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Abstract
The problem of interval model updating in the presence of uncertain measured data is defined and solved
in two cases. The parameter vertex solution is used for the first case. It isshown that the parameter vertex
solution is valid for particular parameterisation of the finite element model and particular output data. The
problem is solved in the second case by using a meta-model (Kriging predictor in this paper) which acts
as a surrogate for the full FE model so that regions of input data are mapped to region of output data with
parameters obtained by regression analysis. The method is validated numerically using a three degree of
freedom mass-spring system with close modes and experimentally using multiple sets of a frame structure
with different internal beams locations.

1 Introduction

Finite element techniques are nowadays essential tools in engineering design of civil and mechanical struc-
tures. The prediction of finite element model can be improved by using deterministic finite element model
updating approaches [1, 2]. These techniques are about improving and correcting invalid assumptions by
processing experimental results. However experimental data includes variability due to different sources.
Experimental variability is supposed not to be inherent to the test structure itself, but arises from other
sources such as measurement noise, the use of sensors that affect the measurement or signal processing that
might introduce bias. Such variability is reducible by increased information. Statistical techniques such as
minimum variance method [3, 4] have been implemented in deterministic finite element model updating to
treat reducible uncertainty in measured data. However, manufacturing and material variability in structures
is not reducible and needs to be considered as part of the model. The problem of interval model updating
in presence of irreducible uncertain measured data (manufacturing and material variability) is considered in
this paper.

Fonseca et al. [5] proposed an optimisation procedure for the purposeof stochastic model updating based on
the maximising a likelihood function and applied it to a cantilever beam with a point mass at an uncertain
location. Hua et al. [6] used perturbation theory in the problem of test-structure variability. The predicted
output mean values and the matrix of predicted covariances were made to converge upon measured values
and in so doing the first two statistical moments of the uncertain updating parameters were determined.
Khodaparast et al. [7] developed two perturbation methods for stochastic model updating. The first method
required only the first order sensitivity matrix and therefore was computationally efficient compared with
the method developed by Hua et al. [6] which needed the calculation of the second order sensitivity matrix.
Khodaparast and Mottershead [8], and also Govers and Link [9], proposed an objective function for the
purpose of stochastic model updating. The objective function consisted of two parts: 1- the Euclidean norm
of the difference between mean values of measured data and analytical output vectors, and 2- the Frobenius
norm of the difference between the covariance matrices of measured dataand analytical outputs.

The stochastic model updating methods have made use of probabilistic model for updating so far. This
usually needs large volumes of data with consequent high costs. The interval model can be used as an
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alternative approach when that large quantities of test data are not available. In the present article the problem
of interval model updating in the presence of irreducible uncertain measured data is defined. Solutions of
the problem are made available in two cases. In the first case, the problem issolved by using the parameter
vertex solution [10]. It is shown that the parameter vertex solution can be only used when (i) the overall
mass and stiffness matrices are linear functions of the updating parameters,(ii) can be decomposed into
non-negative-definite substructure mass and stiffness matrices and (iii) the output data are the eigenvalues
of the dynamic system. Two recursive updating equations are developed toupdate the bounds of an initial
hypercube of updating parameters in this case. However, the parameter vertex solution cannot be used when
the output data include the eigenvectors of the structural dynamic system and the system matrices are non-
linear functions of the updating parameters. In this case, the problem is solved by using a meta-model
which acts as a surrogate for the full finite element model so that the region of input data is mapped to the
region of output data with parameters obtained by regression analysis. The Kriging predictor is chosen as the
meta-model in this paper and is shown to be capable of predicting the region ofinput and output parameter
variations with very good accuracy, even in the difficult case of close modes. The method is validated
numerically by using a three degree of freedom mass-spring system with close modes. The method is also
applied to a frame structure with uncertain internal beams locations. It is shown that the updated bounds are
in good agreement with the known real bounds on the position of the beams. An extended version of this
paper has been submitted to the journal of Mechanical Systems and Signal Processing [11].

