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Abstract

Knowledge in the field of modelling and predicting the dynamic responses of

structures is constantly developing. Modelling of uncertainty is considered as one

of the tools that increases confidence by providing extra information. This infor-

mation may then be useful in planning physical tests. However, the complexity of

structures together with uncertainty-based methods leads inevitably to increased

computation; therefore deterministic approaches are preferred by industry and a

safety factor is incorporated to account for uncertainties. However, the selection

of a proper safety factor relies on engineering insight. Hence, there has been much

interest in developing efficient uncertainty-based methods with a good degree of

accuracy.

This thesis focuses on the uncertainty propagation methods; namely Monte

Carlo Simulation, first-order and second-order perturbation, asymptotic integral,

interval analysis, fuzzy-logic analysis and meta-models. The feasibility of using

these methods (in terms of computational time) to propagate structural model

variability to linear and Computational Fluid Dynamic (CFD) based aeroelastic

stability is investigated. In this work only the uncertainty associated with the

structural model is addressed, but the approaches developed can be also used for

other types of non-structural uncertainties.

Whichever propagation method is used, an issue of very practical significance

is the initial estimation of the parameter uncertainty to be propagated particu-

larly when the uncertain parameters cannot be measured, such as damping and

stiffness terms in mechanical joints or material-property variability. What can

be measured is the variability in dynamic behaviour as represented by natural

frequencies, mode shapes, or frequency response functions. The inverse problem

then becomes one of inferring the parameter uncertainty from statistical mea-
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sured data. These approaches are referred to as stochastic model updating or

uncertainty identification.

Two new versions of a perturbation approach to the stochastic model updating

problem with test-structure variability are developed. A method based on min-

imising an objective function is also proposed for the purpose of stochastic model

updating. Distributions of predicted modal responses (natural frequencies and

mode shapes) are converged upon measured distributions, resulting in estimations

of the first two statistical moments of the randomised updating parameters. The

methods are demonstrated in numerical simulations and in experiments carried

out on a collection of rectangular plates with variable thickness and also variable

masses on a flat plate.

Stochastic model updating methods make use of probabilistic models for up-

dating same as the perturbation methods developed in this work. This usually

requires large volumes of data with consequent high costs. In this work the prob-

lem of interval model updating in the presence of uncertain measured data is

defined and solutions are made available for two cases. In the first case, the

parameter vertex solution is used but is found to be valid only for particular

parameterisation of the finite element model and particular output data. In the

second case, a general solution is considered, based on the use of a meta-model

which acts as a surrogate for the full finite-element/mathematical model. The

interval model updating approach is based on the Kriging predictor and an iter-

ative procedure is developed. The method is validated numerically using a three

degree of freedom mass-spring system with both well-separated and close modes.

Finally the method is applied to a frame structure with uncertain internal beams

locations. The procedure of interval model updating, incorporating the Kriging

model, is used to identify the locations of the beams at each configuration and

to update the bounds of beams positions based on measured data. The method

successfully identifies the locations of the beams using six measured frequencies.

The updated bounds are found to be in good agreement with the known real

bounds on the position of the beams as well.
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Chapter 1

Introduction

1.1 Introduction

A general introduction of the research and motivation for the work is given in

this chapter. Several areas including finite element methods (Section 1.2), model

updating techniques (Section 1.3), structural variability propagation and identifi-

cation methods (Section 1.4) are covered in this chapter. The scopes of this thesis

and its relative topics are presented in Section 1.5. Finally, Section 1.6 explains

the organisation of the thesis.

1.2 Finite Element Method (FEM)

The construction and analysis of large and sophisticated numerical models in

modern computers has nowadays become an essential subject of structural design

in engineering. Finite element method [1] is generally the most reliable and

widespread technique for numerical modelling in engineering design. In the finite

element method, complicated structures are divided into discrete areas or volumes

known as ‘elements’ with simple and standard geometrical shapes (e.g. beams

or shells). The dynamic behaviour of these simple structures is known. The

original structure can then be rebuilt from such elements to understand its overal

dynamic behaviour. Finite element modelling and analysis provides predictions

of the dynamic behaviour of structures under different types of loadings. This

can help design engineers to detect any deficiency in the structure from the early

stages of the design process and consequently reduce the costs of design (e.g.

by reducing the number of prototypes). However, the finite element methods
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are approximate and there are different sources of errors in this approximation.

Three sources of errors have been typically identified in finite element methods:

model-structure errors, model-parameter errors and model-order errors.

Uncertainty in the governing equation or mathematical model of elements is a

type of model-structure error. For example, it is not still fully understood how a

mechanical joint behaves in a dynamic environment. This is a serious impediment

to accurate modelling. The review paper by Ibrahim and Pettit [2] and references

therein show the considerable attention that has already been paid to the subject

of mechanical joint modelling.

Parameterisation of inaccurate parts in the finite element model and assign-

ment of model parameter values are crucial to the construction of finite element

models. The model output data such as natural frequencies and mode shapes

are often sensitive to small changes in these parameters. Therefore inaccurate

values of the model parameter can give misleading results. The application of

informed engineering judgement is particularly important for model parameteri-

sation. Experiments together with finite element model updating tools [3, 4] can

also be used to improve the accuracy of model parameter values.

In order to obtain the element mass and stiffness matrices of the finite element

model, an assumed displacement solution may be used for the element based on

nodal variables. The mass and stiffness coefficients are then determined by the

minimisation of either an energy functional or the residues of the equation of

motion. However, the solution of the assembled system inevitably includes errors

due to discretisation of the continuous system in the finite element model. This

is referred to as the third source of error. The effect of model-order errors may

be reduced by using different approaches for formulation of the element mass and

stiffness matrices such as the inverse method proposed by Ahmadian et al. [5].

Among the methods that attempt to reduce the errors in finite element predic-

tions, the finite element model updating techniques are considered in this thesis

and described in the following section.

2



1.3 Finite element model updating methods

Finite element model updating, at its most ambitious, is about improving and

correcting invalid assumptions by processing experimental results [3,4]. A vibra-

tion test provides data on the vibratory response, which is then used to update

key parameters in the structural model to better match the measurements. The

finite element model updating [3, 4] is well established, both in the development

of methods and in application to industrial-scale structures. These methods can

be broadly classified into three categories, namely the direct methods, the iter-

ative methods using modal data and the iterative methods using FRF data. In

direct method, a ‘representational’ model including the updated global mass and

stiffness matrices are obtained that is capable of reproducing the measured data

exactly. The major disadvantage of these methods is the lack of insight into the

modelling errors and confidence about the connectivity of the nodes. In the iter-

ative methods using modal or FRF data, an iterative process based on sensitivity

analysis is required in order to minimise an objective function which consists of

the difference between predicted modal or FRF data and their measured counter-

parts. Issues of convergence and ill-conditioning of the matrices [6] are associated

with these iterative methods.

It is evident that better accuracy of measured data often leads to a better

estimation by the updating method. However, in practical exercises of model

updating, the measured data are often imprecise, incomplete and variable. On

the other hand, experimental variability exists due to different sources. It may

arises from measurement noise, the use of sensors that affect the measurement

or signal processing that might introduce bias. Such variability is reducible by

increased information. The model updating techniques concerned with this type

of variability are referred to as deterministic model updating. In these methods

only one value is obtained for the updating parameters and the estimates of dis-

tributions/ranges of updating parameters are indicators of the level of confidence

in the identified parameters. On the other hand, the experimental variability may

be be inherent to the test structure-variability such as manufacturing and mate-

rial variability in structures which is not reducible and needs to be considered as
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part of the model. This introduces the subject of stochastic finite element model

updating or uncertainty identification which is the main focus of this thesis. The

stochastic finite element model updating/uncertainty identification is described

in the next section.

1.4 Structural variability propagation and iden-

tification methods

The test structure-variability arises from existing variability in structural param-

eters such as thickness, material properties or joint parameters (stiffness and

damping). Some of these parameters (e.g. thickness) are measurable and their

range/distribution of variation can be directly determined by performing a series

of measurements.

Different uncertain models may be considered to represent the uncertainty

in the structural parameters. They may generally be categorized in two groups:

probabilistic models and non-probabilistic (possibilistic) models. In probability

theory, the uncertain parameters are defined as random variables in a sample

space. The sample space represents the region that includes all possible events

and the probability of an event is defined as the ratio of the number of occurrences

of that event over the total number of occurrences in the sample space. For

a continuous random variable, the role of the frequency function is taken by a

Probability Density Function (PDF) [7]. Uniform, exponential, Gama and normal

distribution functions are examples of PDFs for a random variable. Selection of

the parameter probability distribution needs a large number of measurements.

Normal (Gaussian) or multivariate normal distributions are frequently chosen

in the literature. The main reasons for choosing the normal distribution are

due to their well-known statistical properties, their easily estimated parameters,

and their wide availability in software packages [8]. However the validity of this

assumption needs to be justified. Probabilistic models have been the most popular

for numerical uncertainty modelling so far.

Once the probabilistic model is chosen for the uncertain parameters, the con-

sequent uncertainty in the numerical model prediction can be quantified. This is
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referred to as uncertainty propagation, explained in Chapter 2. These methods

are also called probabilistic finite element procedures [9] in some specific appli-

cations. The Monte Carlo Simulation (MCS) method is the most popular imple-

mentation of probabilistic numerical analysis [10,11]. In the MCS a large number

of samples of the uncertain parameters selected from an assumed probability dis-

tribution is used to evaluate the dynamic responses of the deterministic numerical

model. Kernel density estimation [12], applied to the discrete responses, results

in a continuous probability density function by constructing a weighted sum of

the Gaussian PDFs centred on each sample. However the MCS is computation-

ally expensive and may be impractical for realistic numerical models due to the

size and complexity of the structure (e.g. aircraft structure). Therefore there

has been much interest in using efficient probabilistic approaches. The mean-

centred perturbation method has been frequently used for forward propagation

in structural dynamics (for example [13–15]). The perturbation method is compu-

tationally efficient compared with the MCS. However, the perturbation method

works well when the uncertainties are small and the parameter distribution is

Gaussian. Using higher order perturbation may improve the accuracy of the es-

timation. Adhikari and Friswell [16] proposed a method based on asymptotic

approximation of multidimensional integrals. ‘Small randomness’ and Gaussian

PDF assumptions are not required by this method.

During the last decade, there has been increased interest in using the non-

probabilistic model of uncertain parameters in finite element approaches. This

is due to lack of knowledge of the probability density function of uncertain pa-

rameters. A number of mathematical models have been developed in order to

represent the uncertainty in parameters using a non-probabilistic approach with

limited available information. The interval model is considered the simplest form

of non-probabilistic model. Uncertain parameters are defined by variation within

the range of an interval consisting of a lower and upper bound. The subject of

interval vectors and matrices was introduced by Moore [17]. The propagation of

structural uncertainty through finite element analysis, when the uncertain param-

eters are defined within intervals, is called the interval finite element method [18].

The solution of interval finite element equations focuses on finding the minimal
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and maximal deterministic analysis results considering all possible values of input

parameters within the interval uncertainty representation. The parameter vertex

solution [19] is the simplest and most efficient method for interval analysis, but

its application is only valid for restricted classes of dynamic problems. In the pa-

rameter vertex solution, the vertices of the uncertain input data (modelled with

intervals) map to the vertices of the output data. The application of global opti-

misation procedure for estimation of the upper and lower bounds of the output

data may be the most reliable technique for interval finite element analysis.

The interval model for representing uncertainty was later used in the develop-

ment of the theory of fuzzy sets. The fuzzy description of uncertain parameters

was introduced by Zadeh [20] for representing uncertainty in non-probabilistic

form. The uncertainty is defined through a membership function which consists

of the level of membership to the fuzzy set for each element in the domain [21].

The membership function values range from zero to one. A membership function

value of one denotes that the point definitely belongs to the fuzzy set while a

value of zero for membership function shows that the point is definitely not a

member of the fuzzy set. The fuzzy finite element method, introduced by Chen

and Rao [22], has been used recently by Moens and Vandepitte [23] for the cal-

culation of uncertain frequency response functions of damped structures. The

solution of the fuzzy finite element method is often provided with a number of

numerical solutions of the underlying interval finite element problem at different

membership function levels. The application of uncertainty propagation methods

in the problem of flutter analysis will be presented in Chapter 4.

The propagation of uncertain parameters in finite-element models has been

carried out frequently but is of limited value when the uncertain parameters can-

not be measured, typically damping and stiffness terms in mechanical joints or

material-property variability. In this case the variability in dynamic behaviour,

as represented by natural frequencies or mode shapes, can be measured. The

identification of the parameter uncertainty from statistical measured data may

be cast as an inverse problem. This type of problem is referred to as stochastic

model updating or uncertainty identification. Few research papers have addressed

this problem in the literature. Fonseca et al. [24] proposed an optimisation pro-
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cedure for the purpose of stochastic model updating based on the maximising a

likelihood function and applied it to a cantilever beam with a point mass at an

uncertain location. Mares et al. [25] adapted the method of Collins et al. [26]

within a gradient-regression formulation for the treatment of test-structure vari-

ability. Hua et al. [27] used perturbation theory in the problem of test-structure

variability. The predicted output mean values and the matrix of predicted covari-

ances were made to converge upon measured values and in so doing the first two

statistical moments of the uncertain updating parameters were determined. A

comparative study on the performance of existing stochastic finite element model

updating methods is carried out in this thesis and the results are shown in Chap-

ter 3. New perturbation methods and the interval model updating method have

been developed in this thesis and are explained in Chapters 5 and 6.

1.5 Scope of the thesis

The scope of this thesis is to model, propagate and identify the irreducible struc-

tural uncertainty in numerically expensive analysis such as aeroelastic analysis. It

aims to consider existing models for representing uncertain structural parameters

and to propagate them through aeroelastic analysis. Various propagation meth-

ods are tested in terms of computational efficiency together with their level of ac-

curacy in predictions. In the forward propagation methods, the ranges/statistical

distribution of output data are obtained from ranges/statistical distribution of

input data. However, in some cases the input data are not directly measurable.

In these cases, the inverse problem may be implemented to obtain the information

on uncertain structural parameters from the measured output data. This later

objective of the thesis is referred to as uncertainty identification or stochastic

model updating.

Firstly, the problem of linear and Computational Fluid Dynamics (CFD)

based flutter analysis in the presence of structural uncertainty is addressed.

Whereas the propagation of uncertain structural parameters in finite element

models has been carried out by a number of different methods, there appears

to be less published work on the influence of random structural parameters on
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flutter speed. Having a finite element model with an estimate of the possible

distribution or range of these parameters, methods can be used to propagate

structural parameter distributions/ranges through to flutter speed distributions.

Different methods have been investigated: Monte-Carlo simulation, first and sec-

ond order perturbation analysis, Fuzzy methods and interval analysis. These

forward propagation methods have been used for both linear aeroelastic stability

and CFD-based aeroelasticity.

The propagation of structural uncertainty to aeroelastic analysis raises the

question of how the ranges or statistical distribution of immeasurable parameters

can be estimated. To address this issue, the problem of stochastic finite element

model updating has been defined. The thesis continues with this subject. A

new method, based upon the perturbation procedure, is developed in two ver-

sions. In the first version of the method, the correlation between the updated

parameters and measured data is omitted. This results in a procedure that re-

quires only the first-order matrix of sensitivities. The second procedure includes

this correlation (after the first iteration) but is a more expensive computation

requiring the second-order sensitivities. It is shown in numerical simulations that

the first method produces results that are equally acceptable to those produced

by the second method. Another method based on an objective function for the

purpose of stochastic model updating is also proposed. The objective function

consists of two parts: 1- the Euclidean norm of the difference between mean val-

ues of measured data and analytical output vectors, and 2- the Frobenius norm

of the difference between the covariance matrices of measured data and analyti-

cal outputs. The two methods are verified numerically and experimentally using

multiple sets of plates with randomised thicknesses and masses.

Although the probabilistic perturbation method is quite efficient, its range

of application is limited to small uncertainties and normal distributions. This

method also works well in the presence of large volumes of test data. The interval

model updating method is proposed in this thesis to overcome these limitations

of the perturbation method. The problem of interval model updating in the

presence of uncertain measured data is defined and solutions are made available

for two cases. It is shown that the problem can be solved by using the parameter
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vertex solution [19] when (i) the overall mass and stiffness matrices are linear

functions of the updating parameters, (ii) the overall mass and stiffness matrices

can be decomposed into non-negative-definite substructural mass and stiffness

matrices and (iii) the output data are the eigenvalues of the dynamic system.

Two recursive updating equations are developed to update the bounds of an

initial hypercube of updating parameters in this case. However, it is shown

that the parameter vertex solution is not available generally when, for example,

the output data include the eigenvectors of the structural dynamic system and

the system matrices are non-linear functions of the updating parameters. The

general case is solved by using a meta-model which acts as a surrogate for the

full finite element model, so that the region of input data is mapped to the region

of output data with parameters obtained by regression analysis. The method

is demonstrated in numerical simulations and experimental example including a

frame structure with uncertain internal beam locations.

1.6 Outline of the thesis

Chapter 2 gives the background theory for uncertainty analysis. The uncer-

tainty models and their mathematical properties are explained in detail. The

uncertainty propagation methods are also described and the advantages and dis-

advantageous of them are discussed.

