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Abstract 
Two efficient methods in stochastic model updating are developed and presented in this paper. The first 
method, a perturbation approach, is shown to be viable even when the correlation between system 
parameters and measurements is omitted. The requirement to calculate second order sensitivities then 
becomes unnecessary and this leads to considerable reduction in computational effort in practical 
engineering applications. The second method is based upon the minimisation of an objective function in 
two parts: 1- the Euclidian norm of the difference between mean values of measured data and analytical 
outputs vectors, and 2- the Frobenius norm of the difference between the covariance matrices of measured 
data and analytical outputs. The two methods are verified numerically and experimentally using multiple 
sets of plates with randomized thicknesses and masses.  

1 Introduction 

In model updating problems, system parameters are adjusted by minimizing the difference between 
measurements and predictions from a mathematical model [1,2]. The deterministic model updating 
problem changes to a stochastic model updating problem when the variability in measured vibration data 
is taken into account. It is important to include not only the variability in measurement signals due to 
noise, but also the variability that exists between nominally identical test structures, built in the same way 
from the same materials but with manufacturing and material variability [3,4,5] or disassembly and 
reassembly of the same structure [6]. Similar variability results from environmental erosion and damage 
[7,8,9]. 
Stochastic model updating problems require large amounts of computing time and we are therefore 
interested to determine what efficiencies can be gained by making various assumptions and 
simplifications. In this paper two iterative techniques are presented. The first method, a perturbation 
approach, is formulated in two ways, the first being a simplification of the second. In the simplified 
version, the correlation between the updated parameters and measured data is omitted. The need to 
compute the second order sensitivities is then found to be unnecessary. No significant deterioration is 
found in the estimated parameter distributions by using this assumption, which leads to a very 
considerable reduction in computational effort of great practical value in engineering. The second method, 
much simpler in concept, is based upon the minimisation of an objective function. The proposed objective 
function is the weighted sum of the Euclidian norm of the difference between mean values of measured 
data and analytical outputs vectors, and the Frobenius norm of the difference between the covariance 
matrices of the measured data and analytical outputs. Different optimization procedures may be used in 
order to minimise the objective function. The second method does not involve any assumption of 
statistical independence between the parameters and measurements.  
The two methods are applied to numerical and experimental examples using multiple sets of plates with 
randomized thicknesses and masses. It is shown in numerical simulations that the both methods produce 
results that are equally acceptable to those produced by the methods which are computationally expensive. 
Issues of sample size are considered in a numerical example. The thickness of the plates is parameterised 
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in four regions and the mean values and standard deviations are then identified by the first method in 
which the correlation between system parameters and measured data is omitted. The parameter 
distributions are shown to be significantly improved. In another study, the second method (employing a 
genetic algorithm) is used to estimate the distribution of uncertain masses on a flat plate. The identified 
and measured parameter distribution is found to be in good agreement. 

2 The perturbation approach 

The deterministic finite element model updating problem can be expressed as,  

 )(1 jmjjj zzTθθ −+=+  (1) 

where 1×ℜ∈ n
jz  is the vector of estimated output parameters (e.g. eigenvalues and eigenvectors), 

1×ℜ∈ n
mz  is the vector of measured data, 1×ℜ∈ mθ  is the vector of system parameters and jT  is a 

transformation matrix. In order to include the variability in measurements, the modal parameters are 
represented as, 

 mmm ∆zzz +=  (2) 

 jjj ∆zzz +=  (3) 

where the overbar denotes mean values and 1, ×ℜ∈∆∆ n
jm zz  are vectors of random variables. The 

hyperellipses represented by ( ){ }mmm zzz ,Cov,   and ( ){ }jjj zzz ,Cov,  define the space of 
measurements and predictions respectively. Correspondingly the variability in physical parameters at the 
jth iteration is defined as,  

 jjj ∆θθθ +=  (4) 

