained by substituting the expression for the derivative ∂ck/∂ū for ck in the
residual or Jacobian terms given above.

Finally, the reduced model is also parameterised in the structural parameter (ω) which is assumed un-
certain in this study. This requires the derivatives of the Residual with respect to this parameter to be
calculated. This dependence is felt through the values of c4, c5 and c51. The derivatives are given by

∂c4
∂ω

= 2ω/ū2

∂c5
∂ω

= 2βh3ω/ū
2

∂c51
∂ω

= 2βh5ω/ū
2

The Jacobian terms are obtained by substituting the expression for the derivative ∂ck/∂ω for ck in the
residual or Jacobian terms given above.

The Taylor series expansion of the Residual function about the equilibrium x0 and the bifurcation value
ūc is

R(w, ū) ≈ R(w0, ūc) +Aw′ +
1

2
B(w′,w′) +

1

6
C(w′,w′,w′) + (8)

∂R

∂ū
ū′ +

∂A

∂ū
w′ū′ +

1

2

∂B(w′,w′)
∂ū

ū′ +
1

6

∂C(w′,w′,w′)
∂ū

ū′ + ....

∂R

∂ω
ω′ +

∂A

∂ω
w′ω′ +

1

2

∂B(w′,w′)
∂ω

ω′ +
1

6

∂C(w′,w′,w′)
∂ω

ω′ + ....

where

B(x,y) =
∑

i,j

∂2R

∂xi∂yj
xiyj

C(x,y, z) =
∑

i,j,k

∂3R

∂xi∂yj∂zk
xiyjzk,

w′ = w −w0, ū
′ = ū− ūc and ω′ = ω − ω0.

Note that a matrix free product can be used to avoid the need to form the Jacobian matrices explicitly
as

Ax′ ≈ R1 −R−1

2h
(9)

B(x′,x′) ≈ R1 − 2R0 +R−1

h2
(10)
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C(x′,x′,x′) ≈ −R3 + 8R2 − 13R1 + 13R−1 − 8R−2 +R−3

8h3
(11)

where Ri = R(x0 + ihx′, ū).
To allow the manipulation of terms like B(x, y) and C(x, y, z), the following identities are useful:

B(v, u) =
1

4
[B(v + u, v + u)−B(v − u, v − u)] (12)

C(v, v, u) =
1

6
[C(v + u, v + u, v + u)− C(v − u, v − u, v − u)− 2C(u, u, u)] (13)

B(u+ v, u+ v) = B(u, u) + 2B(u, v) +B(v, v) (14)

C(u+ v, u+ v, u+ v) = C(u, u, u) + 3C(u, u, v) + 3C(u, v, v) + C(v, v, v). (15)

C. Linear Stability

The bifurcation value ūc is calculated by considering eigenvalues of the Jacobian matrix A. Lower ūmin

and upper ūmax values are defined that bracket the critical value. This means that the largest real part
eigenvalue of A changes sign within the interval of [ūmin, ūmax. The matlab function

eig

is used to calculate the largest real part eigenvalue. The bisection method is used to converge the interval
onto the critical value. Note that this calculation provides solutions to the following eigenvalue problems:

Ap = iωp

Ap̄ = −iωp̄

ATq = −iωq

AT q̄ = iωq̄.

The eigenvectors can be scaled to give < p,p >= 1, < q,q >= 1 and < q,p >= 1. It also follows that
< q, p̄ >= 0 since < q, p̄ >=< q, 1

−iωAp̄ >= 1
−iω < ATq, p̄ >= −ω

−iω < q, p̄ >. Note that the inner product

is defined as < p,q >= qTp.

D. Model Reduction

The approach adopted is to project the system, expanded in the Taylor series, onto a basis formed by the
critical eigenvectors. The full order unknowns are written as w′ = zp + z̄p̄ + y. Note that < q,y >= 0
and z =< q,w′ >. The contribution zp + z̄p̄ represents the component of the full order solution which is
in the (critical) space spanned by the critical eigenvector. Note that this term is real, as required. Also, the
component y is the component which is not in the critical space. It is assumed in the following that the
limit cycle response is dominated by the contribution in the critical space. The task is therefore to find the
equation that describes the dynamics of the complex coordinate z. The centre manifold theorem states that
the dynamics of the full system is dominated by the critical space in the vicinity of the bifurcation point,
and this allows the size of y to be limited in this vicinity, leading to

y =
1

2
k20z

2 + k11zz̄ +
1

2
k02z̄

2.

The values of the vector valued coefficients kij need to be computed and this is discussed below.
The inner product of Eq. (9) is taken with respect to q̄. The substitution w′ = zp + z̄p̄ is made and

then terms are simplified. The time derivative term becomes

dq̄Tw′

dt
=

dz

dt
.