Chapter 3 provides a literature review on statistical model updating method

in the presence of uncertain measured data. The minimum variance methods,

Bayesian updating and stochastic model updating methods based on the maxi-

mum likelihood and perturbation theory are explained and a comparative study

is carried out in a numerical example.

Chapter 4 addresses the problem of linear flutter analysis in the presence of

structural uncertainty. Different forward propagation methods, interval, fuzzy

and perturbation are applied to linear aeroelastic analysis for a variety of wing

models (Goland wing with store and without store and a generic fighter aircraft).

This chapter also explains the work done on the feasibility of using these methods

(in terms of computational time) to propagate structural model variability to
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aeroelastic stability prediction, when using CFD. The method uses an eigenvalue

based method which can be configured for the purpose of computing stability for

many similar structural models.

Chapter 5 describes the mathematical formulation of two new versions of the

perturbation method. A further method based on minimisation of an objective

function is also explained in this chapter. The verification of methods by numer-

ical examples and experimental study, including plates with random thicknesses

and masses, are demonstrated.

Chapter 6 shows the mathematical formulation of the problem of interval model

updating. The method is verified numerically and experimentally using a frame

structure with uncertain locations of internal beams.

Chapter 7 gives the conclusions of the research and suggestions for future work.
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Chapter 2

Background theory for uncertainty
modelling and propagation

2.1 Introduction

Nowadays the design of structures is mainly based on predictions from numerical

models. However, the quality of the numerical results depends on their repre-

sentation of physical behaviour. Inherent uncertainties in structural parameters

arising from manufacturing processes, lead to the need for creating statistical

rather than deterministic models. This can increase confidence by providing fur-

ther information.

There are generally two classes of uncertainty: epistemic and aleatoric (irre-

ducible) uncertainty [28]. Epistemic uncertainty is mainly caused by the lack of

knowledge, which is reducible by further information. Lack of confidence arising

from either the choice of numerical method or the fidelity of modelling assump-

tions is a form of this type of uncertainty. On the other hand, aleatory uncertainty

includes randomness in parameters; For example, variability in structural param-

eters arising from the accumulation of manufacturing tolerances or environmental

erosion. This type of uncertainty is irreducible and is the main concern of this

work.

Several methodologies have been developed to introduce the effects of irre-

ducible uncertainty into the design procedure or engineering analysis. Two pop-

ular classes of methods have emerged: probabilistic and non-probabilistic meth-

ods [29]. This chapter deals with the necessary mathematical tools that are

used in this thesis. First, probabilistic and non-probabilistic models for uncer-
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tainty modelling are explained. Basic properties of probabilistic models such

as the Gaussian distribution are described, followed by some explanation of non-

probabilistic models such as interval and fuzzy models. Interval and fuzzy models

are then considered and explained for non-probabilistic models. Finally, methods

for propagation of input parameter uncertainties through deterministic analysis,

known as uncertainty propagation, are explained. The purpose of uncertainty

propagation methods is to quantify the consequent uncertainty in the outputs.

The propagation methods discussed in this chapter include Monte Carlo Sim-

ulation (MCS), perturbation methods, asymptotic integral, interval, fuzzy and

meta-models.

2.2 Uncertainty modelling

Uncertainty can be modelled using different mathematical tools, which may be

categorised into two groups: probabilistic models and non-probabilistic models.

The probability theory (or random parameters) and random fields are used for

the former and described in Sections 2.2.1 and 2.2.2, while the interval model

and fuzzy sets are considered as non-probabilistic models which are explained in

Sections 2.2.3 and 2.2.4.

2.2.1 Probabilistic models: Random parameters

A mathematical way of quantifying uncertainty is by the use of probability theory.

In the probability theory, a domain of possible values for the random parameter X

is defined and the frequency of occurrences or likelihood of the random parameter

being inside a certain domain is given by a Probability Density Function (PDF)

fX (x). The PDF has following properties: fX (x) ≥ 0 and
∫ +∞
−∞ fX (x) dx = 1.

The PDF can be used to evaluate the probability of occurrence of a random

parameter in a particular domain of interest, i.e. if X is a random parameter

with PDF fX (x), the probability that X falls in the interval
[

a b
]
, indicated

by P (a ≤ X ≤ b), is [7]
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P (a ≤ X ≤ b) =

b∫

a

fX (x) dx (2.1)

Based on Eq. (2.1), another common definition used in finding the probability

properties of a continuous random parameter X, known as the Cumulative Dis-

tribution Function (CDF), can be defined [7] as,

FX (x) = P (X ≤ x) =

x∫

−∞

fX (x) dx (2.2)

The CDF shows the probability that random parameter X is smaller than a

deterministic value x. It can be seen in Eq. (2.2) that the PDF is the derivative

of the CDF with respect to x, i.e., fX (x) = dFX (x) /dx.

The expected value (or expectation, mathematical expectation, or mean value

or average ) of a function u (X) of the random parameter X is the most common

value that can be obtained by calculating the integral

E (u (X)) =

+∞∫

−∞

u (x) fX (x) dx (2.3)

The raw moments µ
′(r) of the random parameter X can be obtained by taking

u (X) = Xr where r = 1 gives the first moment X̂ = E(X), while the second

raw moment, E (X2), is the mean-square of X. The features of a probabilistic

quantity are often defined by the central moments associated with the PDF. The

first central moment µ(r) is equal to the first raw moment µ
′(r) which is the mean

X̂. The rth central moment µ(r) (r ≥ 2) is given by,

µ(r) =

+∞∫

−∞

(
x − X̂

)r

fX (x) dx, r = 2, 3, 4, ... (2.4)

which is related to the rth raw moments using the following recursive equation [30]

µ(r) = E
((

X − X̂
)r)

=
r∑

k=0

r!

k! (r − k)!
(−1)r−k µ

′(r)X̂r−k (2.5)

The second order central moment, known as the variance of the distribution, is

the most commonly used central moment, and is denoted by Var(X) = σ2
X . σX is
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referred to as the standard deviation and is a common measure for the scattering

of the distribution about its mean. The degree of uncertainty of X is described

as the ratio of the standard deviation to the mean σX/X̂. This ratio is called

Coefficient of Variation (COV). Skewness (sk) , a measure of the asymmetry of

the probability distribution, and kurtosis (ku), a measure of the flatness of the

probability distribution, are respectively defined as [31]

sk =

E

[(
X − X̂

)3
]

σ3
X

(2.6)

ku =

E

[(
X − X̂

)4
]

σ4
X

(2.7)

The mathematical formulations for the PDF and CDF of some well-known

distributions namely Gaussian (normal), Log-normal, Exponential, Gamma and

Chi-square are given in Table 2.1 [7,31]. The distributions of random parameters

are often defined by the parameters of the probability distribution function. As

can be seen in Table 2.1, the normal and log-normal distribution is defined by

two parameters X̂ and σX , the exponential distribution is described by only one

parameter a, while the Gamma and Chi-square distributions are defined with two

parameters, a and b.

The definition of one dimensional random variables can be extended to the

multi-dimensional random variables. A random vector ∆x ∈ ℜp includes an array

of p random variables {∆x1, ∆x2, ..., ∆xp} and is characterised by the joint CDF

as1

F∆x (x) ≡ F (x1, ..., xp) ≡ P [{∆x1 ≤ x1} ∩ ... ∩ {∆xp ≤ xp}] (2.8)

and the joint PDF f∆x (x) : ℜp 7→ ℜ as

f∆x (x) =
∂pF (x1, x2, ..., xp)

∂x1...∂xp

(2.9)

The marginal PDF of ∆xi (a component of the random vector ∆x) can be cal-

culated as

1The term ∆x is chosen here in order to be consistent with the random structural parameter
vector ∆θ, introduced in Chapter 5.
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Table 2.1: Some common probabilistic models for random parameter

Probability distribution PDF CDF Mean Variance

Gaussian (normal) 1√
2πσ2

X

e
− 1

2

(
x−X̂
σX

)2

1
2

+ 1
2
erf

(
x−X̂√

2σ2
X

)
X̂ σ2

X

Log-normal distribution 1

x
√

2πσ2
X

e
− 1

2

(
lnx−X̂

σX

)2

, x ≥ 0 1
2

+ 1
2
erf

(
lnx−X̂√

2σ2
X

)
e(X̂+σ2

X/2)
(
eσ2

X − 1
)

e(2X̂+σ2
X)

Exponential ae−ax, x ≥ 0 1 − ae−ax 1
a

1
a2

Gamma abxb−1

(b−1)!
e−ax, x ≥ 0 1 −

(
b∑

i=0

(ax)i

i!

)
e−ax b

a
b
a2

Chi-square (x/2)b/2−1e−x/2

2Γ(b/2)
, x ≥ 0 1

Γ(b/2)
γ (b/2, x/2) b 2b

Γ is the upper incomplete gamma function and is defined as Γ (s, x) =
∞∫
x

ts−1e−tdt

γ is the lower incomplete gamma function and is defined as γ (s, x) =
x∫
0

ts−1e−tdt

erf is the ‘error function’ in integrating the normal distribution and is defined as erf (x) = 2√
π

x∫
0

e−t2dt
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f∆xi
(xi) =

+∞∫

−∞

...

+∞∫

−∞

f∆x (x) dx1...dxi−1dxi+1...dxp (2.10)

Joint Gaussian (normal) density function is a commonly used example of the joint

PDF and is given by:

f∆x (x) =
1

(2π)p/2 |Vx|
exp

(
−1

2
(x − x̂)T V−1

x (x − x̂)

)
(2.11)

where |•| denotes the determinant of matrix •, x̂ and Vx = Cov (∆x, ∆x) are

the mean vector and the covariance matrix respectively which are explained later

in this section. The joint PDF is also expressed as f∆x (x) = exp {−L∆x (x)}
for mathematical convenience, where −L∆x (x) is the log-likelihood function. For

example, log-likelihood function of the joint Gaussian distribution function of

a random vector ∆x with mean vector x̂ and covariance matrix Vx (given by

Eq. (2.11)) is expressed as [16,31]

LX (x) =
p

2
ln2π +

1

2
ln |Vx| +

1

2
(x − x̂)T V−1

x (x − x̂) (2.12)

The first and second joint central moments of a random vector ∆x can be

obtained from their joint PDF. The expectation value (mean value or first mo-

ment), x̂, is similar to the univariate distribution. The covariance matrix, the

second order joint central moment, is defined as

Vx =




Var (∆x1) Cov (∆x1, ∆x2) . . . Cov (∆x1, ∆xp)
Cov (∆x2, ∆x1) Var (∆x2) . . . Cov (∆x2, ∆xp)

. . . .

. . . .

. . . .
Cov (∆xp, ∆x1) Cov (∆xp, ∆x2) . . . Var (∆xp)




(2.13)

where Cov (∆xi, ∆xj) = E ((∆xi − x̂i) (∆xj − x̂j)). The covariance matrix be-

tween two different random vectors ∆x1 ∈ ℜp1 and ∆x2 ∈ ℜp2 is expressed as:

16



Cov (∆x1, ∆x2) =



Cov (∆x11 , ∆x21) Cov (∆x11 , ∆x22) . . . Cov
(
∆x11 , ∆x2p2

)

Cov (∆x12 , ∆x21) Cov (∆x12 , ∆x22) . . . Cov
(
∆x12 , ∆x2p2

)

. . . .

. . . .

. . . .
Cov

(
∆x1p1

, ∆x21

)
Cov

(
∆x1p1

, ∆x22

)
. . . Cov

(
∆x1p1

, ∆x2p2

)




(2.14)

The following equations can be readily written based on Eqs. (2.13) and (2.14),

Vx = E
(
(∆x − x̂)(∆x − x̂)T

)
(2.15)

Cov (∆x1, ∆x2) = E
(
(∆x1 − x̂1)(∆x2 − x̂2)

T
)

(2.16)

and the the following properties for covariance matrix can be obtained from

Eqs. (2.15) and (2.16),

Vx : is symmetric and positive semi-definite

Cov (∆x1, ∆x2) = Cov (∆x2, ∆x1)
T

Cov (∆x1 + ∆x2, ∆x3) = Cov (∆x1, ∆x3) + Cov (∆x2, ∆x3)

Cov (∆x1 + ∆x2, ∆x1 + ∆x2) = Cov (∆x1, ∆x1) + Cov (∆x1, ∆x2) +

Cov (∆x2, ∆x1) + Cov (∆x2, ∆x2)

Cov (B∆x1,C∆x2) = BCov (∆x1, ∆x2)C
T

The diagonal terms of the covariance matrix represent the variances of each com-

ponent of random vector. The off-diagonal terms give a measure of the inter-

dependence between the random vector elements. The off-diagonal terms of co-

variance matrix can be used to assess the degree of correlation between random

variables. The coefficient of correlation between two random variables ∆x1 and

∆x2 is expressed as

ρ∆x1,∆x2 =
Cov (∆x1, ∆x2)

σXσY

(2.17)

Two random variables are said to be perfectly correlated if ρ∆x1,∆x2 = ±1 and

uncorrelated if ρ∆x1,∆x2 = 0. Note that if two random variables are independent,
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they are uncorrelated but the reverse is not always true. Also, note that if the

random variables, belonged to a joint distribution, are statistically independent

from each other then the joint probability distribution is

f∆x (x) = f∆x1 (x1) f∆x2 (x2) ...f∆xp (xp) (2.18)

and the off-diagonal terms of the covariance matrix are zeros.

In practical cases, the random variables and vectors exist in the form of dis-

crete variables rather than being continuous. The mean and covariance of random

variables (and vectors) can then be calculated from the population of samples us-

ing standard equations as shown as follows. In the presence of ns samples of a

p-dimensional random vector ∆x in the form of

∆x =




∆x11 ∆x21 ... ∆xp1

∆x12 ∆x22 ... ∆xp2

. . ... .

. . ... .

. . ... .
∆x1ns ∆x2ns ... ∆xpns




(2.19)

the mean value of each component ∆xi , i = 1, 2, ..., p, can be estimated as [7]

x̂i =
1

ns

ns∑

j=1

∆xij (2.20)

and each term of covariance matrix can be calculated as

Cov (∆xi, ∆xj) =
1

ns − 1

ns∑

k=1

(∆xik − x̂i) (∆xjk − x̂j) (2.21)

where Cov (∆xi, ∆xi) = Var (∆xi).

The mathematical formulations that are given in this section include only

those which have been used in this thesis. However, a complete account of statis-

tics can be found in the reference books such as [7, 31].

2.2.2 Probabilistic models: Random fields

Many parameters in a physical structure such as thickness, Young’s modulus,

shear modulus, density and damping are spatially distributed. Random fields

can be used to model the spatial variation of these parameters over the region in

18



which the variation takes place. Figure 2.1, reproduced from [32], shows how the

bending stiffness of a beam can be represented as a random field along the length

of the beam. The deviations are shown from the baseline value (deterministic

value with uniform distribution).

0 0.2 0.4 0.6 0.8 1
3
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4

4.5
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Length along the beam (m)

E
I

(

N
m

2
)

 

 

Random realizations

Baseline

Figure 2.1: The representation of bending rigidity of the beam with mean
value ÊI = 5.33Nm2 as a random field.

The random field υ (x) is the ensemble of random variables at infinite number

of points with coordinates x =
{
x1, ..., xnf

}
(where in theory nf → ∞) [31], which

is impossible to obtain in reality. For example, consider the dynamic response at

one point of a mechanical system due to random excitations. In practice, one may

measure the time response for a limited period of time. However, the measure-

ment can be repeated to obtain different realisation of the vibration response at

each time step. Then, the following concepts may be defined to allow the analyst

to make more efficient use of what little data are accessible [31].

• Homogeneous random field has a property that the joint PDF remains

unchanged when the set
{
x1, ..., xnf

}
is translated in the space of the ran-

dom variables. The term homogenous is commonly replaced by stationary

for one-dimensional random processes, usually in time.
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• Isotropic random field is a random field in which the joint PDF remains

unchanged when the set
{
x1, ..., xnf

}
is rotated in the space of the random

variables.

• Ergodic random field is a random field where all information about its

statistical properties can be obtained from a single realisation of the random

field.

In the example of the dynamic response of a mechanical structure due to random

excitation, the vibration time response is said to be stationary if the statistical

properties of the response (e.g. mean and covariance) remain unchanged when

the time is shifted by τ , i.e,

E (u (t)) = E (u (t + τ)) ∀τ ∈ ℜ (2.22)

E (u (t) u (t + τ)) = E (u (0) u (τ)) ∀τ ∈ ℜ (2.23)

Eq. (2.22) shows that the mean value remain unchanged. Eq. (2.23) implies that

the covariance function depends only on τ which is the difference between two

points in random field (τ = t2 − t1 or generally τ = x2 − x1).

It is not easy to deal with random fields directly in mathematical and nu-

merical models. Therefore there is a need for discritisation of the random field

in terms of random variables. Many techniques for the purpose of conversion of

continuous random field into discrete random variables have been studied in the

literature (e.g. [33]). A technique based on Karhunen-Loeve (KL) [34] expansion

is found to be very useful in the application of stochastic finite element method.