2 Theory

2.1 Case 1: Parameter vertex solution

In this case, the global mass and stiffness matrices may be expanded as linear functions of the updating
parameters,

M = M0 +
p1∑

j=1

mjMj (1)

K = K0 +
p2∑

j=1

kjKj (2)

whereM is the global mass matrix,K is the global stiffness matrix,mj is the updating parameter for thejth

substructure mass matrix,Mj , andkj is the updating parameter for thejth substructure stiffness matrix,Kj .
The decompositions in Eqs. (1) and (2) are non-negative decompositionsof the mass and stiffness matrices
[10] because the substructure matrices are all semi-positive definite. From the eigenvalue derivatives of
the global system [12] , it can be seen that the signs of the derivatives of the eigenvalues with respect to
the updating parameters do not change within their variation in

[
θ θ

]
. Therefore, the eigenvalues of the

dynamic system increase monotonically with the stiffness parameters and decreases monotonically with the
mass parameters. Consequently, two recursive equations can be defined to update the initial hypercube of
updating parameters based on the vertices of measured data as,

zm = zl + S
∣∣
θl,zm

(θl+1,zm − θl,zm) (3)

zm = zl + S
∣∣∣θl,zm

(
θl+1,zm

− θl,zm

)
(4)

where• and• denote upper bounds and lower bounds respectively,θl,zm =
[
kl ml

]T
andθl,zm

= [kl ml]
T

andS
∣∣
θl,.

is the sensitivity matrix evaluated atθl,., l is the iteration number andzl andzm are vectors
containing frequencies of numerical model atlth iteration and measured frequencies respectively.
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2.2 Case 2: General case

As mention in the previous case, the parameter vertex solution is valid when the mass and stiffness matrices
are linear functions of the updating parameters and the output data are the eigenvalues of the dynamic system.
However it is shown in [11] that the parameter vertex solution is not necessarily valid for the problem of
interval model updating when the output data includes both eigenvalues andeigenvectors and the mass and
stiffness matrices are not linear functions of the updating parameters. In this case a meta-model as a surrogate
for the finite-element model may lead to a solution with very good accuracy depending on the type of meta-
model, sampling used for construction of the meta-model and the behaviour ofthe output functions within
the region of variation. Selection of the meta-model is a crucial step in that it influences the performance
of the updating procedure to a very significant degree. The Kriging estimator is chosen in this paper. The
details of the Kriging estimator and optimal sampling is discussed in [11, 13, 14] and in this paper we just
show the formulation of the interval model updating using Kriging estimator.

2.2.1 The Kriging Predictor in Interval Model Updating

In this section, we apply the Kriging predictor to the problem of interval model updating in structural dy-
namics. The details of Kriging predictor is explained in [11]. The method is originally developed by Sacks
et al. [13] where further details about the method can be found. A generalised form of the Kriging predictor
for a dynamic system withn output data may be written as,

ẑ = α + H (θ) θ + Λρ (θ) (5)

whereẑ ∈ ℜn×1, ρ ∈ ℜ(n×ns)×1; ρ =
[
rT
1 rT

2 ... rT
n

]T
, α = [β0,1 β0,2 ... β0,n]T,

H (θ) = [Hij ]n×p ; Hij = βj,i + θjβjj,i +
1
2

p∑
k=1
k 6=j

βkj,iθk

andΛ = [Λij ]n×(n×ns)

Λij =
{

λj,i (i− 1)ns + 1 ≤ j ≤ i× ns

0. elsewhere

whereβ.,i andλ.,i are regression coefficients at theith output (the calculation of regression coefficients is ex-

plained in [11]),ri (θ) =
[
Ci

(
θ, θ(1)

)
Ci

(
θ, θ(2)

)
... Ci

(
θ, θ(ns)

)]T
andCi

(
θ, θ(h)

)
=

∏p
j=1 Cj,i

(
θj , θ

(h)
j

)
is the correlation function. Different types of correlation functions havebeen introduced in [15] and [16].
The choice of correlation function depends on underlying behavior of the true response. However, this un-
derlying behavior is often not readily apparent, in which case the followingcorrelation function may be
used,

Cj,i

(
θj , θ

(h)
j

)
= exp

(
−ζj,i

∣∣∣θj − θ
(h)
j

∣∣∣νi
)

1 ≤ νi ≤ 2 (6)

whereζj,i (thejth term of the vectorζi) andνi are parameters of the correlation function at theith output.
The calculation of correlation parameters are discussed in [11, 13].νi = 1 gives an Ornstein-Uhlenbeck pro-
cess which produces continuous paths but not very smooth. The caseνi = 2 produces infinity differentiable
paths. Therefore the parameterνi is related to the smoothness of the function inθj coordinate. As it is seen
in the Eq. (6), the correlation function is 1 whenθj = θh

j and its value reduces as the untried pointθj goes
away from thehth design sampleθh

j .

