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Abstract

The problem of interval model updating in the presence of uncertain mezhdata is defined and solved
in two cases. The parameter vertex solution is used for the first caseshibugn that the parameter vertex
solution is valid for particular parameterisation of the finite element model anidydar output data. The
problem is solved in the second case by using a meta-model (Kriging prettidtas paper) which acts
as a surrogate for the full FE model so that regions of input data areaddppegion of output data with
parameters obtained by regression analysis. The method is validated ralipersing a three degree of
freedom mass-spring system with close modes and experimentally using mugtiplef & frame structure
with different internal beams locations.

1 Introduction

Finite element techniques are nowadays essential tools in engineering désigil and mechanical struc-
tures. The prediction of finite element model can be improved by using detstimiinite element model
updating approaches [1, 2]. These techniques are about improvihgoarecting invalid assumptions by
processing experimental results. However experimental data includability due to different sources.
Experimental variability is supposed not to be inherent to the test structett ksit arises from other
sources such as measurement noise, the use of sensors that affaetfurement or signal processing that
might introduce bias. Such variability is reducible by increased informatitatis8cal techniques such as
minimum variance method [3, 4] have been implemented in deterministic finite element oprthting to
treat reducible uncertainty in measured data. However, manufacturihgnaterial variability in structures
is not reducible and needs to be considered as part of the model. Tlemrof interval model updating
in presence of irreducible uncertain measured data (manufacturing aedatheariability) is considered in
this paper.

Fonseca et al. [5] proposed an optimisation procedure for the pugbpssechastic model updating based on
the maximising a likelihood function and applied it to a cantilever beam with a poirg atasn uncertain
location. Hua et al. [6] used perturbation theory in the problem of testisirl variability. The predicted
output mean values and the matrix of predicted covariances were madevarg®nipon measured values
and in so doing the first two statistical moments of the uncertain updating parametee determined.
Khodaparast et al. [7] developed two perturbation methods for stocimagdel updating. The first method
required only the first order sensitivity matrix and therefore was computdhoefficient compared with
the method developed by Hua et al. [6] which needed the calculation oftbaderder sensitivity matrix.
Khodaparast and Mottershead [8], and also Govers and Link [Bhgsed an objective function for the
purpose of stochastic model updating. The objective function consittea garts: 1- the Euclidean norm
of the difference between mean values of measured data and analytmat wectors, and 2- the Frobenius
norm of the difference between the covariance matrices of measuredrab#malytical outputs.

The stochastic model updating methods have made use of probabilistic modgidating so far. This
usually needs large volumes of data with consequent high costs. Thealntepdel can be used as an
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alternative approach when that large quantities of test data are notéwaltathe present article the problem
of interval model updating in the presence of irreducible uncertain medslata is defined. Solutions of
the problem are made available in two cases. In the first case, the proldeiaad by using the parameter
vertex solution [10]. It is shown that the parameter vertex solution camlyeused when (i) the overall
mass and stiffness matrices are linear functions of the updating paranfefezan be decomposed into
non-negative-definite substructure mass and stiffness matrices andgiouthut data are the eigenvalues
of the dynamic system. Two recursive updating equations are developgdiade the bounds of an initial
hypercube of updating parameters in this case. However, the pararagter solution cannot be used when
the output data include the eigenvectors of the structural dynamic systttheasystem matrices are non-
linear functions of the updating parameters. In this case, the problem isdsbivusing a meta-model
which acts as a surrogate for the full finite element model so that the refjiopud data is mapped to the
region of output data with parameters obtained by regression analysi«riging predictor is chosen as the
meta-model in this paper and is shown to be capable of predicting the regigoudfand output parameter
variations with very good accuracy, even in the difficult case of closeesiod’he method is validated
numerically by using a three degree of freedom mass-spring system wsth tlodes. The method is also
applied to a frame structure with uncertain internal beams locations. It issthatithe updated bounds are
in good agreement with the known real bounds on the position of the beamext@nded version of this
paper has been submitted to the journal of Mechanical Systems and Sigoes$ing [11].