The KL expansion is defined in a Fourier-type series

υ ({x} , ζ) = v̂ {x} +
∞∑

i=1

√
λiχi ({x}) ξi (ζ) (2.24)

where v̂ {x} = E [υ ({x} , ζ)] is the mean value of random field, ξi (ζ) is a set of

uncorrelated random variables, ζ is the correlation parameter which is explained

later in this section, the constants λi and functions χi ({x}) are the eigenvalues

and eigenfunctions of the correlation function C ({x1} , {x2}) as
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∫

Ω

C ({x1} , {x2}) χi ({x1})dx1 = λiχi ({x2}) ∀i = 1, 2, ... (2.25)

The KL expansion decomposes the initial random field into a summation over an

infinite number of uncorrelated random variables which are weighted with deter-

ministic functions
√

λiχi {x}. In practical cases, a truncated series of Eq. (2.24)

is used. Since the eigenvalues λi in Eq. (2.25) are arranged in decreasing order,

the truncated series contain lots of information about the random field. For ex-

ample, to keep 90% information of series expansion, one may choose a number of

terms, p, such that λp/λ1 = 0.1 [32]. Many concepts for determining the corre-

lation function have been proposed in the literature. As mentioned earlier, for a

stationary random field, the correlation function between the random field values

at two locations x1 and x2 is a function of the distance τ = |x2 − x1| between

these points (where |•| denotes the absolute value of scalar •). Reference [31]

provides a comprehensive review of the random fields and corresponding corre-

lation functions. The choice of correlation function and its parameters depends

on the underlying behaviour of the random field and is often not readily evident.

One may use the following correlation function [32]

C ({x1} , {x2}) = e−ζ|x1−x2| (2.26)

where |•| represents the absolute value of scalar • and ζ, the correlation parame-

ter, is used for description of the random field. The correlation parameter usually

only depends on the size of the domain under consideration. Very large values of

the correlation parameter is used for representation of a delta-correlated random

field. Small value of correlation parameter shows that the random field effec-

tively becomes a random variable [32]. The solution of the eigenfunction problem

in Eq. (2.25) with the above correlation function (Eq. (2.26)) in the domain of

−a ≤ x ≤ +a is given in [34].

The KL expansion is recently used for development of stochastic element mass

and stiffness matrices for an undamped Euler-Bernoulli beam by Adhikari and

Friswell [32]. The bending stiffness EI and mass per unit length of the beam ρA

are treated as random field and represented by KL expansion as
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EI (x, ζ) = ÊI (1 + ǫ̆1v1 ({x} , ζ)) (2.27)

ρA (x, ζ) = ρ̂A (1 + ǫ̆2v2 ({x} , ζ)) (2.28)

where •̂ represents the mean value, 0 < ǫ̆i ≪ 1 (i = 1, 2) are deterministic con-

stants and υ ({x} , ζ) is a random field given in Eq. (2.24) with zero mean. The

uncorrelated random variables ξi (ζ) are assumed to have a Gaussian distribu-

tion with zero mean and unit standard deviation. Three realisations of bending

stiffness treated as a random field, are shown in Figure 2.1. In this example it is

assumed that ζ = 3/L and ǫ̆1 = 0.1 (L = 1m is the length of the beam). The

stochastic element stiffness and mass matrices can then be derived based on the

KL expansion as [32]

Ke (ζ) =

le∫

0

ÊI (1 + ǫ̆1v1 ({x} , ζ))N
′′

N
′′T

dx (2.29)

Me (ζ) =

le∫

0

ρ̂A (1 + ǫ̆2v2 ({x} , ζ))NNTdx (2.30)

where N is the vector containing shape functions and •′′ ≡ d (•) /dx2. The final

form of of these matrices are given in [32].

In this thesis, the random field is not directly used for uncertainty modelling

and propagation method. However, the application of random field concept in the

construction of a meta-model (Kriging) acting as a surrogate for the full finite-

element or mathematical model is investigated in Section 2.3.6 and Chapter 6.

2.2.3 Non-probabilistic models: Interval model

The theory of interval models and analysis is quite old. Archimedes (287–212

BC) [35] calculated the bounds of irrational number π as 310
17

< π < 31
7

by

approximating the circle with inscribed and circumscribed 96-side regular poly-

gons. In the interval approach, the uncertain variables can vary within intervals

between extreme values. Interval model is said to be non-probabilistic since no
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assumption is made about the probability distribution of the uncertain variables.

The uncertain variable X̃, represented as an interval, is defined as

X̃ ∈ [x, x] = [x ∈ ℜ |[x ≤ x ≤ x]] (2.31)

The above interval is called ‘close’ since both upper bound and lower bound

belong to the set. The midpoint mx and radius rx of an interval are expressed as

mx =
x + x

2
(2.32)

rx =
x − x

2
(2.33)

The definition of the interval scalar, given in Eq. (2.31), can be extended to

the definition of interval vectors and matrices. The interval vector
{

X̃i

}
∈ ℜp

and the interval matrix
[
X̃ij

]
∈ ℜp×q consist of elements that belong to a number

of disjoint interval scalars in ℜ which can be expressed as [21]

{
X̃i

}
∈
(
[x1, x1] ∪ ... ∪

[
xp, xp

])
i = 1, ..., p (2.34)

[
X̃ij

]
∈
(
[x11, x11] ∪ ... ∪

[
xpq, xpq

])
i = 1, ..., p j = 1, ..., q (2.35)

Eqs. (2.34) and (2.35) imply that the components of uncertain vectors/matrices

are independent. Therefore, the interval vector represents a hypercube containing

the set of all possible combinations of the vector elements. For example, the

rectangular, shown in Figure 2.2, describes the space of the possible values of

vector elements consisting of two uncertain components X̃1 ∈
[
x1, x1

]
and X̃2 ∈

[
x2, x2

]
.

Another description of interval vectors
{

X̃
}

is based on hyperellipse repre-

sentation as shown in Figure 2.2. The rectangular region, shown in the figure, or

more generally the hypercube is replaced by an elliptical area (or hyperellipse).

In this model, it is supposed that the points outside the ellipse but within the

rectangle are unlikely to be reached. The mathematical description of a closed

elliptical set is [21]

{
X̃
}T

L
{

X̃
}
≤ a (2.36)
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where L is a positive definite matrix and a is a positive constant.

In most engineering applications, the input parameters are statistically inde-

pendent. Therefore, the description of these variables by a hypercube is gener-

ally more realistic than the elliptical modelling. The hypercube representation

of interval variables is used in this thesis. However, more details about interval

modelling can be found in Ref. [17].

x2

x1

x1x1

x2

x2

Figure 2.2: Interval representation of an uncertain 2-dimensional vector.

2.2.4 Non-probabilistic models: Fuzzy sets

The fuzzy logic concept for modelling uncertainty through indistinctive definition

(instead of probability distribution) was first introduced by Zadeh [20] in 1965.

The fuzzy set is considered as an extension of a conventional (crisp) set, which

discriminates between elements that belong to the set and those which do not.

In the fuzzy concept, a set of transitional states between the members and non-

members are defined via a membership function η (x) that indicates the degree

to which each element in the domain belongs to the fuzzy set. The membership

function of a fuzzy set η (x) is defined as [21]

x̃ = {(x, η (x)) |(x ∈ X) (η (x) ∈ [0, 1])} (2.37)
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where x is a member of domain X. As can be seen in Eq. (2.37), the membership

function value varies between 0 and 1. A membership function value of one shows

that x is definitely a member of the fuzzy set, while a membership function value

of zero means that x definitely does not belong to the fuzzy set. For instance,

the membership function of an uncertain Young’s modulus may be considered as

shown in Figure 2.3. According to the figure, the values of Young’s modulus are

definitely within the interval of [206 214] Gpa whereas it is not possible to have

the Young’s modulus of E < 200 Gpa or E > 220 Gpa. Moreover, the range

of variation of Young’s modulus in [203 217] Gpa is possible with the degree of

possibility equal to 50%. This demonstrates that the fuzzy logic concept is based

on possibility theory [36]. Although, from a strictly mathematical point of view

the comparison of probabilistic distributions with fuzzy membership function is

not allowed, it may still be useful from a practical engineering perspective. For

example, the Gaussian probability function may be approximated by a triangle

by equating the area under the normalised Gaussian distribution function with

the area under triangular membership function as shown in Figure 2.4. This ap-

proximation is explained in [37]. As a result of this approximation the triangular

fuzzy membership function can be defined as

η (x) = max



0, 1 −

∣∣∣x − X̂
∣∣∣

δ



 (2.38)

where δ =
√

2πσX , X̂ and σX are the mean and standard deviation of the equiv-

alent Gaussian distribution.

2.3 Uncertainty propagation

Consider an input-output system (e.g. an FE model) with uncertain input param-

eters, indicated by x = {x1, x2, ..., xp}2. Figure 2.5 shows a typical input-output

system. Due to existing uncertainty in the input parameters, the output parame-

ters, indicated by y = {y1, y2, ..., yp} in the figure, are no longer deterministic and

must be obtained from an uncertainty propagation method. Many different un-

2At this point what were previously referred to as random variable becomes random param-
eters, such as randomised parameters in a FE model.
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Figure 2.3: Membership function for Fuzzy representation of an uncertain
variable (Young’s modulus).

Figure 2.4: Linear approximation of a Gaussian distribution by triangular
fuzzy number.
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certainty propagation methods have been introduced in the literature e.g. those

presented in [16] and [21]. Among existing methods, the Monte Carlo Simulation

(MCS), the first and second order perturbation methods, the asymptotic integral

method, the interval and the fuzzy logic are selected and explained in this work.

The Monte Carlo Simulation (MCS) is the most accurate and reliable propa-

gation methods. The MCS is based on sampling method which performs sample

evaluation of deterministic analysis. The MCS method is discussed in Section

2.3.1. The statistical properties of the responses may also be determined by

the perturbation and asymptotic integral methods which incorporate low-order

Taylor series. These methods are described in Sections 2.3.2 and 2.3.3 respec-

tively. Interval analysis and fuzzy propagation methods are then explained in

Sections 2.3.4 and 2.3.5. These methods are used when the uncertain input pa-

rameters are modelled using interval or fuzzy sets. Finally the meta-model is

described in Section 2.3.6. The meta-model is not used as an uncertainty prop-

agation method but it can be used together with the sampling and optimisation

methods to reduce the computation time of uncertainty propagation method.

The use of the Kriging predictor as a meta-model is explained in detail in this

section.

x2

.

.

.

xp

.

.

.

x1

y2

yn

y1

Figure 2.5: An input-output system.

2.3.1 The Monte Carlo Simulation

The MCS is a sample-based method and has been frequently used in the literature

for the purpose of uncertainty propagation. In the Monte-Carlo process, a large

number of samples (ns) of uncertain parameter X is generated according to the

assumed parameter PDF, while the respective response values, Y , are evaluated
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from a deterministic analysis (for instance, FE analysis). The mean and covari-

ance matrix of the output vector from the analytical/numerical model can then

be directly evaluated from the scatter of responses and the system parameters

that provide the input to the simulation. The flow chart shown in Figure 2.6 [38]

illustrates how the analysis process is structured. The number of samples ns in

Figure 2.6 is often determined by displaying the evolution of statistics (e.g. mean

and standard deviation) of output data. The convergence on the statistical prop-

erties of the data shows the requisite number of samples ns for the analysis. An

example of how the number of samples can be obtained from convergence plot is

explained in this section.

The generation of samples in MCS can be carried out with different methods

such as multivariate normal sampling [31], Latin Hypercube Sampling (LHS) [39]

and Orthogonal Array Sampling [40]. The multivariate normal sampling and LHS

have been used in this thesis and are now described.

j :=1

Assign one sample

from PDF

X(j)

Analyse the
deterministic problem

j n< s

j :=j +1

Compute statistics of
all response samples

Yes

No

Figure 2.6: Flow of computation of MCS.
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Multivariate normal sampling

This method can be used when the uncertain parameters belong to a multivariate

normal distribution. If the uncertain parameters are uncorrelated, the covariance

matrix is diagonal. The sampling in this case is straightforward as the sam-

ples from each component of the random vector can be taken independently to

generate a number of sample vectors of the random vector. However, the pro-

cedure is slightly different when the uncertain parameters are correlated, where

the off-diagonal terms of the covariance matrix are non-zero. As mentioned in

Section 2.2.1, the covariance matrix is positive semi definite; therefore, it can be

decomposed into the product of a lower triangular matrix U and its conjugate

transpose using Cholesky decomposition [41] as

Vx = U × UT (2.39)

Now, consider a random vector ζ with uncorrelated random components which

are normally distributed with zero mean and unit standard deviation. The sam-

pling of random vector X with correlated random component can be obtained by

sampling the random vector ζ as

∆x = x̂ + Uζ (2.40)

where x̂ is the mean vector of ∆x.

To illustrate sampling procedure shown in Figure 2.6, consider a two dimen-

sional multivariate normal random parameter ∆x ∈ N2 (x̂,Vx); where N2, rep-

resents a two-dimensional multivariate normal distribution with ∆x̂ =
[

0 0
]T

and Vx = diag
([

1 1
])

. In order to show the convergence on the statistical

properties of a function of ∆x1 and ∆x2, the Rosenbrock’s function is consid-

ered [42]. This function is expressed as

y = f (∆x1, ∆x2) = 100
(
∆x2 − ∆x2

1

)2
+ (1 − ∆x1)

2 (2.41)

The reason for choosing this function is due to the fact that it is an algebraic and

nonlinear response function that exhibits some of the nonlinear trends often found

in engineering analysis. The multivariate normal distribution sampling is used

29



to determine the statistical properties of the response y. Figure 2.7 shows the

convergence diagram on mean and standard deviation of Rosenbrock function.

As shown in the figure, after taking 9000 samples of uncertain parameters X1

and X2, the mean and standard deviation of the response converge to 409 and

1095, respectively. This shows that ns = 9000 samples can give the asymptotic

statistical properties of the output y.
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Figure 2.7: Convergence of the Monte Carlo method estimating the mean
and standard deviation of Rosenbrock’s function.

Latin hypercube sampling

The statistical uncertainty associated with MCS may be reduced by development

of Latin Hypercube Sampling (LHS) technique [39]. This method, at its most

ambitious, is about ensuring a good coverage of the random parameter space.

The idea is to divide the parameter space in subspaces of equal probability. Sam-

ples are then taken from each subspace ensuring that every parameter is covered

equally. For the one-dimensional case p = 1, the sampling procedure can be sim-

ply carried out by drawing the samples one by one in random order. However,

30



the procedure becomes more complex in the presence of multi-dimensional case

p > 1, owing to the fact that the covering of all possible combinations lead to

an exponential growth of the number of required samples. Therefore, keeping

the number of samples as small as possible in this case is essential. For example,

assume a two-dimensional random vector with uniform and independent distribu-

tions in the range of [0 1]. Figure 2.8 [38] illustrates how the LHS can be used to

draw samples from this bidimensional parameter space. As shown in the figure,

the samples are taken randomly from each subspace such that there is no repeat

for drawing samples from the same subspace.

Figure 2.8: Latin hypercube sampling.

Kernel density estimation

The MCS and LHS provide a large number of response samples
[

y1 y2 ... yns

]

in which the statistical moments of the response can be directly estimated from

the population, e.g. by Eqs. (2.20) and (2.21). In the situation where the detailed

shape of the underlying density function is of interest, Kernel density estimation

can be used [43]. Before explaining the Kernel density estimation, it may be

useful to describe the histogram of response samples first. The histogram of the

response samples can be constructed by dividing the sample space into a num-

ber of intervals and placing each observation over the appropriate interval. The

histogram of response f(y) may be expressed as
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f (y) =
ns∑

i=1

Ĭ
(
y − y

(c)
i ; h

)
(2.42)

where y
(c)
i denotes the centre of the interval in which yi falls and Ĭ (z̆; h) is the

indicator function of the interval
[
−h h

]
defined as

Ĭ (z̆; h) =

{
1 if −h ≤ z̆ ≤ h
0 if z̆ < −h or z̆ > h

(2.43)

Further scaling is needed so that f integrates to 1. However, the drawbacks of

histogram density function, e.g. (i) information is lost on replacing yi by the

central point of the interval in which it falls, (ii) the estimator is not smooth due

the sharp edges of the boxes, and (iii) the behaviour of the estimator is affected

by the choice of width of the intervals used, lead to the use of a smooth kernel

function instead of a box. The Gaussian (normal) function is a common choice

for the kernel function [43]. In this case, the PDF can be estimated using the

kernel function with an h bandwidth (smoothing parameter) as

f (y) =
1

ns

ns∑

i=1

kr (y − yi; h) (2.44)

where kr (y − yi; h) denotes the normal density function in z̆ = (y − yi) with mean

0 and standard deviation h. Since properties of kr are inherited by f (y), choosing

kr to be smooth will produce a density estimate which is also smooth [43].

In the presence of two or more responses, the kernel density estimation which

is introduced in Eq. 2.44, is replaced by a multivariate Gaussian (normal) function

with an H bandwidth matrix

krH (y) = |H|−1 (2π)−p/2 e−yTH−1TH−1y/2 (2.45)

The choice for the bandwidth matrix H is crucial and the following equation is

recommended in [8, 44] for a better estimate

H = n−1/(p+4)
s V

1
2
y (2.46)

where Vy is the covariance matrix of the response samples, evaluated by Eq. (2.21).

Eq. (2.46) is used when the number of parameters p is greater than the number
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of responses nr, p > nr. However, in the case of p < nr, nr + 4 is replaced by

p + 4 in Eq. (2.46).