In the problem of deterministic model updating it is assumed that the measurementsof eigenvalues and
eigenvector of one structure have been obtained from experiments [1, 2]. The measured data quantities may
be assembled into the measurement vector,

zm =
[

ω2
1 ω2

2 . . . ω2
r φT

1 φT
2 . . . φT

r

]T
(7)
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which is entirely real when the system is undamped. Assuming that a set of vectors of measured data
are available, the vector of mean values of measured data can be readily obtained. Then the problem of
deterministic model updating can be applied to identify the deterministic values of updating parameters. If
the solution of the updating problem is unique, then the vector of updated parameters can be represented by
a point in the parameter space. An initial hypercube around the updated parameters can be constructed as
illustrated in Figure 1. Figure 1 shows specifically the procedure for a dynamic system with two input and
two output parameters. The Kriging predictor is used as a surrogate for the finite element model to map the
space of the initial hypercube of updating parameters to the space of output parameters. If the mapping is
good enough to represent the relationship between the input data and output data then this model can be used
to correct the dimensions of initial hypercube of updating parameters based on the available measured data.

1q

2q

c
1q

c

2q

1z

2z

c
z1

c
z2

Meta-model

:Measured data

Deterministic FE updating

Initial hypercube

Updated hypercube

Figure 1: Interval model updating using Kriging model.

Once the initial Kriging model is constructed, the following error function canbe defined for deterministic
model updating using the Kriging predictor formed from the measured samples,

ǫ = zm − (α + Hθ + Λρ) = µ−Hθ −Λρ (8)

whereµ = zm − α and(θ) is omitted fromH (θ) andρ (θ) for reasons of simplicity. Now the updating
problem for each sample of measured data can be stated as an optimisation problem,

min
θ

(
ǫTǫ

)
(9)

It should be noted that the Kriging model has been constructed and validated for the initial hypercube of
the updated parameters. Therefore if the solution of the above minimisation problem converges to a point
outside the hypercube, a new Kriging model should be constructed by increasing the size of initial hypercube
and the procedure repeated. According to Eq. (8), the error functionin Eq. (9) can be expanded as,

ǫTǫ = µTµ− µTHθ − µTΛρ− θTHTµ + θTHTHθ

+ θTHTΛρ− ρTΛTµ + ρTΛTHθ + ρTΛTΛρ
(10)

A necessary condition for minimising the error function Eq. (10) is that,

∇ (
ǫTǫ

)
= {0} ∇ =

{
∂

∂θj

}
p×1

(11)
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Substituting Eq. (10) into Eq. (11) leads to,

−HTµ−Aθ − f (θ) + HTHθ + Dθ + HTΛρ + Vθ + Uθ + g (θ) = {0} (12)

where(θ) is omitted fromH (θ), D (θ), V (θ), U (θ), ρ (θ) and

A = [Aij ]p×p ; Aij =
n∑

k=1

µk
∂Hkj

∂θi
;

∂Hkj

∂θi
=

1
2
Bij,k

D (θ) = [Dij ]p×p ; Dij =
1
2

p∑
k=1

n∑
l=1

(
Hlj

∂Hlk

∂θi
+ Hlk

∂Hlj

∂θi

)
θk

V (θ) = [Vij ]p×p ; Vij =
n∑

k=1

ns∑
l=1

λl,k
∂Hkj

∂θi
rl,k (θ)

U (θ) = [Uij ]p×p ; Uij =
n∑

k=1

ns∑
l=1

λl,kHkj
∂rl,k (θ)

∂θi

f (θ) = {fi (θ)}p×1 ; fi (θ) =
n∑

j=1

ns∑
k=1

λk,jµj
∂rk,j (θ)

∂θi

g (θ) = {gi (θ)}p×1 ;

gi (θ) =
1
2

n∑
l=1

ns∑
k=1

ns∑
j=1

λj,lλk,l

(
rk,l (θ)

∂rj,l (θ)
∂θi

+ rj,l (θ)
∂rk,l (θ)

∂θi

)

Eq. (12) can be rearranged for the solution of system parametersθ as,(
HTH + D + U + V −A

)
θ = f (θ) + HTµ−HTΛρ− g (θ) (13)

Since the matrix
(
HTH + D + U + V −A

)
is a function ofθ an iterative procedure needs to be defined.