2 Theory

2.1 Case 1: Parameter vertex solution

In this case, the global mass and stiffness matrices may be expanded aguiratisns of the updating
parameters,

p1

M =M+ Z m; M, Q)
j=1
P2
K= Ko-l-ijKj 2)
j=1

whereM is the global mass matri¥ is the global stiffness matrixy; is the updating parameter for the
substructure mass matrikI;, andk; is the updating parameter for tjig* substructure stiffness matrik;.
The decompositions in Egs. (1) and (2) are non-negative decomposifitims mass and stiffness matrices
[10] because the substructure matrices are all semi-positive definiten the eigenvalue derivatives of
the global system [12] , it can be seen that the signs of the derivativibe @igenvalues with respect to
the updating parameters do not change within their variatio[@inﬂ. Therefore, the eigenvalues of the
dynamic system increase monotonically with the stiffness parameters amdsiesimonotonically with the
mass parameters. Consequently, two recursive equations can beldefingdate the initial hypercube of
updating parameters based on the vertices of measured data as,

Zn =71+S|o,,, 01112, —0iz,) (3)
z,, =2+ S ‘GZ,Zm (9l+1,zm - el,zm) 4)
wheres ande denote upper bounds and lower bounds respectifgly, = [k; ml]T and@,, = [k m]"

andS ‘gl" is the sensitivity matrix evaluated & , [ is the iteration number angj andz,, are vectors
containing frequencies of numerical modelftiteration and measured frequencies respectively.
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2.2 Case 2: General case

As mention in the previous case, the parameter vertex solution is valid when #seamé stiffness matrices
are linear functions of the updating parameters and the output data argghesdues of the dynamic system.
However it is shown in [11] that the parameter vertex solution is not nad@ssalid for the problem of
interval model updating when the output data includes both eigenvaluesigenectors and the mass and
stiffness matrices are not linear functions of the updating parameterss tae a meta-model as a surrogate
for the finite-element model may lead to a solution with very good accuraandiépy on the type of meta-
model, sampling used for construction of the meta-model and the behavithe ofitput functions within
the region of variation. Selection of the meta-model is a crucial step in thatueimdes the performance
of the updating procedure to a very significant degree. The Kriging estirrsachosen in this paper. The
details of the Kriging estimator and optimal sampling is discussed in [11, 13 ntdihathis paper we just
show the formulation of the interval model updating using Kriging estimator.

2.2.1 The Kriging Predictor in Interval Model Updating

In this section, we apply the Kriging predictor to the problem of interval mogdhting in structural dy-
namics. The details of Kriging predictor is explained in [11]. The method israily developed by Sacks
et al. [13] where further details about the method can be found. A gksed form of the Kriging predictor
for a dynamic system with output data may be written as,

z=a+H(0)0+ Ap(0) (5)

wherez € §Rn><l, pc %(nan)XI; p= [r'II’ I‘g I'T]T, a = [ﬁgJ ﬁ072 ﬁom]T,

n

1 p
H(0) = [Hijl,x, 3 Hig =B+ 05855 + 5 > Brjibr
k=1
=y
andA = [Aij]nx(ans)
Ao M i=ns+1<j<ixmng
E 0. elsewhere

whereg.; and)\_; are regression coefficients at #i& output (the calculation of regression coefficients is ex-
T
[ﬂamedin[llpgy(e)::[C&(G,HUJ) cy(e,eﬂﬂ) ”.cg(9,90w>)} andC&(B,OU”>::[]§:1Chi<0~9“”)

1073
is the correlation function. Different types of correlation functions hiaeen introduced in [15] and [16].
The choice of correlation function depends on underlying behavioreofrtte response. However, this un-
derlying behavior is often not readily apparent, in which case the followorgelation function may be
used,

Cji (9]-, 9](-h)) = exp (—Cj,i 0; — GJ(»h)
where(; ; (the 4% term of the vectoc;) andy; are parameters of the correlation function at#fteoutput.
The calculation of correlation parameters are discussed in [11y13].1 gives an Ornstein-Uhlenbeck pro-
cess which produces continuous paths but not very smooth. The,casg produces infinity differentiable
paths. Therefore the parameteiis related to the smoothness of the functiojrcoordinate. As it is seen
in the Eq. (6), the correlation function is 1 whén= 9? and its value reduces as the untried péingoes

away from theh'™ design samplé”.