2.3.2 The perturbation method

Consider a system with uncertain input parameters represented by ∆x and un-

certain outputs represented by ∆y. If the uncertain parameters follow a p-

dimensional multivariate normal distribution ∆x ∈ Np (x̂,Vx), response of the

system can be expanded about the mean value of the uncertain parameters as,

∆y (∆x) =∆y (x̂) +

p∑

i=1

∂∆y

∂∆xi

|∆xi=x̂i
(∆xi − x̂i)

+

p∑

i=1

p∑

j=1

∂2∆y

∂∆xi∂∆xj

|∆xi=x̂i, ∆xj=x̂j
(∆xi − x̂i) (∆xj − x̂j) + ...

(2.47)

The assumption of normal distribution for uncertain parameters does not in-

cur loss in generality as any set of non-Gaussian random parameters can be

transformed into a set of uncorrelated Gaussian random parameters by using the

‘Rosenblatt’ transformation or the ‘Nataf’ transformation [45]. Truncating the

series of Eq. (2.47) after the second order term leads to a quadratic form of re-

sponse ∆y as a function of uncertain parameters ∆x. The theory of Quadratic

form in Gaussian random parameters has been extensively discussed in the liter-

ature [16,46,47]. This method can be used to determine the statistical moments

of uncertain response from the truncated Taylor series expansion. It is done by

evaluating a term called the moment generating function of each component of

the response vector ∆yi, for any s ∈ ℜ. The moment generating function can be

obtained from

M̆∆yi
(s) = E

(
es∆yi(∆x)

)
=

∫

ℜp

evd∆x (2.48)

where

v = sŷi + sgT
∆yi

|∆x=x̂ (∆x − x̂) +
s

2
(∆x − x̂)T G∆yi

|∆x=x̂ (∆x − x̂)

− p

2
ln (2π) − 1

2
ln |Vx| −

1

2
(∆x − x̂)T V−1

x (∆x − x̂)
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where ŷi = ∆yi (x̂), g∆yi
|∆x=• =

{
∂∆yi

∂∆xj

}
|∆x=• is gradiant/sensitivity vector and

G∆yi
|∆x=• =

[
∂2∆yi

∂∆xj∂∆xk

]
|∆x=• is Hessian matrix. The integral in Eq. (2.48) can

be evaluated exactly as [16]

M̆∆yi
(s) =

e

(
sŷi+(s2/2)gT

∆yi
|∆x=x̂ Vx(I−sVxG∆yi

|∆x=x̂ )
−1

g∆yi
|∆x=x̂

)

|I − sVxG∆yi
|∆x=x̂ |

(2.49)

where |•| denotes the determinant of the matrix •. The inverse Laplace transform

of Eq. (2.49) gives the PDF of response ∆yi (∆x). However, the exact closed-

form expression of the PDF is not readily available. Pearson estimation, which

is explained in Section 2.3.3, may be used to estimate the PDF of the response

from its cumulants. The cumulants of the response can be obtained from

κ
(r)
i =

dr

dsr
lnM̆∆yi

(s) |s=0 (2.50)

with κ
(r)
i is the rth-order cumulant of ith component of the response vector ∆y.

According to Eq. (2.50) the cumulants of ∆yi may be expressed as

κ
(1)
i = ŷi +

1

2
Trace (G∆yi

|∆x=x̂ Vx) (2.51)

κ
(r)
i =

r!

2
gT

∆yi
|∆x=x̂ [VxG∆yi

|∆x=x̂ ]r−2 Vxg∆yi
|∆x=x̂

+
(r − 1)!

2
Trace ([G∆yi

|∆x=x̂ Vx]
r) r ≥ 2

(2.52)

The relationship between cumulants and the raw moment (µ
′(r)) may be obtained

from following recursion equation [16]

κ(r) = µ
′(r) −

r−1∑

k=1

(r − 1)!

(r − k)! (k − 1)!
κ(k)µ

′(r−k) (2.53)

It should be noted that for the mean-centred first order perturbation method,

the Hessian matrix G∆yi
|∆x=x̂ is 0 in Eq. (2.49). In this case the components

of response ∆yi (∆x) follow a Gaussian distribution with mean ŷi and variance

gT
∆yi

|∆x=x̂ Vxg∆yi
|∆x=x̂ .
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2.3.3 The asymptotic integral

As mentioned in Section 2.3.2, in perturbation theory, there is a need for the

assumption that the uncertain parameters must follow a Gaussian distribution. It

is also mentioned that any non-Gaussian random parameter can be transformed to

a Gaussian random parameter. However, using these transformations often makes

the problem complicated. Adhikari and Friswell [16] proposed a method in which

the moments of the response are obtained based on an asymptotic approximation

of the multidimensional integral. The assumption of Gaussian distribution is

generally not needed for the calculation of the moments. The raw moments of

each component of response are defined by

µ
′(r)
i =E (∆yr

i (∆x)) =

∫

ℜp

∆yr
i (x) f∆x (x) dx

=

∫

ℜp

e−(L∆x(x)−rln∆yi(x))dx

(2.54)

where f∆x (x) is the joint probability function of uncertain parameters and L∆x (x)

is the log-likelihood function. It is now assumed that u (x) = L∆x (x)−rln∆yi (x).

The p-dimensional integral in Eq. (2.54) can now be written in the following form

∫

ℜp

e−u(x)dx (2.55)

The p-dimensional integral in Eq. (2.55) is evaluated over unbounded domain

ℜp. However, the integral is dominated by the domain in the neighbourhood of

x where u (x) reaches its global minimum. Assume that u (x) is minimum at a

unique point ϑ ∈ ℜp. Therefore, at x = ϑ

∂u (x)

∂xk

= 0 ∀k or gu(x) = 0 (2.56)

Substituting u (x) by L∆x (x) − rln∆yi (x) in Eq. (2.56) leads to

g∆yi
|x=ϑ r = ∆yi (ϑ)gL∆x

|x=ϑ (2.57)

Now u (x) in Eq. (2.55) is expanded in a Taylor series about ϑ and only the terms

up to second-order are retained in this case, Eq. (2.55) may be approximated as

e−u(ϑ)

∫

ℜp

−1

2
(x − ϑ)T Gu |x=ϑ (x − ϑ) dx (2.58)
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The integral in Eq. (2.58) can be evaluated as [16]

e−u(ϑ)

∫

ℜp

−1

2
(x − ϑ)T Gu |x=ϑ (x − ϑ) dx = (2π)p/2 e−u(ϑ) |Gu |x=ϑ |−1/2 (2.59)

where

Gu |x=ϑ = GL∆x
|x=ϑ +

1

r
gL∆x

|x=ϑ gT
L∆x

|x=ϑ − r

∆yi (ϑ)
G∆yi

|x=ϑ (2.60)

Using Eq. (2.54) and the approximation in Eq. (2.59), the rth raw moment of

response ∆yi (∆x) can be calculated as

µ
′(r)
i = (2π)p/2 ∆yr

i (ϑ)

× e−L∆x(ϑ) ×
∣∣∣∣GL∆x

|x=ϑ +
1

r
gL∆x

|x=ϑ gT
L∆x

|x=ϑ − r

∆yi (ϑ)
G∆yi

|x=ϑ

∣∣∣∣
−1/2

(2.61)

where ϑ is obtained from numerical solution of Eq. (2.57). The mean of the

response ŷi can be obtained by substituting r = 1 into Eq. (2.61) and the central

moments of the response can be evaluated in terms of the raw moments using

Eq. (2.5).

If ∆x follows a multivariate Gaussian distribution, the raw moments of the

response may be approximated as

µ
′(r)
i = ∆yr

i (ϑ) e−
1
2
(ϑ−x̂)TV−1

x (ϑ−x̂)
(
I + G̃u |x=ϑ

)−1/2

(2.62)

where

G̃u |x=ϑ =
1

r
(ϑ − x̂) (ϑ − x̂)T V−1

x − r

yi (ϑ)
VxG∆yi

|x=ϑ (2.63)

and the optimal point ϑ can be obtained from following equation,

ϑ = x̂ +
r

∆yi (ϑ)
Vxg∆yi

|x=ϑ (2.64)

It should be noted that the third and fourth moments, obtained from Eq. (2.61)

(or Eq. (2.62), are more inaccurate than the first and second moments if a second-

order perturbation is used to represent the response. In this case, if only the first

two moments are considered, Eqs. (2.51) and (2.52) (or Eqs. (2.61) and (2.5))
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may be used to estimate the PDF of the response. However, if the second-order

model has a quite accurate description of the response in the region of uncertain

parameter variation, then the accuracy of higher order moments will be increased.

In this case, the PDF may be evaluated using Pearson’s theory as reported in

Refs. [48] and [49]. The PDF is expressed as a function of the mean and three

central moments from 2nd order to 4th order as,

df (yi)

dyi

=
a + yi

b0 + b1yi + b2y2
i

f (yi) ⇒ f (yi) = e

(∫ a+yi
b0+b1yi+b2y2

i

dyi

)

(2.65)

where the four unknown coefficients, a, b0, b1 and b2, in Eq. (2.65) are determined

as




1 0 1 2µ
(1)
i

0 1 µ
(1)
i

(
µ

(1)
i

)2

+ 3µ
(2)
i

0 0 2µ
(2)
i 4

(
µ

(1)
i µ

(2)
i + µ

(3)
i

)

0 3µ
(2)
i 3

(
µ

(1)
i µ

(2)
i + µ

(3)
i

)
3
(
µ

(1)
i

)2

µ
(2)
i + 6µ

(1)
i µ

(3)
i + 5µ

(4)
i




×





a
b0

b1

b2





=





µ
(1)
i

µ
(2)
i

µ
(3)
i

µ
(4)
i





(2.66)

2.3.4 Interval analysis

As mentioned in Section 2.2.3, the parameter uncertainty may be modelled using

a range between lower and upper bounds. The aim of interval analysis is to

evaluate the range of possible outputs considering all possible combinations of

the uncertain inputs within their permissible range.

If each component of the response vector is generally represented by yi (x),

the interval analysis is a numerical procedure equivalent to solving the following

equation

yi = max (yi (x)) , y
i
= min (yi (x)) , i = 1, ..., nr (2.67)

subject to,

x ≤ x ≤ x
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The operation on intervals, defined in interval arithmetic, may be used to solve

Eq. (2.67) when the response function yi (x) has an analytical expression in a

closed-form. Interval mathematics express the operations on interval for addition,

subtraction, multiplication and division as

[
x1 x1

]
+
[

x2 x2

]
=
[

x1 + x2 x1 + x2

]
(2.68)

[
x1 x1

]
−
[

x2 x2

]
=
[

x1 − x2 x1 − x2

]
(2.69)

[
x1 x1

]
×
[

x2 x2

]
=

[
min (x1x2, x1x2, x1x2, x1x2) max (x1x2, x1x2, x1x2, x1x2)

] (2.70)

[
x1 x1

]
/
[

x2 x2

]
=

[
min (x1/x2, x1/x2, x1/x2, x1/x2) max (x1/x2, x1/x2, x1/x2, x1/x2)

] (2.71)

The above basic operation can be implemented in a deterministic function to

generate the corresponding interval of the function. For instance, assume that

the response function is expressed as 3

yi

(
X̃1, X̃2

)
= 1 +

X̃2

X̃1

(2.72)

where the uncertain input parameters X̃1 and X̃2 are defined as interval vector

{
X̃1

X̃2

}
=

{ [
1 3

]
[

4 5
]
}

(2.73)

Applying the interval arithmetic gives the range of function yi

(
X̃1, X̃2

)
as

1 +

[
4 5

]
[

1 3
] = 1 +

[
4
3

5
]

=
[

7
3

6
]

(2.74)

The real range of function yi

(
X̃1, X̃2

)
is exactly similar to one obtained from

Eq. (2.74). As can be seen in Eq. (2.74), the interval arithmetic is a very straight-

forward procedure to implement. However, the interval arithmetic operation

often produces conservative results if the correlation between the operands is ne-

glected. To illustrate the above example, the function yi

(
X̃1, X̃2

)
, introduced in

Eq. (2.72)), is rewritten in the format

3example is taken from [50]
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yi

(
X̃1, X̃2

)
=

X̃1 + X̃2

X̃1

(2.75)

The range of function is now calculated by using the interval arithmetic as follows

[
1 3

]
+
[

4 5
]

[
1 3

] =

[
5 8

]
[

1 3
] =

[
5
3

8
]

(2.76)

As previously mentioned, the exact range of the above function equals to
[

7
3

6
]
.

This shows that the result obtained from applying the arithmetic interval to the

function with the form of Eq. (2.75) is conservative. This conservatism arises from

the fact that the interval arithmetic does every arithmetical operation between

interval numbers as an operation completely independent operands [50]. However,

this assumption is not true in most cases.

The vertex method, originally developed by Dong and Shah [51], is consid-

ered as another tool for the solution of Eq. (2.67). In this case, the responses are

either monotonically increased or decreased with the uncertain parameter varia-

tions. This implies that the solution of Eq. (2.67) can be sought in all possible

combinations of the boundary values of the input intervals. For a system with p

input intervals, 2p analyses have to be carried out to find the boundary values of

the output. The vertex solution is the simplest and most efficient method which

is by far the most applied numerical procedure to calculate the output sets of in-

terval analysis (e.g. [19]). However, the application of the vertex method is only

valid for a restricted class of numerical problems, i.e. when there is a monotonic

relationship between the inputs and outputs.

A global optimisation procedure may be considered as the most general so-

lution of the Eq. (2.67). The optimisation is carried out independently on every

component of the response vector y. For example, using the global optimisation

technique, the range of the function in Eq. (2.72) is achieved as
[

7
3

6
]

which

is the exact range. Different optimisation procedures have been proposed in the

literature, e.g. [52–54]. The solution from optimisation procedure gives the upper

and lower bounds for each component of response. The interval vector of the

response is then assembled from the interval scalars of each element
{[

y
i

yi

]}
.

The interval responses in this way will be described by a hypercube. However,
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the elements of response are often interdependent and the exact region of their

variation in the space is not hypercube. Figure 2.9 [21] shows a particular case

of a two-dimensional response. As can be seen in the figure, the true region of

possible variation of outputs is not often a hypercube due to interdependency of

the response elements. The meta-model (Section 2.3.6) may be used to overcome

this issue.

y1

y2

exact solution set

hypercube

Figure 2.9: Hypercubic approximations of a two-dimensional output set of
an interval analysis.

2.3.5 Fuzzy method

The purpose of fuzzy analysis is to determine the fuzzy description of outputs

when the inputs are modelled using fuzzy sets as described in Section 2.2.4. As

mentioned in Section 2.2.4, the fuzzy set model uses the membership function to

describe the uncertainty in the input parameters. The fuzzy method consequently

aims to derive the fuzzy membership function of output data. The fuzzy method

involves the application of a numerical procedure of interval analysis at a number

of α-levels as illustrated in Figure 2.10 (reproduced from Moens and Vandepitte

[21]). The figure shows specifically the procedure for a function of two triangular

fuzzy parameters with four α-levels. The range of the response vector components

yi on a specific level of membership function α is searched within the same α-level

on the input domain, which means that the analysis at each α-cuts corresponds
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to an interval analysis for the system as described in Section 2.3.4. The interval

analysis is performed for all α-levels and the fuzzy membership function of the

outputs can be constructed by connecting the upper bounds and the lower bounds

of response at different α-levels by a straight line. The meta-model can also be

used for the construction of fuzzy membership functions of the output data. It is

shown in Chapter 4 that a combination of the fuzzy method and the meta-model

can lead to a more efficient procedure for fuzzy analysis.

Figure 2.10: α-Level strategy, with 4 α-levels, for a function of two trian-
gular fuzzy parameters.

2.3.6 Meta model

In this thesis, a meta-model is used for the purposes of efficient and optimal

uncertainty propagation by interval and fuzzy methods as described in Chapter 4.

It is also used for the solution of the interval model updating problem which is

described in Chapter 6. The meta-model acts as a surrogate for the full finite-

element or mathematical model in which a region of input data (e.g. structural

parameters) is mapped to a region of output data (e.g. eigenvalues or flutter

speeds) with parameters obtained by regression analysis. Selection of the meta-

model is a crucial step in that it influences the performance of the procedure to

a very significant degree. Conventional Response Surface Method (RSM) based

on some low order polynomial functions and a more recent method, the Kriging

estimator, are discussed in the following sections.
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Response Surface Method

In the Response Surface Method (RSM), it is assumed that ns vectors of in-

dependent input parameters X =
[

x(1) x(2) ... x(ns)
]T

with x(k) ∈ ℜp are

selected using a sampling method and the corresponding output parameters

Y =
[

y(1) y(2) ... y(ns)
]T

with y(k) ∈ ℜnr are obtained from ns determinis-

tic analysis of the system. Then, each component of response variable yi may be

defined as the summation of functions of uncertain structural parameters with

regression coefficients β.,i as,

yi (x) =
n∑

k=0

βk,iuk,i (x) (2.77)

where x ∈ ℜp is the vector of uncertain input parameters. The method of least

squares may be used to estimate the regression coefficients in Eq. (2.77) as will

be described later in this section. For small uncertainties in input parameters

some low-order polynomial form may be chosen for the functions in Eq. (2.77).