and the stochastic model updating problem may then be cast as,  

 ( )( )jjmmjjjjjj ∆zz∆zz∆TT∆θθ∆θθ −−++++=+ ++ 11  (5) 

where the transformation matrix becomes,  
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In the above equations, jT  denotes the transformation matrix at the parameter means, ( )jj θTT = ,  and 

mkz∆  denotes the kth element of m∆z . We seek the parameterisation, 11 ++ + jj ∆θθ , that converges the 

prediction space, 11 ++ ∆+ jj zz , upon the measurement space mm ∆zz + . Consequently jT  becomes a 

function of measured variability mz∆  according to equations (6, 7), since the updated parameters are 
determined at each iteration by converging the model predictions upon the measurements. 
Application of the perturbation method, by separating the zeroth order and first order terms from equation 
(5) leads to,  

 ( ) ( )jmjjj zzTθθ∆O 1 −+=+:0  (8) 
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Equation (8) leads to the estimate of the mean of the parameters and equation (9) is used in the 
determination of the covariance matrix. In the well-know minimum-variance approach, the assumption of 
uncorrelated  measurements, mz , and system parameters, jθ , appeared in  the 1974 paper of Collins et al. 
[10] and was corrected in 1989 by Friswell [11] who included this correlation after the first iteration. In 
this paper the effect of this omission on the converged prediction space is investigated. In this case two 
recursive equations having the following form for the estimation of the mean values and co-variances of 
the parameters are obtained as [5], 

 ( )jmjjj zzTθθ 1 −+=+  (10) 

 
( ) ( ) ( ) ( )

( ) ( ) T
jjjjjjj

T
jmmj

T
jjjjjjj
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T∆z∆zTT∆z∆θ∆θ∆θ∆θ∆θ
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+−=++
 (11) 

Equation (11) does not include the second order sensitivity matrix. This leads to very considerable 
reduction in computational effort, of great value in practical engineering applications. The transformation 
matrix may be expressed as the weighted pseudo inverse, which is analogous to the transformation used in 
deterministic model updating [1, 2]. To the zeroth order of smallness the same equation applies,  

 ( ) 1
1

21 WSWSWSΤ Τ
jj

Τ
jj

−
+=  (12) 

In equation (12), jS  denotes the sensitivity matrix at the parameter means, ( )jj θSS = , and the choice of 

IW =1  and 0W =2  results in the pseudo inverse. In the case of ill-conditioned model-updating 
equations, the minimum-norm regularised solution is obtained when IW λ=2  and λ  is the regularisation 
parameter that locates the corner of the L-curve obtained by plotting the norms 

( ) ( )jmjjjjj vs zzθθSθθ −−−− ++ 11  as λ  is varied [12]. 

 
If the correlation between the parameters and measurements is included, then the perturbation approach 
leads to following four recursive equations [5],  

 ( )jmjjj zzTθθ 1 −+=+  (13) 
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 ( ) ( ) ( ) ( ) ( )mjjmmjjmjj zzTzzTAzθzθ ∆∆−∆∆++∆=∆+ ,Cov,Cov,∆Cov,∆Cov m1  (15) 
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where the matrix 1+jA  is determined from: 
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where, 
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 ( ) ( )mjmj ∆z∆θS∆z∆z ,Cov,Cov j=  (20) 

It should be noted that the matrix ( )mj ∆z∆θ ,Cov and the vector mkj z∂∂ /θ are zero at the first iteration. 

Consequently matrix jA and ( )mj ∆z∆z ,Cov  are zero (Equations (17), (18) and (20)). The covariance 

matrices ( )jj ,∆Cov zθ ∆  and ( )jj ,Cov zz ∆∆  may be evaluated by forward propagation using a variety of 
techniques including mean-centred first-order perturbation, the asymptotic integral and Monte Carlo 
simulation. The above procedure and different propagation methods are described in detail by 
Khodaparast et al. [5]. 