M) 1w (6)

In the problem of deterministic model updating it is assumed that the measurephexgenvalues and
eigenvector of one structure have been obtained from experiments Th&measured data quantities may
be assembled into the measurement vector,
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which is entirely real when the system is undamped. Assuming that a setwiryef measured data
are available, the vector of mean values of measured data can be reddilyedb Then the problem of
deterministic model updating can be applied to identify the deterministic valuedafing parameters. If
the solution of the updating problem is unique, then the vector of updatadpters can be represented by
a point in the parameter space. An initial hypercube around the updai@ahet@rs can be constructed as
illustrated in Figure 1. Figure 1 shows specifically the procedure for amjmsystem with two input and
two output parameters. The Kriging predictor is used as a surrogatesffinite element model to map the
space of the initial hypercube of updating parameters to the space ot patfameters. If the mapping is
good enough to represent the relationship between the input data antladatipthen this model can be used
to correct the dimensions of initial hypercube of updating parameters loaisthe available measured data.

Meta-model
0 O :Measured data
A
AZ Initial hypercube 2 A
! O
L . O
Deterministic FE updating o O
T O
1 B z¢ [ ., ©
o i°
O :
: \
: Updated hypercubg :
' >
Olc 1 Z]C Zl

Figure 1: Interval model updating using Kriging model.

Once the initial Kriging model is constructed, the following error function lsardefined for deterministic
model updating using the Kriging predictor formed from the measured samples

€=2, — (a+HO+Ap)=p—HO — Ap (8)

wherey = z,, — a and(0) is omitted fromH (6) andp () for reasons of simplicity. Now the updating
problem for each sample of measured data can be stated as an optimisatiempro

mgn (eTe) )

It should be noted that the Kriging model has been constructed and vdlitatéhe initial hypercube of
the updated parameters. Therefore if the solution of the above minimisatiblepra@onverges to a point
outside the hypercube, a new Kriging model should be constructed ®asing the size of initial hypercube
and the procedure repeated. According to Eq. (8), the error funictibg. (9) can be expanded as,

ele=pTp—p"™MO — pn"Ap—6"TH L + 6THTHO

10
+0TH Y Ap — p" AT+ pTATHO + pTATAp (10)

A necessary condition for minimising the error function Eq. (10) is that,

V(e'e)={0} V= {880]}])“ (12)
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Substituting Eqg. (10) into Eq. (11) leads to,
~H'u - A0 —f(0) +H'HO+ DO +H ' Ap+ VO +U0 +g(0) = {0} (12)

where(6) is omitted fromH (8), D (8), V (6), U (0), p () and

" 9Hy  O0Hy 1
A=yl A= gt g = 3Bun

1 & OHy, OH,;
D (6) = [Dijl,: Dij =533 <Hlj op; I aef)e’“

“s, OHy,
V(0) = Vijlups Vii=>_> Mk 50, " (0)

k=1 1=1 ¢

DL 87°l,k 0
U(O) [Uij}pxp; Uz] = >\l,kH J 805 )

FO) = (/i @) s £:0) =D Mgy

g(0)={9i (0)},x1;

n ns nNs

gi (0) = %Z Z Z ik, <?”k,l () arggfo) + 75 (0) 8r;510§0)>

=1 k=1 j=1

Eqg. (12) can be rearranged for the solution of system paran®tess

H'H+D+U+V-A)0=f(0)+H p—-H"Ap—g(0) (13)

Since the matriYH"H + D + U + V — A) is a function off an iterative procedure needs to be defined.
However, the solution needs the inverse of ma(IH(TH +D+U+V - A). If this matrix is not invert-
ible an arbitrary weighting matrix can be added to the both sides of Eqg. (13) as

H'H+D+U+V-A+W)0=f(0)+H 'pn—-H"Ap—g(0) + WO (14)
and following recursive equation is formed for the solution of Eq. (12),
0 =HH+D+U+V-A+W)
. . : (15)
X {f(@) +H u—H Ap—g(0) +W0}|9:91

The iterations continue until convergence on the system parangeteechieved. The matriX¥V is chosen
so thatthe matriH"H + D + U+ V — A + W) is invertible.