For example, the quadratic response surface may be used for the numerical model

with p paramers as:

yi =β0,i +

p∑

k=1

βk,ixk +

p∑

k=1

βkk,ix
2
k +

∑

k<l

p∑

l=2

βkl,ixkxl + ǫi

=β0,i + bT
i x +

1

2
xTBix + ǫi

(2.78)

where β.,i are regression coefficients, bi =
[

β1,i β2,i ... βp,i

]T
p×1

,

Bi =




2β11,i β12,i . . . β1p,i

2β22,i . . . β2p,i

. .
. .

. .
sym. 2βpp,i




p×p

and ǫi represents the fitting error. In the RSM, it is assumed that the above

equation is valid for the input parameters x which are located within the interval

of [x x] (x ≤ x ≤ x). The quadratic model includes (p + 1)(p + 2)/2 regression

coefficients. Therefore the number of samples ns, taken from the space of input
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parameters, should be greater than (p+1)(p+2)/2 for an over-determined least-

squares solution. As previously mentioned, the response data may be obtained by

solving the deterministic equation for samples selected from the space of uncertain

input parameters. Therefore Eq. (2.78) can be rearranged to provide a system of

overdetermined linear equations as,

Y:,i = Ξβ:,i + ǫi (2.79)

where β:,i =
[

β0,i β1,i β2,i ... βp,i β11,i β22,i ... βpp,i β12,i ... βp(p−1),i

]T
,

Ξ =




1 x
(1)
1 . . . x

(1)
p x2(1)

1 . . . x2(1)

p x
(1)
1 x

(1)
2 . . . x

(1)
p−1x

(1)
p

1 x
(2)
1 . . . x

(2)
p x2(2)

1 . . . x2(2)

p x
(2)
1 x

(2)
2 . . . x

(2)
p−1x

(2)
p

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

1 x
(ns)
1 . . . x

(ns)
p x2(ns)

1 . . . x2(ns)

p x
(ns)
1 x

(ns)
2 . . . x

(ns)
p−1x

(ns)
p




and Y:,i =
[

y1
i y2

i ... yns
i

]
. Minimising the vector of residuals ǫi with respect

to coefficients β:,i leads to:

β:,i =
(
ΞTΞ

)−1
ΞTY:,i (2.80)

Model adequacy checking is a crucial step in Response Surface Analysis (RSA).

The residuals from the least-square fit can be used to judge the model adequacy.

If the residuals show that the fitted model cannot represent the true function

values, then a higher order model or different type of functions may be needed.

Another option might be to divide the space of uncertain parameters into re-

gions and consider a quadratic model for each region. It should be noted that

the higher order model includes a greater number of regression coefficients and

therefore leads to increased computational time. Therefore more efficient method

is needed to improve the accuracy of fitting. Kriging predictor may be used for

this purpose as explained in the next section.
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The Kriging Predictor

In The Kriging predictor, a similar polynomial expansion to the one given by

Eq. 2.78, is used. The only difference is that the error term ǫi is assumed to be

a random function of uncertain input parameters (ǫi = ǫi (x)). This assumption

can be used when the application is to fit a regression model on a numerical

computer code where any lack of fit will be due entirely to the modeling error

(incomplete set of regression terms), not measurement error or noise [55]. The

error function ǫi (x) represents the errors of the fitting as a random field having

zero-mean and covariance

Cov
(
ǫi (x) , ǫi

(
x(h)

))
= σ2

i Ci

(
x,x(h)

)
(2.81)

where σ2
i is the variance of the ith output data and C is the correlation function

between untried input parameters x and one of the design samples x(h), h =

1 : ns. A suitably chosen correlation function may improve the quality of fit as

explained below.

As previously mentioned, the random function in Eq. (2.78) becomes a func-

tion of the system parameters x. Hence the errors of the output predictor in

Eq. (2.78) are correlated. The correlation function of the prediction errors is as-

sumed to be related inversely to the distance between the corresponding points

in the output [55]. The closer the points in space, the greater the correlation

between the error terms. Because the components of input parameters are sta-

tistically independent (for example the parameters of a Finite Element model

chosen for updating), one may calculate the correlation function between the

input parameters as [56],

Ci

(
x,x(h)

)
=

p∏

j=1

Cj,i

(
xj, x

(h)
j

)
(2.82)

Different types of correlation functions have been introduced in [57] and [58].

As mentioned in Section 2.2.2, the choice of correlation function depends on

the underlying behavior of the true response. The following correlation function

which is almost analogous to Eq. (2.26) (but with one more parameter) may be

used,
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Cj,i

(
xj, x

(h)
j

)
= exp

(
−ζj,i

∣∣∣xj − x
(h)
j

∣∣∣
νi
)

1 ≤ νi ≤ 2 (2.83)

ζj,i (the jth term of the vector ζi) and νi are parameters of the correlation function

at the ith output. νi = 1 (Eq. (2.26)) gives an Ornstein-Uhlenbeck process which

produces continuous (but not very smooth) paths. The case of νi = 2 produces

infinity differentiable paths. Therefore, the parameter νi is related to the smooth-

ness of the function in the xj coordinate. As it can be seen from Eq. (2.83), the

correlation function is 1 when xj = xh
j and its value reduces as the untried point

xj goes away from the hth design sample xh
j . Since the predictor is unbiased at

the observation point, a high level of confidence in the prediction of the outputs

for the points which are close to the design samples can be achieved. The level of

confidence of the predictions at untried points can be assessed by evaluating the

mean squared error MSE, to be discussed in the following section. The parameter

ζj,i controls the importance of the jth component. The calculation of correlation

parameters is discussed below.

To compute the Kriging model for the ith output, the regression coefficients

β.,i, in Eq. (2.78) and correlation parameters ζ and ν in Eq. (2.83) must be

estimated. When the correlation parameters are given, the regression coefficients

β.,i and variance of output data σ2
i can be estimated using a weighted least-square

technique as,

β:,i =
(
ΞTRiΞ

)−1
ΞTR−1

i Y:,i (2.84)

σ2
i =

1

ns

[
Y:,i − Ξβ:,i

]T
R−1

i

[
Y:,i − Ξβ:,i

]
(2.85)

where Ri ∈ ℜns×ns is the correlation matrix between samples with components

Rhq,i = Ci

(
x(h),x(q)

)
. The number of regression coefficients is equal to 1 for

a zero-order polynomial model, p + 1 for a first-order polynomial model and

1
2
(p + 1) (p + 2) for a second-order polynomial model. Minimising the mean

square error (MSE) then leads to the mean value of Kriging predictor expressed

as,

yi = β0,i + bT
i x +

1

2
xTBx + ιT

i ri (x) (2.86)
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where ri (x) ∈ ℜns ,

ri (x) =
[

Ci

(
x,x(1)

)
Ci

(
x,x(2)

)
... Ci

(
x,x(ns)

) ]T

and ιi = R−1
i (Y:,i − Ξβ). The predictor is unbiased at the observation points.

Further detail on the derivation of Eq. (2.86) can be found in [55, 56]. If a

Gaussian process is assumed the maximum likelihood estimate β:,i, σ2
i when the

values of the correlation parameters are known, is the generalized least square

solution given in Eqs. (2.84) and (2.85). The updated correlation parameters are

then estimated by minimising the following objective function [56],

min
ζ, ν

|Ri|
1

ns σ2
i (2.87)

Therefore an iterative procedure can be defined for evaluation of regression

coefficients β•,i and correlation parameters ζ and ν as follows:

1. Estimate initial values of correlation parameters ζ and ν.

2. Evaluate β•,i and σ2
i using the generalized least square solution given in

Eqs. (2.84) and (2.85).

3. Update the correlation parameters to minimise the objective function given

by Eq. (2.87).

4. If a minimum is found then go to the next step 5. Otherwise go to step 2.

5. End.

Sampling for the RSM and the Kriging Predictor

Different types of sampling methods may be used to generate the data for the

RSM approximation. Central Composite Design (CCD) [59], the most popular

class of second-order designs, is used in this study. The method was introduced

by Box and Wilson [60]. The solid circle points, shown in Figure 2.11, indicate

the design points in the CCD. As it is seen in the figure, the CCD generates

2p + 2p + 1 samples and consequently 2p + 2p + 1 deterministic analyses are

needed. The design involves the use of a two-level factorial design 2p combined
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with 2p axial points. It also includes one centre point. Parameter α in Figure 2.11

represents the distance of axial point from the centre. It is common to assume

that α =
√

2. However α = 1 gives the samples on the face of the hypercube.

Note that this is for nondimensional input parameters with values in the range

of -1 and +1. It can be readily seen that as the number of parameters p in

a 2p factorial design increases, the number of numerical runs rapidly increases.

This increases the computational time considerably, especially for industrial-sized

problems. Fractional factorial design may be used in this case to reduce the

number of samples. As shown in Figure 2.12, any fractional factorial design of

resolution p includes complete factorial designs in any subset of p−1 parameters.

This concept can be used to reduce the number of runs from 2p to 2p−1. This is

called half fraction design. Suppose a system with seven parameters in which full

factorial designs requires 128 analyses. The number of samples can be reduced

to 64 using half-fraction design. More details about the fraction analysis can be

found in [59].

α

Figure 2.11: Central Composite Design (CCD) for 3 parameters.

For the Kriging predictor a systematic method for the generation of samples

can be used to ensure that the uncertainty in the prediction of the target function

is minimized. This also has a significant effect on the accuracy of the inverse

problem which will be discussed in Chapter 6. The method is presented in [61].
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Figure 2.12: Projection of three dimensional design to two dimensional.

To minimize the uncertainty on the Kriging predictor in representing output data,

the Kriging-predicted mean squared error (MSE) can be used as the criterion

for the sample generation. The Kriging predictor provides an estimation of the

MSE [56] as,

MSE (x) = σ2
i

[
1 − uTPu

]
(2.88)

where u =
[
1 x1 x2 ... xp x2

1 x2
2 ... x2

p x1x2 ... xp−1xp rT
i (x)

]T
and

P =

[
O ΞT

Ξ Ri

]−1

=

[
−
(
ΞTR−1

i Ξ
)−1 (

ΞTR−1
i Ξ

)−1
ΞTR−1

i

R−1
i Ξ

(
ΞTR−1

i Ξ
)−1

R−1
i

(
I − Ξ

(
ΞTR−1

i Ξ
)−1

ΞTR−1
i

)
]

It should be recalled that the predictor is unbiased at the observed points and

therefore the MSE is zero at these points.

The following procedure may be defined for sampling:

1. Generate a central composite design (CCD) with one centre point [59] as

the initial sample.

2. Generate further samples at the locations where the MSE is a maximum.

3. If the maximum MSE is smaller than a threshold go to the next step;

otherwise go to step 2.

4. End.
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To illustrate the sampling methods and fitting using a Kriging predictor, a

three degree of freedom mass-spring system with close eigenvalues is considered.

The system shown in Figure 2.13, is based on the example used by Friswell et

al. [62]. The parameters are,

m1 = 1 kg, m2 = 4 kg, m3 = 1 kg,

k1 = k3 = 0. k4 = 2.0 N/m, k5 = 2 N/m, k6 = 1 N/m
(2.89)

and it is assumed that the stiffness parameter k2 is uncertain within the interval

[6.5 9.5]. Now the third eigenvalue of the system is assumed to be an unknown

function of the uncertain parameter k2. Figure 2.14 shows the sampling procedure

for this example. Figures 2.14(a) and 2.14(b) show the initial and final selected

samples, the target function (solid line) and Kriging approximations (dashed line).

The initial and final values of MSE function against the uncertain parameter k2

are shown in Figures 2.14(c) and 2.14(d). As can be seen from Figure 2.14(d),

the sampling stops because the maximum value of MSE falls below a specified

tolerance. Figure 2.14(d) also shows that by increasing the number of samples

the Kriging approximation produces a more accurate representation of the tar-

get function. Figure 2.14(b) shows that the Kriging model represents the true

function very accurately indeed.

The procedure is also applied to the three degree of freedom mass-spring

system with well separated modes. The eigenvalues of the system shown in Fig-

ure 2.13 are well separated if the parameters are:

m2 = 1 kg, m3 = 1 kg,

k1 = k2 = k3 = k4 = k5 = 1 N/m k6 = 3 N/m
(2.90)

The mass parameter m1 is assumed to be uncertain and can be changed

within the interval
[

0.6 0.9
]
. The first component of the first eigenvector

(mode shape) is assumed to be an unknown function. Figure 2.15 shows the

Kriging model and target function together with the mean square error estimate

with initial samples. It can be seen from Figure 2.15 that the Kriging model is in

very good agreement with the target function and the MSE is sufficiently small.
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Figure 2.13: Three degree of freedom system.
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(d) Final MSE

Figure 2.14: Kriging approximation and MSE of the third eigenvalue λ3

versus uncertain stiffness parameter k2.

Figure 2.15(a) also shows that the vertex solution, described in section (2.3.4),

is invalid in this case because the relationship between input and output is not

monotonic.
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Figure 2.15: (a)Kriging approximation and (b)MSE of the first compo-
nent of first mode shape (3 DOFs system with well separated
modes) against the uncertain mass parameter m1.

2.4 Closure

Necessary information about the mathematical tools used in this thesis, have been

provided in this chapter. Firstly, the methods for modelling uncertainty in input

parameters are described. The models are generally categorised into two groups,

i.e., probabilistic and non-probabilistic models. Probability theory and random

fields are explained for the probabilistic models, while interval and fuzzy sets

are described for the non-probabilistic models. The methods for quantifying the

uncertainty in the outputs of a numerical model due to uncertainty in the input

parameters are also introduced. The MCS, perturbation, asymptotic integral,

interval analysis, fuzzy method and meta-model are considered and discussed.

The subject of uncertainty in the engineering problems has been extensively

investigated in the literature (e.g. [9]). The application of the forward uncer-

tainty propagation methods to non-deterministic analysis of aeroelasticity which

has received less attention (in comparison with non-deterministic dynamic anal-

ysis) in the literature will be discussed in Chapter 4. However, propagation of

structural uncertainty through a deterministic analysis requires the information

on the range/distribution of uncertain parameters. The structural uncertain pa-

rameters are often not measurable and have to be identified from the information

on the output test data. This requires the solution of an inverse problem. A

review of the inverse problem of uncertainty identification in structural dynamics
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is carried out in the following chapter and new methods developed in this work,

are discussed in Chapters 5 and 6.
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Chapter 3

Literature review of model updating in
structural dynamics

3.1 Introduction

Comparison between measured data from prototype structures and predicted re-

sults from a corresponding analytical or numerical model is a very important step

in the design of structures. Once the comparison is carried out, the quality of the

numerical model can be evaluated. If the results from the numerical model agree

well with their experimental counterparts, one may rely on the numerical model

for the purposes of design. However, in most cases the agreement is not good

enough due to different sources of errors in the numerical model such as model

structure errors, model parameter errors and model order errors. These errors

can be overcome by different methods such as those presented in [2–5].

Model updating [3, 4] is the tool that deals with parameterisation and the

model parameter errors. In the model updating procedure, inaccurate param-

eters are often chosen by the analyst and are corrected by means of available

measured data. However, the measured data are not often accurate and variabil-

ity may exist in the data. The performance of model updating methods may be

improved by implementing statistical techniques in which the inaccurate numer-

ical model is corrected by using uncertain measured data. The measured data

often include modal data (natural frequencies and mode shapes) and Frequency

Response Functions (FRFs), obtained from experimental modal analysis [63–65].

Parameterisation in model updating (the choice of updating parameters) is

very important and requires considerable physical insight. The parameterisation
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of the numerical model which is commonly used in deterministic/stochastic model

updating methods have been extensively studied in the literature such as those

presented in [32,66–71]. However, this topic is of no direct concern of this thesis

and can be investigated in future work.

In this chapter, a brief description of the comparison techniques and the prob-

lem of model updating when the measured data are assumed to be accurate are

given. A comprehensive review of the model updating techniques in the presence

of uncertain measured data with reducible and irreducible uncertainty is then

presented. Finally, the performance of some of the methods is evaluated in a

simple numerical example.

3.2 Comparison methods in model updating

Comparing predictions from numerical model with test data is a necessary stage

in the model updating procedure. The purpose of this comparison is to evaluate

the closeness of the experimental model and corresponding numerical counterpart.

The comparison is often carried out in the modal domain between the natural

frequencies and the mode shape vectors. Determining the degree of correlation

between the measured and predicted natural frequencies is quite straightforward.