3 Minimisation of an objective function 

The deterministic finite element model updating has been considered as an optimization process in 
literature. Reference [13] is a good example for this class of problem. Fonseca et al. [14] recently 
proposed an optimisation procedure for the purpose of stochastic model updating based on the 
maximisation of a likelihood function [14]. As mentioned earlier, the hyperellipses represented by 

( ){ }mmm zzz ,Cov,   and ( ){ }jjj zzz ,Cov,  define the space of measurements and predictions 
respectively. In order to minimise the distance and also the size difference in between these two spaces, 
we propose an objective function as,  

 ( ) ( ) ( ) ( )
Fjjmmjm

T
jm ,,wF zzzzzzWzz CovCov21 −+−−=  (21) 

where 
F

• is Frobenius norm, mz  is estimated mean values of test results, ( )mm,zzCov  is the covariance 

matrix of measured data, jz  and ( )jj ,zzCov  are the estimated mean values and the covariance matrix of 

predictions from mathematical model at jth iteration respectively. jz  and ( )jj ,zzCov  may be found by 
using different propagation method at each iteration. Therefore the stochastic model updating problem can 
be expressed as,  

 
{ } { }

( ) ( ) ( ) ( )( )
Fjjmmjm

T
jm

σθ
,,w  

θ

zzzzzzWzz 1 CovCovmin 2 −+−−  (22) 

subject to:     

 { } { } { } { }00 ff θσθ and   

where { }θ  denotes the mean values and { }θσ  is the standard deviations of the system parameters. The 

weighting matrix, 1W , and weighting coefficient, 2w , may be chosen to make two terms in objective 
function as the same order. This method is not concerned with any assumption of statistical independence 
between the updating parameters and measurements.  
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4 Numerical example: 3 degree of freedom mass-spring system 

The simple example shown in Figure 1 is considered, having known deterministic parameters, subject to:     

 1,2,3)(kg1.0 == imi ,    3,4)(N/m1.0 == iki     N/m3.0, 6 =k   

and the other parameters represented as unknown Gaussian random variables with mean values and 
standard deviations given by, 

N/m1.0,N/m1.0,N/m1.0
521
=µ=µ=µ kkk  

N/m0.20σ,N/m0.20σ,N/m0.20σ 521 === kkk  
 

 
Figure 1: Case study 1: three degree-of-freedom mass-spring system. 

 

The measured data, mz and ( )mm zz ,Cov , are obtained by using Monte Carlo simulation with 10000 
samples. This number of measurements is unrealistic but is used here to demonstrate the asymptotic 
properties of the methods. Later the number of measurements will be varied to show the effect of this 
number on the parameter errors.  The initial estimates of the unknown random parameters are, 
 

N/m02521 .kkk ===        ( ) ( ) 5,2,1/mN3.0Cov 222 == iki  
 
so that a 100% initial error in mean values and a 50% initial error in standard deviations is represented.  
Results obtained by the present perturbation methods ( )0WIW == 21 , , the minimisation of an objective 
function ( )1, 21 == wIW , the method of Hua et al. [9], and the minimum variance estimators of Collins 
et al. [10] and Friswell [11] are shown in Table 1. The  numbers, (1)-(6) in the table denote the following 
methods:  

(1) The proposed method in which the correlation between measured data and system parameters is 
omitted (Equations (10) and (11)) [5]. 

(2)  Second proposed method (minimising equation (22)). Optimization problem is solved using the 
Matlab Optimization Toolbox. 

(3) The proposed method in which the correlation between measured data and system parameters is 
included after first iteration (Equations (13)-(20)) [5]. 

(4) Method introduced by Hua et al. [9] 
(5) The minimum variance method of Collins et al. [10]. 
(6) The minimum variance method of Friswell [11]. 