However, the solution needs the inverse of matrix
(
HTH + D + U + V −A

)
. If this matrix is not invert-

ible an arbitrary weighting matrix can be added to the both sides of Eq. (13) as,(
HTH + D + U + V −A + W

)
θ = f (θ) + HTµ−HTΛρ− g (θ) + Wθ (14)

and following recursive equation is formed for the solution of Eq. (12),

θl+1 =
(
HTH + D + U + V −A + W

)−1

|θ=θl

× {
f (θ) + HTµ−HTΛρ− g (θ) + Wθ

}
|θ=θl

(15)

The iterations continue until convergence on the system parametersθ is achieved. The matrixW is chosen
so that the matrix

(
HTH + D + U + V −A + W

)
is invertible.

The procedure for interval model updating can be defined as follows:

1. Select and update the parameters of the mathematical/FE Model using the meanvector of measured
data.

2. Initialize a hypercube around the updated parameters of Finite Element model.
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Figure 2: Three degree of freedom system.

3. Construct a meta-model based on updated mathematical/FE Model data. Thismeta-model should
describe the relationship between output data and input data within the initial hypercube around the
updated parameters accurately.

4. Use the meta-model for updating the initial hypercube by using all sets of measured data.

5. Construct the new hypercube on the region of updated parameters. If the updated hypercube is bigger
than the initial hypercube increase the size of initial hypercube and go back to step 3; otherwise go to
step 6.

6. Generate output data by using the meta-model to find the region of variationof output data and compare
it with scatter of measured data.

7. End.

3 Numerical Case Study: 3-degree of freedom mass-spring system with close
modes

The three degree of freedom mass-spring system, shown in Figure 2 with close modes is considered in this
section. The quantification of uncertainty in a dynamic system with close modes is adifficult problem due
to non-smoothness of the response surface. Therefore a close mode system is chosen for illustration of the
performance of the interval model updating using Kriging method. It is assumed that the true value of the
unknown uncertain parameters of the system are given by,

k2 = [7.5 8.5] kN/m, k4 = [1.8 2.2] kN/m, k5 = [1.8 2.2] kN/m

and other parameters are as assumed asm1 = 1 kg, m2 = 4 kg, m3 = 1 kg, k6 = 1 kN/m. 10 measured
samples are taken for analysis. The initial estimates of the bounds of uncertain parameters are,

k2 = [6.5 9.5] kN/m, k4 = [1.6 2.4] kN/m, k5 = [1.6 2.4] kN/m
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Figure 3: Initial, updated and true spaces of predicted data (100,000 points) based upon 10 measurement
samples (system with close modes).

The application of interval model updating is illustrated for correcting the bounds of the updating parameters.
The output data are assumed to be the first three eigenvalues and the absolute value of first component of
the first eigenvector (φ11). The level of confidence of the predictions at untried points can be assessed by
evaluating the mean squared error MSE which is discussed in [11, 14]. Fifteen samples were taken from
the space of the initial hypercube of updating parameters according to central composite design (CCD). The
MSE results show that the initial samples based on CCD with one centre point [17] are not good enough
for mapping the initial hypercube of input data to the output data. Therefore the procedure of sampling,
described in [11, 14], has been used to improve the Kriging model.

The Kriging model was constructed using a first order polynomial and results obtained using 10 measured
samples are shown in Table 1. These results confirm that the modified bounds of uncertain parameters have
been determined with very good accuracy. Also, Figure 3 shows that the updated space of the second and
third eigenvalues (close modes) obtained by the Kriging model are in good agreement with the true space of
the second and third eigenvalues. The latter is obtained by direct solution ofthe eigenvalue problem of the
dynamic system. A good agreement between the updated spaces and the truespaces of other output data are
achieved.