On the other hand, due to the fact that experimental mode shapes are often

incomplete and complex1, different indicators for the comparison between the

experimental and analytical mode shapes have to be introduced. The Modal

Assurance Criterion (MAC) [75] is the most popular indicator that has been

frequently used in the literature. In order to calculate the MAC value, the mode

shapes obtained from numerical/analytical models are paired with those achieved

experimentally and the following equation can then be used,

1In practice the dimensions of the eigenvectors obtained from numerical model φ
(a)
i

is greater

than the dimensions of the experimental eigenvector counterparts φ
(m)
i

. This is due to the fact
that the responses can only be measured at limited number of locations on physical structures.
Furthermore, measuring the rotational degree of freedom is not straightforward and they are
often not measured. The reduction techniques (e.g. [72, 73]) can be used to reduce the size of
numerical eigenvector to the size of measured eigenvector. Alternatively, the expansion method
(e.g. [74]) may be utilized to expand the size of measured eigenvector to the size of numerical
eigenvector.
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MAC
(
φi,φj

)
=

∣∣φT
i φ

∗
j

∣∣2
(
φ

T
i φ

∗
i

) (
φ

T
j φ

∗
j

) (3.1)

where φi and φj are the ith and jth structural normal mode and •∗ represents

the complex conjugate. The MAC value varies between 0 and 1; The value of

1 shows a perfect correlation, while zero value indicates no correlation between

analytical and experimental mode shapes. Some of the advantages of using the

MAC indicator include: (i) direct utilisation of complex modes from measure-

ment, and (ii) straightforward implementation of reduced numerical/analytical

mode shape. However, there are also some disadvantages in using the MAC indi-

cator as: (i) it does not work well in dealing with local modes, and (ii) it does not

include any explicit information on shape features. In order to overcome the first

disadvantage, an error location technique namely Coordinate Modal Assurance

Criteria (COMAC) [76] can be applied to measure the degree of correlation at

each degree of freedom by averaging the set of correlation between mode pairs.

The second disadvantage can be overcome using new methods [77] based upon the

concepts of image processing and pattern recognition which have been developed

to determine the degree of correlation between the displacements of the mode

shape vectors together with their shape features.

3.3 Deterministic model updating

A general procedure of model updating technique is shown in Figure 3.1. As

shown in this figure, the objective of model updating is to improve the correlation

between the experimental and analytical/numerical model. Various methods have

emerged for this purpose and they can be generally categorised into three groups:

(i) direct methods using modal data, (ii) iterative methods using modal data,

and (iii) iterative methods using FRF data [3].

In the direct methods, a ‘representational’ model including the updated global

mass and stiffness matrices that are capable of reproducing the measured data

exactly are determined. These matrices are obtained by minimising an objective

function (i.e., the difference between the measured data and predicted data using

a suitable norm) subject to exact constraints on the independent variables. How-
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Figure 3.1: Procedure of model updating.

ever, these methods have received less attention in the industry due to the lack

of insight into the modelling errors and lack of confidence about the connectivity

of the nodes. The work presented in [78–83] are examples of the direct methods

for model updating.

In the iterative methods for model updating, physical parameters such as joint

stiffness and damping are chosen and adjusted based on sensitivity analysis so

that the difference between the measured data and predicted modal/FRF data is

minimised. In these methods, the experimental model is treated as a perturbation

method in updating parameters about the initial numerical model. In the iterative
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methods using modal data, the perturbation equation may be written as follows:

zm = zj + Sj (θj+1 − θj) (3.2)

where

zm =
[

λ
(m)
1 λ

(m)
2 . . . λ

(m)
r1 φ

T(m)

1 φ
T(m)

2 . . . φ
T(m)

r2

]T
∈ ℜnr (3.3)

is the assembled vector of measured data,

zj =
[

λ
(a)
1 λ

(a)
2 . . . λ

(a)
r1 φ

T(a)

1 φ
T(a)

2 . . . φ
T(a)

r2

]T
∈ ℜnr (3.4)

is the jth assembled vector of the predicted outputs from analytical/numerical

model, λi = ω2
i is the ith eigenvalue of dynamic system, φ

(a)
i and φ

(m)
i are the ith

numerical/analytical and experimental eigenvector (mode shape) respectively, nr

is the number of responses, θj ∈ ℜp is the vector of updating parameter at jth

iteration and Sj is the sensitivity matrix at jth iteration which is defined as

Sj =




∂zj1

∂θ1

∂zj1

∂θ2
...

∂zj1

∂θp
∂zj2

∂θ1

∂zj2

∂θ2
...

∂zj2

∂θp

. . ... .

. . ... .

. . ... .
∂zjnr

∂θ1

∂zjnr

∂θ2
...

∂zjnr

∂θp




∈ ℜnr×p (3.5)

The eigenvalue derivatives of the system with respect to the updating parameters

are given by [84],

∂λi

∂θj

=
φ

T
i

∂K
∂θj

φi − λiφ
T
i

∂M
∂θj

φi

φ
T
i Mφi

(3.6)

where M is the global mass matrix, K is the global stiffness matrix and the eigen-

vector derivatives of the dynamic system with respect to the updating parameters

can be written as [84]:

∂φi

∂θj

=
n∑

k=1

αikφk (3.7)

where

αik =





φT
k

[
∂K

∂θj
−λi

∂M

∂θj

]
φi

λi−λk
if i 6= k

−1
2
φ

T
i

∂M
∂θj

φi if i = k
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In practice, there are three major issues related to the measured data and

numerical/analytical predictions introduced in Eq. (3.2) [3]. The first is mode

pairing. The measured natural frequencies/mode shapes should be paired with

those obtained from numerical model. The MAC value, explained in Section 3.2,

is a tool for the solution of mode pairing.

The second concerns mode shape scaling. The numerical/analytical and ex-

perimental mode shapes have different scales due to the difference between the

mass distribution of the numerical model and physical structure. The Modal Scale

Factor (MSF) may be used to scale the measured mode shape to the analytical

mode shape as described in [85].

Extracting the real mode shapes from experimental complex mode shape is

the third issue in the model updating. Structural damping is not often included

in the numerical/analytical model and therefore the numerical/analytical mode

shapes are real. However, due to the presence of actual damping in the physical

structure, the experimental mode shapes are complex. For lightly damped system,

the complex eigenvector terms are converted to real values by multiplying the

modulus of each term of complex eigenvector by the sign of the cosine of its

phase angle [3]. This method is the most common method which deals with the

issue of the complexity of the measured mode shape.

The perturbation approach, described by Eq. (3.2), is limited to small vari-

ation of the updating parameters. Therefore, Eq. (3.2) has to be applied iter-

atively so that the restriction applies step-by-step. The issues of convergence

and ill-conditioning of the matrices are associated with the iterative methods in

the model updating problem. When the matrix Sj in Eq. (3.2) is close to being

rank deficient, the updating parameters, θj , will have large deviations at each

iteration. This usually results in fluctuation of the updating parameters without

achieving convergence. In this case, the system of equations in model updating

is said to be unstable and Eq. (3.2) is ill-conditioned. Different methods, namely

the regularisation methods [6], for the treatment of ill-conditioned systems of

equations in the model updating problem have been introduced. The Tikhonov’s

regularisation technique [86] is the most popular method and has received consid-

erable attention in the literature. In the application of Tikhonov’s regularisation
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technique, the parameter change at each iteration is limited by introducing a posi-

tive definite weighting matrix, W2 , which gives the new constrained optimisation

problem as

Minimise (θj+1 − θj)
T W2 (θj+1 − θj) (3.8)

subject to Eq. (3.2). The solution of above constrained minimisation problem

leads to the following recursive equation for estimation of updating parameters

(presented in [87]).

θj+1 = θj +
[
ST

j W1Sj + W2

]−1 {
ST

j W1 (zm − zj)
}

(3.9)

where the minimum-norm regularised solution is obtained when W2 = rgI and

rg is the regularisation parameter that locates the corner of an L-curve obtained

by plotting the norms ‖W2 (θj+1 − θj)‖ vs ‖Sj (θj+1 − θj) − (zm − zj)‖ as rg is

varied [6].

Friswell and Mottershead [3] derived the following iterative equation by chang-

ing the constraint in Eq. (3.8) to (θj+1 − θ0)
T W2 (θj+1 − θ0).

θj+1 = θj +
[
ST

j W1Sj + W2

]−1 {
ST

j W1 (zm − zj) − W2 (θj − θ0)
}

(3.10)

By doing so the regulation parameter at each iteration is decreased. The reduction

of regulation parameter results in making the weighting matrix smaller at each

iteration which is somehow equivalent to the minimum variance method which

will be explained later in this chapter.

The iterative model updating techniques using modal data have been fre-

quently and successfully used in the application to industrial-scale structure such

as those presented in [71,88–90].

The iterative model updating methods which minimise the difference between

measured and analytical FRF data have been also studied [91,92]. These methods

are particularly useful for the model updating of damped structural systems.

However, modal data including natural frequencies and mode shapes are sufficient

when interest is mostly correcting stiffness and mass terms, where is usually the

case.
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In the above discussion, it is assumed that the measured data are accurate.

However, variability inevitably exists in the measured data and has to be consid-

ered in the model updating procedure. The next section discusses the problem

of model updating in the presence of uncertain measured data.

3.4 Model updating methods in the presence of

uncertain measured data

In practical model updating the measured data are often imprecise, incomplete

and variable. Therefore, it is very important to include statistical techniques to

improve performance. However, care should be taken about the type of variability

that exists in the experimental data.

Variability in experimental results can be categorised in two groups; reducible

and irreducible. Measurement noise and the use of sensors that affect the mea-

surement or signal processing that might introduce bias are some examples of

reducible uncertainty which can be minimised by gathering more/further infor-

mation (e.g. repeating the measurement). Statistical methods for the treatment

of measurement noise in model updating were established in 1974 by Collins et

al. [26] and more recently by Friswell [93]. In these approaches, randomness arises

only from the measurement noise. The updating parameters take unique values,

found by iterative correction to the estimated means, whilst the variances are

minimised. Beck and Katafygiotis [94] developed a Bayesian probabilistic frame-

work for robust finite element model updating, which was later employed by

Beck and Au [95], to correct a two degree-of-freedom mass-spring system by us-

ing Markov Chain Monte-Carlo Simulation (MCMCS). They demonstrated that

the method is capable of identifying multiple non-unique solutions. Other model

updating approaches that incorporate Bayesian theory are presented in [96–98].

Soize et al. [99] presented a methodology for robust model updating by using

a nonparametric probabilistic approach. The method leads to the solution of

a mono-objective optimisation problem with inequality probabilistic constraints.

Haag et al. [100] proposed an inverse approach based on the fuzzy arithmetic for

the model updating. The method utilises the transformation method, introduced
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in [50] for the purpose of forward propagation method, to identify the epistemic

uncertainties inherent to numerical model of physical structure. Although statis-

tics have been incorporated into the above methods, only one value is identified

for each of the updating parameters, and the estimates of distributions/ranges of

updating parameters are indicators of the uncertainty in the identified parame-

ters due to measurement noise and do not represent a physical variability (e.g.

due to manufacturing tolerances).

On the other hand, the model updating methods in the presence of the ir-

reducible uncertain measured data require different mathematical approaches as

the distribution/ranges of updating parameters and measured data become phys-

ically meaningful in this situation. Uncertain parameters such as damping and

stiffness in mechanical joints are chosen for updating. In this case, it is assumed

that multiple sets of modal test data (e.g. from nominally identical test structures

built in the same way from the same materials), are available. The distributions

of the updating parameters are then modified in order to improve the correlation

between model-predicted distributions and distributions of measured data. This

is called stochastic model updating or uncertainty identification. Note that the

stochastic model updating problem includes not only the variability in measure-

ment signals due to noise, but also the variability that exists between nominally

identical test structures, built in the same way from the same materials but with

manufacturing and material variability [25, 101]. Similar variability is known to

result from environmental erosion, damage [27, 102, 103], or disassembly and re-

assembly of the same structure [104, 105]. Very few papers have considered the

problem of stochastic model updating or uncertainty identification in the litera-

ture. However, the distribution or range of uncertain parameters is very impor-

tant for numerous practical applications and is required for forward propagation

to estimate the distributions of the outputs of dynamic system (e.g. natural

frequencies, mode shapes, frequency response functions, flutter speed etc).

As previously mentioned, in a small number of research papers the problem of

stochastic model updating is considered. Fonseca et al. [24] proposed an optimisa-

tion procedure for the purpose of stochastic model updating based on maximising

a likelihood function and applied it to a cantilever beam with a point mass at
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an uncertain location. Mares et al. [25] adapted the method of Collins et al. [26]

within a gradient-regression formulation for the treatment of test-structure vari-

ability. Hua et al. [27] used perturbation theory in the problem of test-structure

variability. The predicted output mean values and the matrix of predicted covari-

ances were made to converge upon measured values and in so doing the first two

statistical moments of the uncertain updating parameters were determined. In

the following sections, methods proposed by Collins et al. [26], Friswell [93], Beck

and Au [95], Fonseca et al. [24] and Hua et al. [27] are considered and explained.

A comparative study on the performance of these methods is also carried out on

a three-degree-of-freedom mass-spring system.

3.4.1 Minimum variance methods

Collins et al. [26] formulated a method in which the updating parameters are

estimated in an iterative way from experimental data. The method incorporated

statistical techniques to treat the test measurement errors as well as uncertainty

in the estimation of updating parameters. In other words, it is assumed that both

measured data and updating parameters have errors which may be described by

their variances. An advantage of this method is that it enables the structural

analyst to assess the quality of updated parameters through their estimated vari-

ances [3]. However, the method works well in the presence of large amount of

test data. In the minimum variance method, the unknown structural parameters

(updating parameters) are assumed to be normally distributed with mean values

E (θj) = θ̂j (3.11)

and covariance matrix

Cov (θj,θj) = Vθj
(3.12)

It is also assumed that an estimate θj+1 may be updated by using a prior estimate

θj as

θj+1 = θj + T (zm − zj) (3.13)

where T is an unknown transformation matrix. Another assumption, made in

Collins’s method, is that the errors vector ǫ = zm − ẑ (ẑ is the expected (mean)
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value of predicted output from analytical/numerical model) follows a joint normal

distribution with mean

E (ǫ) = {0} (3.14)

and covariance matrix

Cov (ǫ, ǫ) = E
(
ǫTǫ
)

= Vǫ (3.15)

Since the transformation matrix T in Eq. (3.13) is deterministic, the following

equation can be written

E (θj+1 − θj) = TE (zm − zj) = {0} ⇒ E (θj+1) = E (θj) = θ̂ (3.16)

Therefore the mean values of the parameter estimates give the solution of the

inverse problem. The best estimate of the mean will occur when the variance

estimate is minimised. In other words, the scattering around the mean will be

minimised and the solution is more likely to be closer to the mean value. In

order to obtain the parameter estimates with minimum variances, the covariance

estimates at j + 1th iteration can be calculated as 2

Vθj+1
=Vθj

+ Cov (θj, zm)TT − Cov (θj, zj)T
T

+ T Cov (zm,θj) + T VǫT
T − T Cov (zm, zj)

− T Cov (zj,θj) − T Cov (zj, zm)TT + T Cov (zj, zj)T
T

(3.17)

where Vθ = Cov (θ,θ) and Vǫ = Cov (zm, zm). For the mean-centred first order

perturbation method the mean value of predicted output data ẑ may be expanded

around the mean values of updating parameters θ̂ as

zj = ẑ + Sj

(
θj − θ̂

)
⇒ zj − ẑ = Sj

(
θj − θ̂

)
(3.18)

Eq. (3.18) results in

Cov (θj, zj) = E
((

θj − θ̂
)

(zj − ẑ)T
)

= E

((
θj − θ̂

)(
θj − θ̂

)T
)

ST
j (3.19)

2Note: the proof which is given here is slightly different from those presented in [3, 26, 93],
however the final equations are the same.
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and therefore

Cov (θj, zj) = Vθj
ST

j (3.20)

Cov (zj,θj) = SjVθj (3.21)

Cov (zj, zj) = SjVθj
ST

j (3.22)

In the Collins’s method the correlation between measurements zm and updating

parameters θ is omitted. Therefore Cov (θj, zm) and Cov (zj, zm) vanish un-

der the Collins’s assumption. Substituting Eqs. (3.20), (3.21) and (3.22) into

Eq. (3.17) and considering Collins’s assumption leads to:

Vθj+1
= Vθj

− Vθj
ST

j TT + TVǫT
T − TSjVθj

+ TSjVθj
ST

j TT (3.23)

Minimising the covariance matrix Vθj+1
with respect to components of trans-

formation matrix Tik gives the transformation matrix. A necessary condition for

this minimising is that

∂Vθj+1

∂Tik

= 0 ∀ i = 1...p, k = 1...nr (3.24)

which leads to

T = Vθj
ST

j

[
SjVθj

ST
j + Vǫ

]−1
(3.25)

Hence two recursive systems of equations having the following form for the esti-

mation of updating parameters and their covariance matrix are obtained,

θj+1 = θj + Vθj
ST

j

[
SjVθj

ST
j + Vǫ

]−1
(zm − zj) (3.26)

Vθj+1
= Vθj

− Vθj
ST

j

[
SjVθj

ST
j + Vǫ

]−1
SjV

T
θj

(3.27)

Friswell [93] corrected the assumption of omitted correlation between zm and

θ, made by Collins [26], by including the correlation after the first iteration.

In the Friswell’s approach, the correlation between measured data and updating

parameters is defined as
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Cov (θj, zm) =

{
0 if j = 1
Dj if j = 2, 3, 4, ...