It should be noted that the method of Hua et al. [9] does not require a starting estimate for the standard 
deviation of the unknown random parameters, which start from zero at first iteration. 
Firstly, it is seen that the results obtained by method (1), when the correlation of system parameters with 
the measured data is omitted, are at least as good as when this correlation is included. The results achieved 
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by method (2) are very good too. Methods (3) and (4) require the evaluation of the second-order 
sensitivity, which is an expensive computation and not needed when using methods (1) and (2). 
Finally, it is seen that the minimum variance methods (5) and (6) are really not intended for the estimation 
of randomised parameters to represent test-piece variability. These methods work well when the 
variability is limited to measurement noise from a single test piece. Figure 2 shows the convergence of the 
predictions upon experimental data in the space of the first three natural frequencies using method (1). 
10000 samples are clearly enough to obtain an accurate estimate of the parameter variability. Figure 3 
shows the convergence of the parameter standard deviations by method (1) as the number of samples is 
increased from 10 to 1000. In each case 10 runs of the updating algorithm were carried out to enable a 
range of solution errors to be determined. A different set of samples was used in each of the 10 runs. 
When only 10 samples were used errors were found in the range of 24-54%, while in the case of 1000 
samples the errors ranged from 3-7%. 
Table 2 shows the converged results and percentage errors of the parameter statistics using only 10 
samples with methods (1), (2), (3) and (4). The 10 samples were different in each of the three cases, which 
are shown to converge to similar results. Figures 4 and 5 show the convergence of scatter of predictions 
upon the scatter of simulated measurements in the planes of the first and second, and second and third 
natural frequencies respectively. Ten measurement samples and 10000 predictions from the estimated 
parameter distributions by method (1) are shown.  
 

Parameters Initial  

% Error  

% Error  

(1)  

% Error  

(2)  

% Error  

(3)  

% Error  

(4)  

% Error  

(5)  

% Error  

(6)  

1k  100 1.20 0.90 1.32     1.21 1.62 17.43 

2k  100 -2.43 -3.07 -2.26    -2.18 -2.35 36.81 

5k  100 0.71 0.84 0.57     0.23 1.86 58.20 

)k1std(  50 0.31 0.98 0.88 -0.35    -89.80   -13.36   

)k2std(  50 1.77 -0.12 0.46 -1.27 -89.85 -12.07 

)k5std(  50 1.96 -0.62 0.24 -0.16 -90.20 -58.83 

Table 1: Updating results obtained by various methods (10000 samples). 
 

Figure 2: Initial and updated scatter of predicted and measured data: identification using method 
(1) with 10000 samples. 
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Figure 3: Error norm for parameter standard deviations using different sample sizes  

each with ten runs of the algorithm.  
 

  
Figure 4: Initial and updated scatter of predicted data (10000 points) based upon 10 measurement 

samples: identification by method (1). 

  

Figure 5: Initial and updated scatter of predicted data (10000 points) based upon 10 measurement 
samples: identification by method (1). 
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Parameters Initial 

% Error 

% Error 

(1) 

% Error 

(2) 

% Error 

(3) 

% Error 

(4) 

1k  100 4.53 -6.82 -5.42 10.81 

2k  100 -8.25 7.90 -1.52 1.73 

5k  100 4.21 2.00 0.69 -2.86 

)k1std(  50 -20.03 19.26 12.60 10.32 

)k2std(  50 14.35 -14.01 19.33 -7.26 

)k5std(  50 17.65 -34.28 -13.66 -36.44 

Table 2: Updating results obtained by various methods (10 samples). 

5 Experimental case studies 

5.1 Aluminum plates with random thicknesses 

Ten aluminum plates were prepared so that a contrived distribution of thicknesses, close to Gaussian, was 
obtained by machining. Care was taken to try to obtain a constant thickness for each plate but was not 
achieved perfectly. The mean value of the thicknesses was 3.975mm with a standard deviation of 
0.163mm. In the experimental set up free boundary conditions were used to avoid the introduction of other 
uncertainties due to clamping or pinning at the edges of the plates.  All ten plates had the same overall 
dimensions, length 0.4m and width 0.1m. A hammer test was carried out using four uniaxial fixed 
accelerometers. Figure 6 shows the excitation point, marked ‘F’, and the positions of four accelerometers, 
marked ‘A’, ‘B’, ‘C’ and ‘D’. The mass of each accelerometer was 2 grams represented by lumped masses 
in the finite element model. The first 10 measured natural frequencies of all ten plates are given in Tables 
3 and 4.  
The thickness of the plates was parameterised in 4 regions as shown in Figure 7 and a finite element 
model was constructed consisting of 1040×  4-noded plate elements. The first six measured natural 
frequencies were used for stochastic model updating by method (1). A regularization parameter, 