The procedure for interval model updating can be defined as follows:

1. Select and update the parameters of the mathematical/FE Model using theenearof measured
data.

2. Initialize a hypercube around the updated parameters of Finite Element.mod
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Figure 2: Three degree of freedom system.

3. Construct a meta-model based on updated mathematical/FE Model datamé&thisnodel should
describe the relationship between output data and input data within the initiafdube around the
updated parameters accurately.

4. Use the meta-model for updating the initial hypercube by using all setsadured data.

5. Construct the new hypercube on the region of updated paramétirs.updated hypercube is bigger
than the initial hypercube increase the size of initial hypercube and dotbatep 3; otherwise go to
step 6.

6. Generate output data by using the meta-model to find the region of van&tiatput data and compare
it with scatter of measured data.

7. End.

3 Numerical Case Study: 3-degree of freedom mass-spring system witloske
modes

The three degree of freedom mass-spring system, shown in Figure 2legthroodes is considered in this
section. The quantification of uncertainty in a dynamic system with close modeifficalt problem due
to non-smoothness of the response surface. Therefore a close ystelm $s chosen for illustration of the
performance of the interval model updating using Kriging method. It ismasduthat the true value of the
unknown uncertain parameters of the system are given by,

ky=[7.5 85 kN/m, ky=[1.8 22] kN/m, ks =[1.8 2.2] kN/m

and other parameters are as assumed as- 1 kg, mo = 4kg, mg = 1kg, k¢ = 1 kN/m. 10 measured
samples are taken for analysis. The initial estimates of the bounds of ungetameters are,

ky=1[6.5 9.5] kN/m, ky=[1.6 2.4] kN/m, ks =[1.6 2.4] kN/m
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Figure 3: Initial, updated and true spaces of predicted data (100,00&)pbased upon 10 measurement
samples (system with close modes).

The application of interval model updating is illustrated for correcting thetiswf the updating parameters.
The output data are assumed to be the first three eigenvalues and thaeabslue of first component of
the first eigenvectorg(;1). The level of confidence of the predictions at untried points can kesssd by
evaluating the mean squared error MSE which is discussed in [11, 14¢eRifamples were taken from
the space of the initial hypercube of updating parameters accordingttalosmmposite design (CCD). The
MSE results show that the initial samples based on CCD with one centre pojrarfLiot good enough
for mapping the initial hypercube of input data to the output data. Therd@f@ procedure of sampling,
described in [11, 14], has been used to improve the Kriging model.

The Kriging model was constructed using a first order polynomial angdtsegbtained using 10 measured
samples are shown in Table 1. These results confirm that the modifiedsofiadcertain parameters have
been determined with very good accuracy. Also, Figure 3 shows thaptieted space of the second and
third eigenvalues (close modes) obtained by the Kriging model are in goedragnt with the true space of

the second and third eigenvalues. The latter is obtained by direct solutibe efgenvalue problem of the

dynamic system. A good agreement between the updated spaces and fpatesgof other output data are
achieved.

It is observed that the evolution of error function, Eq. (10) fails to eoge when(a) W = 0, due to ill-
conditioning. This problem is overcome by using the technique described.ifilk). The components of
the weighting matrix may be chosen by the analyst and usually depend orrticalpaproblem considered.
The weighting matriXxW, introduced in Eq. (15), was set 10 I (identity matrix) in this case.
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Figure 4: Beam locations in frame structure.