It is observed that the evolution of error function, Eq. (10) fails to converge when(a)W = 0, due to ill-
conditioning. This problem is overcome by using the technique described in Eq. (15). The components of
the weighting matrix may be chosen by the analyst and usually depend on the particular problem considered.
The weighting matrixW, introduced in Eq. (15), was set to10 I (identity matrix) in this case.
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Figure 4: Beam locations in frame structure.

4 Experimental case study: Frame structure with uncertain beams positions

In this section the application of the method to a physical case is studied. The structure is a frame with
two internal beams, each of them is designed to be independently located at three different positions. Nine
different combinations of beam positions can be provided as shown in Figure 4. All nine cases are modelled
in detail using 8-noded solid elements (CHEXA) in MSC-NASTRAN. The physical structure and the finite
element model in one configuration of the internal beams are shown in Figure5(a) and in Figure 5(b) re-
spectively. The bolted joint connections are modelled using rigid elements over an area three times greater
than the cross-section of the bolts. The boundary conditions where the frame is connected to a rigid base
are represented by fixing the nodal displacements in the three translationaldegrees of freedom over an area
corresponding to the size of a washer between the frame and the base.

The natural frequencies and mode shape of the frame are obtained by doing an instrumented hammer modal
test in free-free condition for case 1 and also when fixed to the rigid basefor all nine configurations. The
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experimental results and finite element predictions for frame when fixed to therigid base for internal beams
locations arranged as case 1 is shown in Table 2. The closeness of the finite element predictions to the natural
frequencies found in the modal test shows that the frame structure and theboundary conditions are accurately
modelled. The finite element predictions and measured data are also found to be in good agreement for free-
free boundary conditions and when fixed to the rigid base for cases 2 to 8, reported in [11].

The positions (θ1 andθ2) of the two internal beams are assumed to be the unknown updating parameters as in-
dicated in Figure 6 for the purpose of application of interval model updatingto this problem. In conventional
model updating this choice of updating parameters would require remeshing of the finite element model at
each iteration, which is time consuming and inelegant. An important advantage ofKriging interpolation is
that the updating of nodal coordinates is as straightforward as any otherparameter.

The initial bounds onθ1 andθ2 are assumed to be[0.5 2.5] and a Kriging model is constructed as a surrogate
for the detailed FE model. The relationship between the input parameters (θ1 andθ2) and 6 outputs, the first
and second in-plane and out-of-plane bending modes and the first and second torsion modes in Tables 2, is
described by the Kriging model. The maximum value of the MSE shows that the CCD design together with
9 samples in Figure 4 provide an accurate fit. The locations of internal beamsare identified using the opti-
misation procedure described in Section 2.2.1 based on 6 measured frequencies. As result of identification
method the bounds of the updated parameters are corrected. The weightingmatrix was set toW = 100I in
this case. The initial and identified beams locations in 9 cases obtained by deterministic model updating are
shown in Table 3. The maximum error of 11.00 % in Table 3 is an indicator of good performance.

The Kriging model was used to generate all possible variations of the 6 outputs due to the variation of the
internal beam locations in the range of [1.00 2.99] forθ1 and [0.89 3.09] forθ2. The initial and updated
regions of possible natural frequency variation in (a and b) the planes of first and third natural frequencies, (c
and d) the planes of second and fifth natural frequencies and (e and f) the planes of fourth and sixth natural
frequencies together with 9 measured samples is showed in Figure 7. It is seen from Figures 7(b), 7(d)
and 7(f) that the updated regions encloses some measured samples but not all of them. Supposedly the
samples are positioned on the boundaries but owing to some errors due to other source of uncertainty (e.g.
measurement noise) the samples are found to move slightly over the boundaries. The initial and updated
bounds of natural frequencies are shown in Table 4. The maximun erroris 4.24% that shows good agreement
between the updated model output bounds and the bounds of the measaured data.