Since the expansion is done about an equilibrium, R(w0, ūc) = 0. The first order term in the expansion
becomes

q̄TAw′ = zq̄TAp+ z̄q̄TAp̄+ q̄Ay = iωz.
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The second order term is simplified using Eq (14) to give

q̄TB(w′,w′) = z2q̄TB(p,p) + 2zz̄q̄TB(p, p̄) + z̄2q̄TB(p̄, p̄) + zq̄TB(p,y) + z̄q̄TB(p̄,y)

and the terms in y are substituted using the centre manifold reduction. Note that for the current problem
the second Jacobian evaluated at a zero equilibrium is identically zero, and so these contributions are also
zero in the reduced model. Finally, the third order term is simplified using Eq. (15) to give

q̄TC(w′,w′,w′) = z3q̄TC(p,p,p) + 3z2z̄q̄TC(p,p, p̄) + 3zz̄2q̄TC(p, p̄, p̄) + z̄3q̄TC(p̄, p̄, p̄)

with all terms involving y neglected since they are of at least fourth order in z. Finally, the parameters
terms are simply projected onto q.

The centre manifold reduction gives

zq̄TB(p,y) =
1

2
z3q̄TB(p, k20) + z2z̄q̄TB(p, k11) +

1

2
zz̄2q̄TB(p, k02)

and

z̄q̄TB(p̄,y) =
1

2
z2z̄q̄TB(p̄, k20) + zz̄2q̄TB(p̄, k11) +

1

2
z̄3q̄TB(p̄, k02).

Equations for the coefficients kij are obtained in the following way. First, an equation for y is obtained by
differentiating the definition y = w − zp − z̄p̄ with respect to time. The term arising from ẇ is obtained
from the Taylor expansion of the residual of the original system. The second and third terms are obtained
from the original equation projected onto q as simplified above. The resulting expression is simplified and
second order terms in z retained. A periodic variation with frequency ω is assumed for y, and this is used to
simplify the time derivative. The centre manifold relations are then used to replace y with quadratic terms
in z. Terms in z2, zz̄ and z̄2 are equated to yield equations for the coefficients kij as

(2iωI −A)k20 = H20

−Ak11 = H11

(−2iωI −A)k02 = H02

where
H20 = B(p,p)− qTB(p,p)p− qTB(p,p)p̄

H11 = B(p, p̄)− qTB(p, p̄)p− qTB(p, p̄)p̄

H02 = B(p̄, p̄)− qTB(p̄, p̄)p− qTB(p̄, p̄)p̄.

Then collecting all of the terms, an equation for z is given by

dz

dt
= iωz +

1

2
Gppz

2 +Gpp̄zz̄ +
1

2
Gp̄p̄z̄

2 +G30z
3 +G21z

2z̄ +G12zz̄
2 +G03z̄

3 (16)

+P0 + Ppz + Pp̄z̄ + (Pppz̄
2 + 2Ppp̄zz̄ + Pp̄p̄z̄

2)/2 +

(Ppppz̄
3 + 3Pppp̄z̄

2z + 3Ppp̄p̄zz̄
2 + Pp̄p̄p̄z̄

3)/6

where
G30 = Gppp/6 +Gpk20/4,

G21 = Gppp̄/2 +Gpk11/2 +Gp̄k20/4,

G12 = Gpp̄p̄/2 +Gpk02/4 +Gp̄k11/2

G03 = Gp̄p̄p̄/6 +Gp̄k02/4.

The notation means that Gxy = B(x, y) and Gxyz = C(x, y, z). Also, the terms arising from the expansion
in the parameters are given by

P0 =
∂R

∂ū
ū′ +

∂R

∂ω
ω′

Px = Aūxū
′ +Aωxω

′

Pxy = Bū(x, y)ū
′ +Bω(x, y)ω

′

and
Pxyz = Cū(x, y, z)ū

′ + Cω(x, y, z)ω
′.
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III. Results

A. Overview

The objectives of the results section are to

• evaluate the performance of the model reduction

• use the reduced model to calculate the spread of limit cycle amplitudes due to an uncertain structural
parameter.

Note that the test case used is only a first test of the approach since (a) the second Jacobian terms are always
zero and (b) the full order model only has dimension eight, making the model reduction computationally
unnecessary.

The parameters are:

µ = 100

xα = 0.25

ah = −0.5

ω = 0.2

βh3 = 0

βα3 = 3

βh5 = 0

βα5 = 0

rα = 0.5

This case features a supercritical bifurcation.
We consider the uncertain structural parameter here to be ω (which is the ratio of the natural frequencies

of plunging to pitching. This parameter is assumed to have its probability described by a Gaussian distribu-
tion. We are interested in calculating the LCO variation with ū for each realisation of ω. There are two ways
of doing this. The first calculates the bifurcation point for the current value of ω, recomputes the reduced
model and then uses it to calculate the growth in LCO amplitude for different values of ū. The second
calculates the reduced model at the mean value of ω, and parameterises this model in ω. This allows the
reduced model to be calculated once and then used for each realisation of ω. These scenarios are considered
in turn.