4 Experimental case study: Frame structure with uncertain beams posibns

In this section the application of the method to a physical case is studied. Tictustris a frame with
two internal beams, each of them is designed to be independently locatedeatliffierent positions. Nine
different combinations of beam positions can be provided as shown ing=gWll nine cases are modelled
in detail using 8-noded solid elements (CHEXA) in MSC-NASTRAN. The daisstructure and the finite
element model in one configuration of the internal beams are shown in Fgayand in Figure 5(b) re-
spectively. The bolted joint connections are modelled using rigid elementsaowarea three times greater
than the cross-section of the bolts. The boundary conditions whereatme fis connected to a rigid base
are represented by fixing the nodal displacements in the three translategraks of freedom over an area
corresponding to the size of a washer between the frame and the base.

The natural frequencies and mode shape of the frame are obtainethgyadidnstrumented hammer modal
test in free-free condition for case 1 and also when fixed to the rigid foas®l nine configurations. The
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experimental results and finite element predictions for frame when fixed t@ildase for internal beams

locations arranged as case 1 is shown in Table 2. The closeness oitthelément predictions to the natural
frequencies found in the modal test shows that the frame structure aboithdary conditions are accurately
modelled. The finite element predictions and measured data are also foumthtgdnd agreement for free-

free boundary conditions and when fixed to the rigid base for cases,2d¢pd@ted in [11].

The positionsd; andé-) of the two internal beams are assumed to be the unknown updating paraasater
dicated in Figure 6 for the purpose of application of interval model upd#itigjs problem. In conventional
model updating this choice of updating parameters would require remedhting finite element model at
each iteration, which is time consuming and inelegant. An important advantdg&ofg interpolation is
that the updating of nodal coordinates is as straightforward as anypdhteneter.

The initial bounds o, andf, are assumed to k8.5 2.5] and a Kriging model is constructed as a surrogate
for the detailed FE model. The relationship between the input paraméteand6-) and 6 outputs, the first
and second in-plane and out-of-plane bending modes and the firseeowldstorsion modes in Tables 2, is
described by the Kriging model. The maximum value of the MSE shows that tilede€ign together with

9 samples in Figure 4 provide an accurate fit. The locations of internal bax@mdentified using the opti-
misation procedure described in Section 2.2.1 based on 6 measurecfrieguels result of identification
method the bounds of the updated parameters are corrected. The weightingwas set tdV = 100/ in

this case. The initial and identified beams locations in 9 cases obtained byhitéic model updating are
shown in Table 3. The maximum error of 11.00 % in Table 3 is an indicator al gedormance.

The Kriging model was used to generate all possible variations of the 6teudpa to the variation of the
internal beam locations in the range of [1.00 2.99] fiprand [0.89 3.09] foW,. The initial and updated
regions of possible natural frequency variation in (a and b) the pldrigstand third natural frequencies, (c
and d) the planes of second and fifth natural frequencies and (¢ #reldlanes of fourth and sixth natural
frequencies together with 9 measured samples is showed in Figure 7. énidreen Figures 7(b), 7(d)
and 7(f) that the updated regions encloses some measured samples &iitohothem. Supposedly the
samples are positioned on the boundaries but owing to some errors duetsatince of uncertainty (e.g.
measurement noise) the samples are found to move slightly over the bogndHEnie initial and updated
bounds of natural frequencies are shown in Table 4. The maximunied@4% that shows good agreement
between the updated model output bounds and the bounds of the measatare

5 Conclusion

The problem of interval model updating in the presence of test structurability is formulated. The
parameter vertex solution can be used to solve the problem when the oatawtrd the eigenvalues of the
dynamic system and updating parameters are substructure mass angisstiffeiicients. In the general case,
the Kriging predictor as a meta-model is used for the solution of interval mgatdting. A framework for
the solution of interval model updating is formulated. The method is verified ricafly in a three degree
of freedom mass-spring system with close modes. With a very small numbeeagured samples, the
interval model updating was successful in identifying the input paramef#rs/ery good accuracy which
shows a significant advantage of interval updating over probabilistic metAide Kriging interpolation was
also applied to the frame structure with uncertain positions of internal beaiob ate treated as updating
parameters. The initial erroneous bounds on the beam positions agetedrby using the proposed interval
model updating in this paper.
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(b)

Figure 5: (a) Frame structure (b) Finite element model.