10101λ ×= , was found from an L curve. Figure 8 shows convergence of the mean values and COV for 
the 4 parameters. The initial mean and standard deviation of all 4 parameters were taken to be, 

1,...,4.mm,8.0)std(mm,4 === itt ii  The initial mean value was chosen to be close to the true mean 
while the initial standard deviation was deliberately overestimated to represent a realistic stochastic model 
updating problem where little is known other than an approximation to the mean value.  
   The updated and measured means and standard deviations of the plate thicknesses are given in Table 5. 
These results are not in exact agreement but do show a considerable improvement in the thickness 
distributions when updated. It can be seen that the initial values of the means were chosen to be extremely 
close to the measured mean values. Small changes are observed in Table 5 after updating, away from the 
measured values obtained from averaged micrometer measurements at discrete points. The convergence of 
the standard deviations (shown in Table 5) from a considerable initial error is a much more significant 
result, demonstrating very clearly how well the method performs in converging the distribution of 
updating parameters upon the collection of measured thickness values. Of course the measured standard 
deviations are likely to be less accurate than the measured means.   
The means and standard deviations of the first six measured natural frequencies were used in updating, 
whereas ten modes were measured in total. It is seen from Tables 6 and 7 that not only are the first six 
natural frequency distributions improved by updating but also the 7th – 10th  natural frequency predictions 
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(mean and standard deviations) are equally improved.  This provides a good demonstration of the validity 
of the updated statistical model. 

 
 Mode Number 

Plate No. 1  2  3  4  5  

1 119.774 284.283 331.970 589.404 656.359 

2 121.615 291.922 337.186 605.160 665.854 

3 123.156 291.440 340.184 602.603 673.357 

4 128.048 298.163 355.210 620.139 700.798 

5 128.533 303.809 357.110 630.809 704.505 

6 128.596 301.010 361.488 635.533 713.207 

7 129.796 311.726 361.114 646.765 712.792 

8 135.058 315.393 374.368 653.584 738.395 

9 134.478 312.215 374.406 649.130 737.256 

10 138.141 321.812 382.932 667.203 755.189 

Mean 128.720 303.177 357.597 630.033 705.771 

Std 6.011 12.032 17.048 25.235 32.854 

Table 3: The first five measured natural frequencies (Hz) for the ten plates.  
 

 Mode Number 

Plate No. 6  7  8  9  10  

1 932.576 1091.603 1343.097 1628.879 1825.215 

2 953.666 1106.861 1372.890 1650.395 1860.225 

3 955.515 1119.445 1376.298 1669.899 1868.071 

4 980.403 1165.177 1414.181 1736.714 1924.260 

5 995.188 1169.660 1433.020 1743.750 1946.155 

6 999.248 1184.455 1440.134 1765.415 1957.581 

7 1019.052 1184.608 1467.366 1766.361 1987.556 

8 1031.837 1225.375 1487.512 1825.602 2021.640 

9 1023.229 1224.420 1479.268 1824.121 2013.354 

10 1053.974 1253.610 1519.011 1866.665 2031.377 

Mean 994.469 1172.521 1433.278 1747.780 1943.543 

Std 38.877 53.840 56.771 79.232 72.908 

Table 4: The 6th to 10th measured natural frequencies (Hz) for the ten plates.  
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Figure 6: Arrangement of accelerometers (A, B, C, D) and excitation point (F). 