B. Recalculation of the Reduced Model

The traces of the eigenvalues as ū is changed are shown in figure 1. One complex conjugate pair crosses the
imaginary axis, bringing about the bifurcation. The variation of the real and imaginary parts of the critical
eigenvalue with ū is shown in figure 2. The crossing happens for ū ≈ 6.25. It is interesting to note that
the imaginary part changes by around 5% in the post bifurcation range of interest for the variability study.
The value of ω is next considered to be uncertain around the deterministic value (0.2), with a Gaussian

distribution assumed and a standard deviation of 0.02. The resulting normalised probability distribution for
omega, generated by the matlab function

omegadist=normrnd(0.2,0.02,250,1);

and is shown in Fig. 3. The resulting normalised probability distribution for the bifurcation point is also
shown in this figure.

Next the limit cycle predictions of the full and reduced models are compared for the deterministic value
of ū. The limit cycle amplitudes are shown in figure 4. Excellent agreement is obtain, with only minor
differences obtained even at high amplitudes (when the physical modelling would no longer be applicable in
any case). Tests were made to determine the origin of the small error which appears. First, the full order
model residual was replaced by the Taylor series expansion to third order terms (but without the projection
onto the critical mode). A second test projected the full order solution onto the critical mode, and then
reconstructed the full order solution back from this projection. In the first case the error introduced by the
Taylor series is tested, and in the second case the error from the basis used after the bifurcartion point.
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In both cases no error was observed. It was concluded that the series expansion in the parameter was the
source of the small error.

Finally variability of the limit cycle growth due to the distribution in the value of ω was considered. The
normalised probability distributions for several values of ū are shown in Fig 5. Note that the reduced model
is recalculated for each realisation of ω, with the saving in computational cost being that the same reduced
model can be used for each value of ū. It can be seen that there is good agreement between the full order
and reduced model predictions for the distributions. The spread of LCO amplitudes grows with the mean
amplitude. At the highest mean amplitude shown the distribution develops a second peak. This seems to
correspond to multiple solutions that are possible for the reduced model for some values of ω. This feature
does not appear in the full order model and needs further investigation.

C. Parameterised Equation

The reduced model is now calculated at the mean value of ω, and the effect of the change in ω included
through the Taylor series terms in this parameter. The comparison with the variation in LCO amplitude
between this parameterised reduced model and the full order model. A Gaussian distribution with the same
parameters as above was assumed for ω but this time 1000 samples was used. The probability distributions
this time are not normal (at least for lower values of ū), and are shown in Fig. 6. For ū = 6.4 there is a peak
at zero, indicating that the variation in ω can cause the bifurcation point to move through this value of ū.
The parameterised reduced model does an excellent job of reproducing the full order probability distribution.

IV. Conclusions

The method presented has been used to evaluate the influence of structural parameter uncertainty on
the LCO amplitude of an aerofoil free to move in pitch and plunge. The approach that developed a model
based on the mean parameter bifurcation details, and then includes the influence of the reduced velocity and
the uncertain structural parameters through the Taylor Series expansion is found to work very well for this
case. Importantly, it has the potential to be generalised to very large dimension systems.

The test case used has a structural nonlinearity but is linear aerodynamically. Two important questions
for the extension of the approach relate to how including more realistic modelling will impact on the method.
First, the form of structural nonlinearity in aircraft structures needs to be considered to develop the next
case with which to exercise the approach. Secondly, the type of nonlinearity (quadratic, cubic or higher)
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that is associated with moving shock waves needs to be investigated. Note the results of references4,5 that
successfully used the reduced model approach to predict shock driven LCO and vortex driven wing rock.
What is needed is a systematic evaluation of the Taylor Series convergence in these cases.

The variation of the critical eigenspace with the bifurcation parameter and reduced velocity is also very
important. In the test case considered here the variation is very small, which contributes to the excellent
results achieved. The variation in a realistic full scale case needs to be evaluated. It is also noted that the
quadratic terms in the expansion in the case considered are zero, making this case unrepresentative in this
respect.

A methodological extension would be to use normal form theory to simplify the reduced model. This
may have the advantage of removing the need to calculate some terms in the model reduction.

Finally, a limitation that this test case has exposed is the lack of feasibility of the method to calculate
sub-critical bifurcations. This is due to the need to represent fifth order effects in the Taylor series. This
is feasible in the current case, but the need to form fifth Jacobian-vector products for large order systems
makes the generalisation unattractive. New ideas are needed to cope with this case.

The current study was carried out using matlab scripts. Current work is tidying these up and rewriting
them in the language python. It is intended that these python scripts will be made available on a web page.
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