(3.28)

Using the mean-centred first order perturbation method, given in Eq. (3.18),

produces the following equation

Cov (zj, zm) = SjDj (3.29)

It is evident that Cov (zm,θj) = DT
j and Cov (zm, zj) = DT

j ST
j . In this case,

Eq. (3.17) is now written in the format

Vθj+1
=Vθj

+ DjT
T − Vθj

ST
j TT + TDT

j + TVǫT
T − TDT

j ST
j

− TSjVθj
− TSjDjT

T + TSjVθj
ST

j TT
(3.30)

The transformation matrix can now be obtained by minimising the covariance

matrix Vθj+1
with respect to components of transformation matrix Tik as

T =
(
Vθj

ST
j − Dj

) [
SjVθj

ST
j − SjDj − DT

j ST
j + Vǫ

]−1
(3.31)

Now three recursive systems of equations having the following forms for the es-

timation of updating parameters, their covariance matrix and the correlation

matrix are obtained,

θj+1 = θj +
(
Vθj

ST
j − Dj

)
V−1

zj (zm − zj) (3.32)

Vθj+1
= Vθj

−
(
Vθj

ST
j − Dj

)
V−1

zj

(
Vθj

ST
j − Dj

)T
(3.33)

Dj+1 = Dj −
(
Vθj

ST
j − Dj

)
V−1

zj (SjDj − Vǫ) (3.34)

where Vzj = SjVθj
ST

j − SjDj − DT
j ST

j + Vǫ.

As can be seen in Eqs. (3.27) and (3.33) the second term of the covariance

estimate in both Collins and Friswell approaches has a quadratic form. This

means that the procedure always gives the minimum parameter variance estimate,

hence these methods are called minimum variance estimators. The application of

the above methods to a simple three degree of freedom system having irreducible

uncertain parameters is presented in Section (3.5).
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3.4.2 Bayesian updating methods

Bayes’ theorem (rule), named after the Reverend Thomas Bayes (1702-1761),

utilizes the definition of conditional probability P (X |Y ) as

P (X |Y ) =
P (X,Y )

P (Y )
(3.35)

and by symmetry,

P (Y |X ) =
P (Y,X)

P (X)
(3.36)

where P (X,Y ) is the joint probability of X and Y and P (X) and P (Y ) are the

probability of X and Y respectively. The following equation may then be written

from Eqs. (3.35) and (3.36),

P (Y |X ) =
P (X |Y ) P (Y )

P (X)
(3.37)

which represents Bayes’ rule. The dominator P (X) acts as a normalising con-

stant. According to Eq. (3.37), the conditional probability of event Y given X

depends on the the conditional probability of event X given Y , and the prior

probabilities of Y and X. This equation can be used for updating of the proba-

bility of Y using available information on X and the prior probability of Y .

The Bayes’ theorem can be used for the model updating procedure in struc-

tural dynamics. Beck and his colleagues [94, 95] introduced the application of

this theorem into updating problem. In this method, the initial joint probability

distribution of unknown structural parameters fθ0 (θ) is chosen so that the pre-

dictions of a whole set of possible structural models are covered. The prior joint

probability distribution is then updated using structural test data. In mathemat-

ical language, the updated joint probability distribution fθ (θ) is obtained using

the Bayes’ theorem as follows:

fθ (θ) =
fD (D |θ ) fθ0 (θ)

fD (D)
(3.38)

where D is a function representing the ‘measure-of-fit’ [95] given structural pa-

rameters θ, fD (D) =
∫
ℜp fD (D |θ ) fθ0 (θ) dθ is a normalising constant which is
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a p-dimensional integral over unbounded domain ℜp and fD (D |θ ) describes the

probability distribution of the data D based on model specified by the model

parameters θ. The probability distribution of the data D describes the degree-

of-correlation between predictions from the numerical model and the actual test

data.

In many applications, the multi-dimensional integral for calculation of nor-

malising constant, may not be tractable. In this case, sampling methods such as

the Marcov Chain Monte Carlo (MCMC) method may be used to approximate

this integral. In MCMC, the sample θ(k) is simulated from Markov chain sam-

ples
{

θ(1),θ(2), ...,θ(k)
}

in a way that the PDF of the Markov chain tends to the

target PDF (fD (D)) as k → ∞. More details about the MCMC method and its

application in Bayesian methods can be found in [106,107].

To illustrate the Bayesian updating framework presented in [94], a simple

numerical example (taken from [95]) is considered. It is a two-degree-of-freedom

shear building model with the story masses of 16.5×103 kg for the first story and

16.1 × 103 kg for the second story. The interstory stiffnesses are assumed to be

given by the following equations: k1 = 29.7 × 106θ1 N/m and k2 = 29.7 × 106θ2

N/m respectively where θ1 and θ2 are the unknown structural parameters. Since

the structural parameters are statistically independent from each other, the joint

PDF fθ0 (θ1, θ2) for θ1 and θ2 are given by

fθ (θ1, θ2) = fθ1 (θ1) × fθ2 (θ2) (3.39)

Log-normal PDFs with most probable values (MPVs) of 1.3 (30% overestimation

relative to its nominal value) and 0.8 (20% underestimation relative to its nominal

value) are chosen for θ1 and θ2, respectively. The ‘measure-of-fit’ function D

between experimental and predicted outputs is defined by the following objective

function [108]

J (θ) =
2∑

k=1

w2
i

(
ω2

k (θ)

ω2
mk

− 1

)2

(3.40)

where the weights set to unity, wi = 1, i = 1, 2, ωk is the kth predicted frequency

and ωm1 = 3.13 Hz and ωm2 = 9.83 Hz are the first and second simulated mea-
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sured frequency. A Gaussian distribution function with mean zero and standard

deviation σ is chosen for fD (D |θ ) i.e., fD (D |θ ) = exp (−J (θ) / (2σ2)) /
√

2πσ2.

Eq. (3.38) is now written in the format

fθ (θ) = c exp

(
−J (θ)

2ǫ2

)
fθ0 (θ) (3.41)

where the updated marginal PDFs can be calculated according to Eq. (2.10) as

follows,

fθi
(θi) =

∫ +∞

−∞
fθ (θ) dθj i, j = 1, 2 i 6= j (3.42)

The updated marginal PDFs (fθ1 (θ1) and fθ2 (θ2)) of structural parameters are

obtained by decreasing prediction error levels as σ2
i = 1/2i−1 for successive

simulation levels. The updated marginal PDF of the structural parameters

(fD (θ)), shown in Figure 3.2, are achieved by substituting the sequence of values

σ2
i = 1/2i−1 into Eq. (3.41). The normalised constant c is calculated using direct

numerical integration in this case. As can be seen in the figure, the updated PDFs

bifurcate into two peaks as σ decreases. This is due to the fact that two optimal

model exist that give the identified frequencies. This shows the capability of the

method to identify a class of models rather than one model. This is an advantage

over the minimum variance method which converges to one of the possible model

parameters (depending on the initial selection of parameters).

By looking at the updated PDF in Figure 3.2, it can be readily implied that

the Bayesian method attempts to minimise the variance of distribution around the

peaks (identified parameters). This means that the standard deviations identified

by this method are not physically meaningful as are in the minimum variance

methods (in Section 3.4.1). In the following section, methods for irreducible

uncertainty identification are described.

3.4.3 Maximum likelihood method

In the application of the stochastic model updating (identification of uncertain

structural parameters from irreducible uncertain modal test data), Fonseca et al.

[24] proposed a method based on maximising the likelihood of the measurements.
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Figure 3.2: Initial and updated marginal PDF for θ1 and θ2 at iterations
i = 1, 5, 9.
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If ns vectors of measured data Zm =
[

z
(1)
m z

(2)
m ... z

(ns)
m

]
are assumed to be

statistically independent from each other, the log-likelihood function of them may

be defined by

Lzm (zm |θ ) =
ns∑

i=1

L
z
(i)
m

(
z(i)

m |θ
)

(3.43)

where θ ∈ ℜp is the vector of uncertain structural parameters that should be

identified (updated), z
(i)
m is the ith samples of measured data and ns is the num-

ber of samples of measured data. Fonseca et al. [24] formulated Eq. (3.43) for

estimating the mean and standard deviation of uncertain updating parameters

using experimental modal data. They implemented the mean-centred first or-

der perturbation and the MCS methods for the formulation. The formulation

obtained by the mean-centred perturbation method is discussed in this section.

In Fonseca’s approach, the uncertain updating parameters are assumed to

follow a Gaussian distribution with mean θ̂ and covariance matrix Vθ i.e., θ ∈
Np

(
θ̂,Vθ

)
. Implementing the mean-centred first order perturbation method for

the formulation of log-likelihood function leads to:

Lzm

(
zm

∣∣∣
(
θ̂,Vθ

))
= −1

2

(
nspln2π + nsln |Vz| +

ns∑

i=1

(
z(i)

m − ẑ
)T

V−1
z

(
z(i)

m − ẑ
)
)

(3.44)

where ẑ and Vz are the mean vector and covariance matrix of the predicted

outputs. They can be calculated using the mean-centred first order perturbation

method as follows

ẑ = z
(
θ̂
)

(3.45)

Vz = ŜTVθŜ (3.46)

where Ŝ denotes the sensitivity matrix (obtained from Eq. (3.5)) at the parame-

ters mean, Ŝ = S
(
θ̂
)
. The unknown parameters in Eq. (3.44) are the mean and

standard deviation of the structural parameters. The solution of the unknown

parameters is obtained by using a global optimisation technique.
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Fonseca et al. [24] derived another equation for the estimation of the like-

lihood function using the MCS. Regardless of the type of propagation method

(MCS or perturbation), the correlation between components of measured modal

parameters (e.g. the correlation between the first and second natural frequencies)

cannot be included in Fonseca’s approach and this may result in poor estimation

of standard deviations of updating parameters as will be shown in Section 3.5.

3.4.4 Perturbation methods

Hua et al. [27] considered the problem of stochastic model updating by a pertur-

bation method. In Hua’s approach, the predicted mean values and the matrix

of predicted covariances are converged upon measured values and in so doing

the first two statistical moments of the uncertain updating parameters are de-

termined. To account for uncertainty in the model updating procedure, Hua et

al. [27] assumed that the measured vector zm was defined by the summation of a

deterministic part (mean value) ẑm ∈ ℜnr and a random part ∆zm , i.e.

zm = ẑm + ∆zm (3.47)

where the term ∆zm ∈ ℜnr (with zero mean) represents the uncertainty in

measured data. Now the structural parameters θ ∈ ℜp, the sensitivity matrix

S ∈ ℜnr×p and the predictions z ∈ ℜnr introduced in Eq. (3.2), can be expanded

about the mean value of the vector of the parameters θ̂ as follows,

θ = θ̂ +
nr∑

i=1

∂θ

∂∆zmi

∆zmi (3.48)

S = Ŝ +
nr∑

i=1

∂S

∂∆zmi

∆zmi (3.49)

z = ẑ +
nr∑

i=1

∂z

∂∆zmi

∆zmi (3.50)

where the subscript j (iteration number) on S, θ and z is omitted in Eqs. (3.48),

(3.49) and (3.50). Replacing Eqs. (3.48), (3.49) and (3.50) in Eq. (3.2) together

with the application of the perturbation method leads to,
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ẑm = ẑj + Ŝj

(
θ̂j+1 − θ̂j

)
(3.51)

Ŝj
∂θj+1

∂∆zmi

= Ŝj
∂θj

∂∆zmi

+

(
e − ∂zj

∂∆zmi

− ∂Sj

∂∆zmi

)(
θ̂j+1 − θ̂j

)
i = 1, 2, ..., nr

(3.52)

where e =
[

0 ... 0 1 0 ... 0
]

is a vector with all components equal to zero

except at position i in which ei = 1 and

∂zj

∂∆zmi

= Sj
∂θj

∂∆zmi

(3.53)

∂Sj

∂∆zmi

=

p∑

k=1

∂Sj

∂θk

∂θk

∂∆zmi

(3.54)

Eq. (3.51) leads to the estimate of the mean of the parameters and the system of

nr equations given by Eq. (3.52), is used in the determination of the covariance

matrix by using the following equation

Vθj
= Θj,∆zmVzmΘT

j,∆zm
(3.55)

where Vzm is the covariance of measured data and

Θj,∆zm =




∂θj1

∂∆zm1

∂θj1

∂∆zm2
...

∂θj1

∂∆zmnr
∂θj2

∂∆zm1

∂θj2

∂∆zm2
...

∂θj2

∂∆zmnr

. . ... .

. . ... .

. . ... .
∂θjp

∂∆zm1

∂θjp

∂∆zm2
...

∂θjp

∂∆zmnr




(3.56)

∂θj+1

∂∆zmi

can be estimated from Eq. (3.52). Note that the starting estimate for the

∂θ0

∂∆zmi

is zero at the first iteration.

As will be seen in the following section, although Hua’s method is applicable

to the problem of model updating in the presence of irreducible uncertainty, it

requires the calculation of the second order sensitivity matrix (as can be seen in

Eq. (3.54)). This is computationally intensive.
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3.5 Comparison of the uncertainty identification

methods

In this section, the methods introduced in Sections 3.4.1 to 3.4.4 are applied to

a simple numerical example to investigate their performance and range of appli-

cations. The three degree-of-freedom mass-spring system, shown in Figure 2.13,

is considered having known its deterministic parameters,

mi = 1.0 kg (i = 1, 2, 3) , ki = 1.0 N/m (i = 3, 4) , k6 = 3.0 N/m (3.57)

while the other parameters are represented as unknown Gaussian random vari-

ables with nominal mean values and standard deviations given by

k̂i = 1.0 N/m (i = 1, 2, 5) , σki
= 0.20 N/m (i = 1, 2, 5) (3.58)

The measured data, zm and Vzm , are obtained by using the MCS with 10,000

samples. This number of measurements is unrealistic but is used here to demon-

strate the asymptotic properties of the methods. The initial estimates of the

unknown random parameters are

k̂i = 2.0 N/m (i = 1, 2, 5) , σki
= 0.30 N/m (i = 1, 2, 5) (3.59)

so that a 100% initial error in mean values and a 50% initial error in standard

deviations is represented.

Results obtained by the minimum variance estimators of Collins et al. [26] and

Friswell [93], the Bayesian method of Beck et al. [94,95], the maximum likelihood

method (Fonseca et al. [24]) and the perturbation method of Hua et al. [27]

are shown in Table 3.1. The numbers, (1)-(5) in the table denote the following

methods:

1. The minimum variance method of Collins et al. [26].

2. The minimum variance method of Friswell [93].

3. Bayesian method of Beck et al. [94, 95]
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4. The maximum likelihood method of Fonseca et al. [24]

5. The perturbation method of Hua et al. [27]

Table 3.1: Updating results obtained by various methods (10,000 samples)

Parameters Initial error % Error (1)% Error (2)% Error (3)% Error (4)% Error (5)%

k1 100.00 2.10 17.40 6.00 0.00 1.30

k2 100.00 -2.25 36.70 -6.00 0.70 -2.80

k5 100.00 1.30 59.20 3.00 -2.72 0.60

σk1 50.00 -89.00 -14.25 -25.00 46.50 0.00

σk2 50.00 -89.50 -13.05 -30.00 40.00 -0.40

σk5 50.00 -89.50 -59.50 -72.00 39.80 0.00

It is seen that the minimum variance methods (1) and (2) and the Bayesian

method (3) are really not intended for the estimation of randomised parameters

to represent test-piece variability. These methods work well when the variability

is limited to the measurement noise from a single test piece. On the other hand,

the maximum likelihood method (4) and perturbation method (5) are capable of

estimating the standard deviation. Nevertheless, large errors in the estimation

of standard deviation is observed in the Fonseca’ approach (method 4), which

may be due to the method’s assumption of ignoring the correlation between the

components of modal test data.

Table 3.2: Updating results obtained by Hua’s approach (method (5)) when
the correlation between the components of modal test data are
ignored (10,000 samples)

Parameters k1 k2 k5 σk1 σk2 σk5

Error % 1.40 -2.60 0.70 45.20 63.25 1.85

By doing so (i.e., ignoring the modal data correlation) using Hua’s approach,

large errors are also obtained (see Table 3.2) in the estimation of standard de-

viations of updating parameters. The correlation of modal data is removed by

setting the off-diagonal terms of the covariance matrix of measured data to zero.

The errors shown in the table, have the same level of errors with those obtained

by the Fonseca’ approach. However, the correlation terms between measured
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modal data cannot be easily incorporated in Fonseca’s approach. Finaly, conver-

gences of the parameter estimates by each of the different methods are shown in

Figures 3.3 to 3.7. It can be seen from Figure 3.3 that method (1) is slow to

converge. The convergence of marginal PDFs of updating parameters obtained

by Bayesian method is also shown in Figure 3.8.
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Figure 3.3: Convergence of parameter estimates by method (1).
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Figure 3.4: Convergence of parameter estimates by method (2).

3.6 Closure

A review of the deterministic model updating approaches is presented and the

advantages and disadvantages of the methods are discussed. The earlier model

updating approaches are categorised into three groups: (i) direct method, (ii)

iterative methods using modal data and (iii) iterative method using FRF data.

It is found that the iterative method using modal data have become most popular
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Figure 3.5: Convergence of parameter estimates by method (4).
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Figure 3.6: Convergence of parameter estimates by method (5) (including
correlation terms between measured data).
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Figure 3.7: Convergence of parameter estimates by method (5) (ignoring
correlation terms between measured data).

76



in the application to industrial problem. However, this method can be improved

by using statistical techniques.

Statistical methods can be utilised to treat the uncertainty in the measured

data. From the statistical point of view, the uncertainty in the measured data

can be categorised into two groups: reducible and irreducible. The most popular

existing updating methods that incorporate statistics namely minimum variance

methods, Bayesian updating method and uncertainty identification/stochastic

model updating methods, are considered and explained in detail. Their per-

formance and range of application are discussed by applying the methods to a

simple numerical example. It is found that the methods proposed by Hua et

al. [27] and Fonseca et al. [24] are applicable to the problem of model updating in

the presence of irreducible uncertainty whereas the minimum variance methods

and Bayesian updating methods described in Sections 3.4.2 and 3.4.1, are not.