 

 
Figure 7: Parameterisation into four regions of plate thickness. 
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Figure 8: Convergence of parameter estimates. 
 

 Measured 

Parameters 

Initial 

Parameters 

Updated 
Parameters 

Initial FE 

% error 

Updated FE 

% error 

t1 (mm) 3.978 4.000 4.140 0.553 4.072 

std(t1) (mm) 0.159 0.8 0.129 403.145 -18.868 

t2 (mm) 3.969 4.000 4.002 0.781 0.831 

std(t2) (mm) 0.161 0.8 0.204 396.894 26.708 

t3 (mm) 3.982 4.000 3.986 0.452 0.100 

std(t3) (mm) 0.164 0.8 0.166 387.805 1.219 

t4 (mm) 3.981 4.000 3.820 0.477 -4.044 

std(t4) (mm) 0.167 0.8 0.206 379.042 23.353 

Table 5: Measured, initial and updated mean and standard deviation of parameters. 
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 Measured (Hz) Initial FE 
(Hz) 

Updated FE 
(Hz) 

Initial FE 

% error 

Updated FE 

% error 

Mode (1) 128.720 128.321 128.111 -0.310 -0.473 

Mode (2) 303.177 307.147 306.339 1.310 1.043 

Mode (3) 357.597 356.645 355.185 -0.266 -0.675 

Mode (4) 630.033 637.433 633.188 1.175 0.501 

Mode (5) 705.771 705.467 701.777 -0.043 -0.566 

Mode (6) 994.469 1002.229 996.865 0.780 0.241 

Mode (7) 1172.521 1173.3951 1169.087 0.075 -0.293 

Mode (8) 1433.278 1444.0183 1435.848 0.750 0.179 

Mode (9) 1747.780 1748.9773 1743.491 0.069 -0.245 

Mode (10) 1943.543 1952.8824 1935.851 0.481 -0.396 

Table 6: Measured, initial and updated mean natural frequencies. 
 
 

 Measured (Hz) Initial FE 
(Hz) 

Updated FE 
(Hz) 

Initial FE 

% error 

Updated FE 

% error 

Mode (1) 6.011 20.943 5.750 248.411 -4.342 

Mode (2) 12.032 47.385 13.777 293.825 14.503 

Mode (3) 17.048 39.231 15.180 130.121 -10.957 

Mode (4) 25.235 65.655 26.797 160.175 6.190 

Mode (5) 32.854 71.379 28.644 117.261 -12.814 

Mode (6) 38.877 108.445 40.166 178.944 3.316 

Mode (7) 53.840 118.6279 46.536 120.334 -13.566 

Mode (8) 56.771 148.4184 59.571 161.434 4.932 

Mode (9) 79.232 177.2435 70.452 123.702 -11.081 

Mode (10) 72.908 202.7527 83.427 178.094 14.428 

Table 7: Measured, initial and updated std of natural frequencies.  

5.2 Aluminum plates with random masses 

Thirteen sets of masses having a distribution close to Gaussian were prepared. Each set included eight 
equal masses. The 11.5 gram set, for example, included eight masses all of 11.5 grams. The distribution of 
nominal masses is shown in Figure 9. The mean value of the masses was 10.063 grams with a standard 
deviation of 2.798 grams. Each set was glued to the surface of a plate and a hammer test was carried. The 
experimental set up and the positions of accelerometers and excitation points were the same as previous 
case study. The positions of added masses on the plate are shown in Figure 10. Each of added mass and 
mass of the accelerometer were represented by lumped masses in the finite element model. The first six 
natural frequencies of all 13 sets are given in Table 8. The second proposed method (method 2) was used 
in this case. As mentioned earlier, this method is an optimization problem and various optimization 
procedures may be used. A genetic algorithm with 20 individuals and 100 generations was used.  
The first three measured natural frequencies were used for stochastic model updating by method 2. There 
is no need to choose initial values for mean and standard deviation of parameters in the GA algorithm but 
they were subjected to bounded constraints indicated in Table 9.  
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The identified and measured means and standard deviations of the masses are given in Table 9. As it can 
be seen from Table 9, the errors in identified mean and standard deviation of parameters with respect to 
measurements are reasonable. Obviously the identified standard deviations are less accurate than the 
identified means.  
The means and standard deviations of the first three measured natural frequencies were used in the 
optimisation, whereas six modes were measured in total. It is seen from Tables 10 and 11 that, apart from 
the 46.8% error in the identified standard deviation of the frequency of mode 5, identified and measured 
means and standard deviations of natural frequencies achieved by using method 2 are in good agreement. 
The results show that the updated statistical model is valid.  
 