5 Conclusion

The problem of interval model updating in the presence of test structure variability is formulated. The
parameter vertex solution can be used to solve the problem when the output data are the eigenvalues of the
dynamic system and updating parameters are substructure mass and stiffness coefficients. In the general case,
the Kriging predictor as a meta-model is used for the solution of interval modelupdating. A framework for
the solution of interval model updating is formulated. The method is verified numerically in a three degree
of freedom mass-spring system with close modes. With a very small number ofmeasured samples, the
interval model updating was successful in identifying the input parameterswith very good accuracy which
shows a significant advantage of interval updating over probabilistic methods. The Kriging interpolation was
also applied to the frame structure with uncertain positions of internal beams which are treated as updating
parameters. The initial erroneous bounds on the beam positions are corrected by using the proposed interval
model updating in this paper.
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(a) (b)

Figure 5: (a) Frame structure (b) Finite element model.

Table 1: Updated results: 3 DOF mass-spring system with close modes
Parameters Initial error % Updated error %

10 Measured samples

k1 [−13.3 11.8] [0.6 − 0.7]

k2 [−11.1 9.1] [0.8 − 1.0]

k5 [−11.1 9.1] [0.4 − 0.5]

Table 2: Measured and FE predictions of natural frequencies -case 1
Measured (Hz) FE (Hz) FE error % Mode shape

Mode (1) 22.54 22.59 0.22 first in-plane bending mode
Mode (2) 27.84 27.27 -2.04 first out-of-plane bending mode
Mode (3) 47.63 48.14 1.08 first torsion mode
Mode (4) 81.19 80.89 -0.37 second in-plane bending mode
Mode (5) 201.35 201.55 0.10 higher order in-plane bending mode
Mode (6) 233.71 233.41 -0.13 higher order in-plane bending mode
Mode (7) 256.40 259.05 1.03 second out-of-plane bending mode
Mode (8) 257.68 256.54 -0.44 higher order in-plane bending mode
Mode (9) 283.09 283.35 0.09 higher order in-plane bending mode
Mode (10) 298.46 305.34 2.30 higher order in-plane bending mode
Mode (11) 312.39 316.49 1.31 second torsion mode
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Figure 6: Parametrisation of internal beam locations in frame structure.

Table 3: Deterministic model updating of beam locations
True parameters Initial parameters Updated parameters Initial error % Updated error %

θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

1.0 1.0 1.6 1.6 1.04 1.02 60.00 60.00 3.73 2.00
1.0 2.0 1.6 2.4 1.00 2.15 60.00 20.00 -0.21 7.56
1.0 3.0 1.6 2.4 1.00 3.08 60.00 -20.00 0.20 2.76
2.0 1.0 1.6 1.6 2.04 0.90 -20.00 60.00 1.81 -9.78
2.0 2.0 2.4 2.4 2.13 2.00 20.00 20.00 6.48 -0.12
2.0 3.0 2.4 2.4 1.95 3.09 20.00 -20.00 -2.36 3.06
3.0 1.0 2.4 1.6 2.98 0.89 -20.00 60.00 -0.58 -11.00
3.0 2.0 2.4 1.6 2.99 1.83 -20.00 -20.00 -0.31 -8.36
3.0 3.0 2.4 2.4 2.93 2.98 -20.00 -20.00 -2.18 -0.58

Table 4: Measured, initial and updated bounds of natural frequencies(fixed-frame structure)
Measured Initial FE Updated FE Initial FE Updated FE

(Hz) (Hz) (Hz) % error % error

First in-plane bending mode [22.54 24.34] [21.62 24.61] [22.57 24.61] [−4.08 1.11] [0.13 1.11]
First out-of-plane bending mode [24.38 27.84] [23.66 35.53] [23.86 27.47] [−2.95 27.62] [−2.13 − 1.33]

First torsion mode [47.13 49.85] [43.72 67.57] [45.13 50.55] [−7.24 35.55] [−4.24 1.40]
Second in-plane bending mode [74.38 81.19] [71.09 82.50] [73.99 81.37] [−4.42 1.61] [−0.52 0.22]

Second out-of-plane bending mode[219.48 256.40] [224.08 267.34] [224.08 259.51] [2.10 4.27] [2.10 1.21]
Second torsion mode [299.72 312.39] [300.26 339.65] [303.58 317.20] [0.18 8.73] [1.29 1.54]
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Figure 7: Initial and updated spaces of predicted data (100,000 points) based upon 9 measurement samples
(frame structure)
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