Table 1: Updated results: 3 DOF mass-spring system with close modes
Parameters Initial error % Updated error %

10 Measured samples

k1 [~13.3 11.8] 06 —0.7]
ko [~11.1 9.1] (0.8 —1.0]
ks [~11.1 9.1] (0.4 —0.5]

Table 2: Measured and FE predictions of natural frequencies -case 1

Measured (Hz) FE (Hz) FE error % Mode shape
Mode (1) 22.54 22.59 0.22 first in-plane bending mode
Mode (2) 27.84 27.27 -2.04 first out-of-plane bending mode
Mode (3) 47.63 48.14 1.08 first torsion mode
Mode (4) 81.19 80.89 -0.37 second in-plane bending mode
Mode (5) 201.35 201.55 0.10 higher order in-plane bending mode
Mode (6) 233.71 233.41 -0.13 higher order in-plane bending mode
Mode (7) 256.40 259.05 1.03 second out-of-plane bending mode
Mode (8) 257.68 256.54 -0.44 higher order in-plane bending mode
Mode (9) 283.09 283.35 0.09 higher order in-plane bending mode
Mode (10) 298.46 305.34 2.30 higher order in-plane bending mode
Mode (11) 312.39 316.49 131 second torsion mode
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Figure 6: Parametrisation of internal beam locations in frame structure.

Table 3: Deterministic model updating of beam locations
True parameters Initial parameters Updated parameters Initial error %  Updated error %

01 02 01 02 01 0y 01 02 01 02

1.0 1.0 1.6 1.6 1.04 1.02 60.00 60.00 3.73 2.00

1.0 2.0 1.6 2.4 1.00 2.15 60.00 20.00 -0.21 7.56

1.0 3.0 1.6 2.4 1.00 3.08 60.00 -20.00 0.20 2.76

2.0 1.0 1.6 1.6 2.04 0.90 -20.00 60.00 1.81 -9.78
2.0 2.0 2.4 2.4 2.13 2.00 20.00 20.00 6.48 -0.12
2.0 3.0 2.4 2.4 1.95 3.09 20.00 -20.00 -2.36 3.06

3.0 1.0 2.4 1.6 2.98 0.89 -20.00 60.00 -0.58 -11.00
3.0 2.0 2.4 1.6 2.99 1.83 -20.00 -20.00 -0.31 -8.36
3.0 3.0 2.4 2.4 2.93 2.98 -20.00 -20.00 -2.18 -0.58

Table 4: Measured, initial and updated bounds of natural frequetivied-frame structure)

Measured Initial FE Updated FE Initial FE Updated FE
(Hz2) (Hz) (Hz) % error % error
First in-plane bending mode [22.54 24.34] [21.62 24.61] [22.57 24.61] [—4.08 1.11] [0.13 1.11]
First out-of-plane bending mode  [24.38 27.84] [23.66 35.53] [23.86 27.47) [-2.95 27.62] [-2.13 —1.33]
First torsion mode [47.13 49.85] [43.72 67.57] [45.13 50.55]  [—7.24 35.55]  [—4.24 1.40]
Second in-plane bending mode [74.38 81.19] [71.09 82.50] [73.99 81.37] [—4.42 1.61] [—0.52 0.22]
Second out-of-plane bending modg219.48 256.40] [224.08 267.34] [224.08 259.51]  [2.10 4.27] [2.10 1.21]

Second torsion mode [299.72 312.39] [300.26 339.65] [303.58 317.20]  [0.18 8.73] [1.29 1.54]
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Bounds of output parameter (9 measured samples)
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Figure 7: Initial and updated spaces of predicted data (100,000 poagsyilupon 9 measurement samples
(frame structure)
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