 Mode number 

Mass (gram) 1  2  3 4  5  6  

5.025 121.080 286.799 333.896 595.693 688.093 915.365 

6.588 119.002 280.460 327.573 585.042 684.618 894.911 

7.538 117.817 277.315 323.931 579.240 681.073 882.836 

8.55 116.385 272.994 319.427 570.238 674.886 864.382 

9.088 115.659 271.367 317.253 566.972 672.319 858.409 

9.563 115.071 270.059 315.601 564.025 670.297 851.946 

10.075 114.413 267.771 313.152 558.999 663.869 844.604 

10.613 113.766 266.462 311.447 555.173 660.905 833.890 

11.113 113.021 264.995 309.576 552.080 662.606 828.573 

11.5 112.802 264.543 308.426 552.121 662.895 836.105 

12.575 111.514 261.684 304.884 544.291 655.675 813.238 

13.575 110.809 259.442 302.668 541.900 660.888 808.048 

15.013 108.870 254.557 296.379 528.127 639.655 777.946 

Mean 114.632 269.111 314.170 561.069 667.522 846.943 

STD 3.409 8.837 10.412 18.631 13.063 37.385 

Table 8: The first six measured natural frequencies (Hz) for a plate with 13 different sets of 8 
masses attached. 

 
 Measured 

Parameters 
[LB-UB]* Identified 

Parameters 
Error  

% 

m  (gram) 10.063 [0-20 ] 10.401 3.359 

std (m) (gram) 2.798 [0-5] 3.278 17.155 

*: LB=Lower Bound            UB=Upper Bound 

Table 9: Measured, identified mean and standard deviation of parameter. 
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Figure (9): Distribution of masses. 
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Figure (10): The positions of the masses on the plate. 

 
 Measured (Hz) Identified FE  

(Hz) 

Identified FE % 
error 

Mode (1) 114.632 113.334 -1.132 

Mode (2) 269.111 270.413 0.484 

Mode (3) 314.170 310.460 -1.181 

Mode (4) 561.069 568.016 1.238 

Mode (5) 667.522 662.697 -0.723 

Mode (6) 846.943 858.850 1.406 

Table 10: Measured and identified mean natural frequencies. 
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Measured (Hz) Identified FE  

(Hz) 

Identified FE % 
error 

Mode (1) 3.409 3.415 0.176 

Mode (2) 8.837 8.568 -3.044 

Mode (3) 10.412 10.562 1.441 

Mode (4) 18.631 16.182 -13.145 

Mode (5) 13.063 6.949 -46.804 

Mode (6) 37.385 33.486 -10.429 

Table 11: Measured and identified Standard deviation natural frequencies. 

6 Conclusion 

Two new methods based on perturbation approach and minimising an objective function to the stochastic 
model problem, are developed. Distributions of predicted modal responses (natural frequencies and mode 
shapes) are converged upon measured distributions, resulting in estimates of the first two statistical 
moments of the randomised updating parameters. Regularisation may be applied to the stochastic model 
updating equations. However both methods are computationally efficient. The two methods are 
demonstrated in numerical simulations and also in experiments carried out on a collection of rectangular 
plates with variable thickness and also variable masses on a flat plate. 
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