It appears that the development of the uncertainty identification methods in the

presence of irreducible uncertain measured data have received less attention in

the literature.
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Chapter 4

Propagation of structural uncertainty to
linear and CFD based aeroelastic
stability

4.1 Introduction

Flutter, the most important phenomenon in aeroelasticity [109], is an unstable

self-excited vibration where energy is transferred from the air stream to the struc-

ture and often leads to catastrophic structural failure. This phenomenon can be

triggered by the altitude or velocity of aircraft. The velocity of the aircraft at

where flutter happens is known as the flutter speed, where the structure maintains

oscillations following some initial disturbance. Below this speed the structure is

stable since the oscillations are damped, while it becomes unstable above the flut-

ter speed with a negative damping effect. The flutter speed can be determined

by aeroelastic analysis.

The aeroelastic analysis requires the solution of a coupled fluid-structure sys-

tem. The structure can be modelled using FEM tools, while the fluid (aero-

dynamic) model depends on the altitude and velocity of the aircraft so different

aerodynamic models can be used to describe the fluid behaviour. The accuracy of

the aerodynamic model is not the aim of this thesis, however, the feasibility of flut-

ter analysis in the presence of uncertain structural parameters is demonstrated in

this chapter for both linear (panel methods) and CFD based aeroelasticity (when

CFD is used for the aerodynamics).

In this chapter, firstly a brief review of flutter analysis in the presence of

structural uncertainty is carried out. Secondly, the aeroelastic stability formula-
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tion for the linear and CFD aerodynamic models is presented. The aeroelastic

equations in both cases are based on an eigenvalue stability method. Thirdly, the

response surface method is used to evaluate the sensitivity of aeroelastic damp-

ing to a number of uncertain structural parameters. Then the critical structural

parameters for influencing aeroelastic stability are identified based on sensitivity

values. Finally, the forward propagation methods, introduced in Chapter 2, are

applied to both linear and CFD-based aeroelastic analysis for several test cases.

Results are presented for the Goland wing with and without damping and for a

generic fighter configuration.

4.2 Flutter analysis in the presence of uncertain

structural parameters

The accurate estimation of flutter boundaries is an important problem in aircraft

certification. When the structural model includes parameter uncertainties, repre-

sented by intervals, fuzzy membership functions or probability density functions,

then this uncertainty may be propagated through the aeroelastic model resulting

in uncertain flutter boundaries, described correspondingly in terms of intervals,

fuzzy memberships and probability densities. The review paper by Pettit [110]

and references therein show the considerable attention that has already been paid

to this subject. Structural variability, an important source of the variability in

aircraft, arises from several sources, such as manufacturing tolerances, material

differences, and wear. For example, a study of the McDonnell Douglas F-4 Phan-

tom II [111] quantified the weight and inertia variability for this aircraft, showing

changes in mass and inertias of control surfaces of up to 15%.

The characterisation of structural variability is crucial and the first step in

achieving this is to discover which of the uncertain structural parameters have a

significant effect on the aeroelastic analysis. The distribution or range of these

parameters must be estimated. This variability may then be propagated through

the model to determine a distribution or range of flutter speeds. In a small num-

ber of research papers flutter speed estimates are determined in the presence of

parameter uncertainty. Poirion [112] used a first-order perturbation method to
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calculate the probability of flutter for given uncertainty in structural properties.

The estimated flutter probability density function obtained by the perturbation

method was found not to be in good agreement with MCS results. Kuttenkeuler

and Ringertz [113] explored the robust aeroelastic design optimization with re-

spect to uncertainties in material and structural properties. Three different con-

figurations of thin orthotropic composite are considered to find the maximum

critical airspeed. Kurdi et al. [114] used MCS to propagate the variation in di-

mensional properties of the structural parameters of the Goland wing in order

to quantify the flutter-speed probability density function. Results showed the

flutter speed to be highly sensitive to small changes in the structure. Beran et

al. [115] studied the effect of uncertainties in the cubic coefficient of the torsional

spring and also in the initial pitch angle of the airfoil on the limit cycle oscilla-

tion of a rigid pitch-plunge airfoil. The LCO behaviour and flutter boundary of

a metallic wing was investigated in terms of stiffness uncertainties by Catravete

and Ibrahim [116]. They utilized the Karhunen-Loeve (KL) expansion to rep-

resent the stiffness uncertainties along the span of the wing. The perturbation

theory was then applied to quantify the response variability. Attar and Dow-

ell [117] used a response surface method to identify the effect of uncertainty on

the response of a nonlinear aeroelastic system. Results were found to be in good

agreement with those obtained by MCS. Wang et al. [118] considered the problem

of flutter analysis in the presence of structural uncertainty using a CFD-based

aerodynamic reduced-order model. They evaluated probability density functions

for the flutter speeds of the Goland wing by randomizing the stiffness matrix. The

problem of design of composite wings including the uncertainties in the material

properties, fiber-direction angle, and ply thickness is considered by Manan and

Cooper [119]. They developed a probabilistic design approach based on polyno-

mial chaos expansions and showed that the PDFs obtained by second- and third-

order expansions are in good agreement with those generated by MCS. Based

on PDFs calculated by polynomial chaos, they found a reliability criterion which

indicates the probability of failure due to flutter. This criterion is then used to

determine the optimal robust design of composite wing. Willcox and Peraire [120]

applied a two-dimensional time domain Euler CFD code to assess the impact of
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variability in structural frequencies of bladed disks and the effects in the tuning

of cascades. Blade structural variability was translated into a frequency PDF

and the coupled aeroelastic system was solved making use of reduced order mod-

els. Verhoosel et al. [121] used a monolithic fluid-structure interaction (FSI) code

to model panel flutter with variability in the Young’s modulus. In this case,

the fluid flow was described by a two-dimensional unsteady linearized potential

equation, and the structure was modelled by the Euler-Bernoulli beam equation.

The parameter variability was represented by a Gaussian distribution obtained

from a Karhunen-Loeve expansion and used perturbation methods. They found

the sensitivity-based methods capable of characterising the statistical moments

of the aeroelastic response. Rao and Majumder [122] applied interval analysis to

a structural optimization problem under atmospheric uncertainty.

In this work, a sensitivity study is carried out to select those uncertain

structural parameters that influence the aeroelastic responses (such as damp-

ing, frequency or flutter speed) considerably. Then three different approaches are

considered for the characterisation of flutter-speed uncertainty. In the first ap-

proach, an interval flutter analysis is used. The interval flutter analysis requires

a minimisation and a maximization of the aeroelastic response. The second ap-

proach makes use of fuzzy logic so that the uncertainty is defined according to

a membership function. The fuzzy method is implemented within a number of

α-levels for the numerical solution of the underlying interval finite element prob-

lem. Efficient optimisation procedures make use of the Response Surface Method

(RSM) [59], which generally produces more accurate estimates of the gradient

and Hessian than numerical estimation by finite differences. The third procedure

is a probabilistic perturbation approach that makes use of the theory of quadratic

forms [16,47]. Each solution of the flutter equation is perturbed about the mean

values of the uncertain parameters through a truncated Taylor series expansion.

Then the statistical moments of the aeroelastic responses are calculated. The pro-

cedure requires the calculation of the gradient and Hessian, which is estimated

using RSM. When the perturbation is limited to the first-order terms of the Tay-

lor series there is no need to calculate the Hessian matrix. The methods are firstly

applied to the problem of flutter analysis using linearized aerodynamic potential
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theory. The practicality of using CFD-derived aerodynamics when these methods

are used is also investigated.

4.3 Eigenvalue-based stability formulation for the

linear flutter analysis

Different aerodynamic models can be used for the solution of flutter problem in

aeroelasticity. The Doublet-Lattice Method (DLM), introduced by Albano and

Rodden [123], has received considerable attention in both research and industrial

applications. This method is based on linearized aerodynamic potential theory

and its main advantage is speed of computation. In this method it is assumed that

the undistributed flow is uniform and is either steady or varying harmonically.

The lifting surfaces (panels) are supposed to be parallel with the flow and each

panel is divided into small trapezoidal lifting elements. Then the lifting pressure

is evaluated across the one-quarter chord line of each panel using potential theory.

The panel methods has been extensively explained in the reference books such

as [124].

In this section, the DLM, available in the aeroelastic module of MSC-NASTRAN

[125], is exploited to carry out linear flutter analysis. The standard linear aeroe-

lastic equation for modal linear flutter analysis by the PK-method (in MSC-

NASTRAN) may be expressed as follows,

[
Mφλ

2 +

(
−1

4
ρc̄V Bφ/rf + Cφ

)
λ +

(
−1

2
ρV 2Qφ + Kφ

)]
(u) = 0 (4.1)

where rf is the reduced frequency which is a function of frequency ω, mid-chord

c̄ and air velocity V as rf = c̄ω/2V , Mφ ∈ ℜnm×nm , Bφ ∈ ℜnm×nm , Qφ ∈
ℜnm×nm , Cφ ∈ ℜnm×nm , Kφ ∈ ℜnm×nm (nm is the number of the normal structural

modes which are retained for the analysis) are respectively the modal mass, modal

aerodynamic damping, modal aerodynamic stiffness, modal structural damping

and modal structural stiffness matrices. Eq. (4.1) may be cast in state-space form

as

[Al (ω) − λI] {u} = 0 (4.2)
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where

Al (ω) =

[
0 I

−M−1
φ

[
−1

2
ρV 2Qφ + Kφ

]
−M−1

φ

[
−1

4
ρc̄V Bφ/rf + Cφ

]
]

Bφ and Qφ in the above equation are functions of the Mach number ‘Mach’ (the

ratio of the speed of the aircraft to the speed of sound in air) and reduced velocity

rf . Eq. (4.1) describes a nonlinear eigenvalue problem. The eigenvalue λ may

be expressed as λ = ω (γ ± i) where ω is frequency and γ is transient decay rate

coefficient, or aeroelastic damping (which is referred to as damping for simplicity).

4.4 CFD based Aeroelastic Stability Formula-

tion

The semi-discrete form of the coupled CFD-FEM system is written as 1

dw

dt
= Rc (w, bf ) (4.3)

where

w = [wf ,ws]
T (4.4)

is a vector containing the fluid unknowns (wf ) and the structural unknowns (ws),

and

Rc = [Rf ,Rs]
T (4.5)

is a vector containing the fluid residual (Rf ) and the structural residual (Rs). The

residual also depends on a parameter bf (bf is altitude for CFD based aeroelastic

analysis) which is independent of w. An equilibrium w0 of this system satisfies

Rc(w0, bf ) = 0.

The linear stability of equilibria of Eq. (4.3) is determined by eigenvalues of

the Jacobian matrix Ac = ∂R/∂w. In the current work a stability analysis is done

based on the coupled system Jacobian matrix which includes the Jacobian of the

CFD residual with respect to the CFD and structural unknowns. The calculation

of the Jacobian Ac is most conveniently done by partitioning the matrix as

1This work is done in collaboration with Prof Badcock (my second supervisor) and Dr Simao
Marques in CFD laboratory of Flight Science and Technology of University of Liverpool.
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Ac =

[
∂Rf

∂wf

∂Rf

∂ws
∂Rs

∂wf

∂Rs

∂ws

]
=

[
Aff Afs

Asf Ass

]
(4.6)

The details of the Jacobian calculation are given in references [126] and [127].

In the current work, and as is conventional in aircraft aeroelasticity, the struc-

ture is modelled by a small number of modes, and so the number of the fluid

unknowns is far higher than the structural unknowns. This means that the Jaco-

bian matrix has a large, but sparse, block Aff surrounded by thin strips for Afs

and Asf . As described in reference [128] the stability calculation is formulated

as an eigenvalue problem, focussing on eigenvalues of the coupled system that

originate from the uncoupled block Ass.

The coupled-system eigenvalue problem may be written as
[

Aff Afs

Asf Ass

]
p = λp (4.7)

where p = [pf ,ps]
T and λ are the complex eigenvector and eigenvalue respec-

tively. The eigenvalue λ (assuming it is not an eigenvalue of Aff ) satisfies [129]

the nonlinear eigenvalue problem

S (λ)ps = λps (4.8)

where S (λ) = Ass − Asf (Aff − λI)−1Afs.

The nonlinear equation (4.8) may be solved using Newton’s method. Each

iteration requires the formation of the residual, S (λ)ps − λps and its Jacobian

matrix. The calculation of the correction matrix, Asf (Aff−λI)−1Afs, is required

to form the Jacobian matrix with respect to ps and λ. This can be achieved

through 2nm solutions of a linear system against Aff − λI, one for each column

of Afs with nm being the number of normal modes retained. These solutions are

then multiplied against Asf . Now, for each value of the bifurcation parameter,

there are multiple solutions of the nonlinear system in equation (4.8), and so

the cost of forming the correction matrix at each Newton step, for each solution

and for a range of structural parameters becomes high. To overcome this the

expansion

(Aff − λI)−1 = A−1
ff + λA−2

ff + λ2A−3
ff + ..... (4.9)
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is used where λ must be small for the series to converge. Note that this assumption

is not restrictive since it is assumed that the calculated eigenvalue is a small

change from the eigenvalue λ0 of Ass. Then λ0 can be used as a shift to the full

system eigenvalue problem by replacing Aff by Aff −λ0I and Ass by Ass −λ0I.

This modifies the nonlinear eigenvalue problem in equation (4.8) by redefining

S(λ) = (Ass − λ0I− λI)−Asf (Aff − λ0I− λI)−1Afs. The series approximation

then becomes

(Aff−λ0I−λI)−1 = (Aff−λ0I)
−1+λ(Aff−λ0I)

−2+λ2(Aff−λ0I)
−3+..... (4.10)

When the shifted problem is solved for λ, the eigenvalue of the original system

is then λ0 + λ. The terms (Aff − λ0I)
−1Afs, λ(Aff − λ0I)

−2Afs can be pre-

computed to yield the series approximation which can then be evaluated for any

λ at virtually no computational cost.

This method is referred to as the Schur method. Two forms are available.

In both cases the series approximation is used for approximating the Jacobian

matrix of the residual from equation (4.8). For the residual the evaluation of

S(λ)ps−λps can be made based on an exact evaluation (referred to as full in this

work) which requires the solution of one linear system against the right hand side

Afsps, or can use the series approximation (referred to as series) at virtually no

additional cost after the series matrices are formed.

4.5 Flutter sensitivity analysis using the response

surface method (RSM)

As shown in the previous sections, the flutter analysis requires the solution of a

complex eigenvalue problem. To investigate the flutter analysis of the stochastic

system in the presence of uncertain structural parameters, one may consider the

solution of a complex stochastic eigenvalue problem [130] which usually relies

upon the availability of the gradient (or sensitivity) and the Hessian. Sensitivity

analysis may be used to select those uncertain structural parameters that are

most significant. The flutter sensitivity is the rate of change of the eigenvalue

real part or damping, both represented by γ, with respect to changes in the
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structural parameters θ. For linear flutter analysis, the sensitivity values may

be computed by using MSC-NASTRAN. In this case, Eq. (4.2) is differentiated

with respect to parameters and the quantity ∂γi/∂θj determined. The solution

is semi-analytical with derivatives approximated using forward differences [125].

However, the rate of change of the frequency ωi and flutter speed with respect

to changes in the structural parameters θ and the second-order sensitivities, not

available in MSC-NASTRAN, may be calculated using forward finite differences

or alternatively, and usually more accurately, by RSM [59] (Section 2.3.6) as will

now be described. The RSM can also be used for evaluation of sensitivities and

the Hessian matrix when CFD is used for aerodynamics.

Since this work is concerned with the problem of flutter analysis under the

influence of structural variability, the RSM may be used to approximate the aeroe-

lastic responses such as eigenvalues or flutter speeds versus uncertain structural

parameters within the region of their variation. The quadratic response surface,

given by Eq. (2.78), may now be used for the aeroelastic model with p uncertain

structural paramers θ as

y = β0 + bTθ +
1

2
θTBθ (4.11)

where θ ≤ θ ≤ θ, β0, b and B are introduced in Section 2.3.6. The sensitivity

vector, gy(θ) =
[

∂y(θ)
∂θj

]
, and the Hessian matrix, Gy(θ) =

[
∂2y(θ)
∂θjθk

]
, may now be

estimated by differentiating Eq. (4.11) with respect to structural parameters,

gy(θ) = b + Bθ (4.12)

Gy(θ) = B (4.13)

For sampling, a hybrid sampling method consists of Central Composite Design

(CCD) and LHS (explained in Sections (2.3.6) and (2.3.1) respectively) may be

used for higher order models. The CCD [59], the most popular class of second-

order designs, is used in this study.
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4.6 Propagation methods in flutter analysis

In this section, propagation methods which are explained in Section (2.3) (Chap-

ter (2)) are used for the solution of the problem of flutter analysis in the presence

of uncertain structural parameters. The solutions are made available in two

forms; probabilistic and non-probabilistic. For the probabilistic flutter analysis,

the perturbation approach based on the theory of quadratic forms (explained in

Section (2.3.2)) are implemented and described in Section (4.6.1). The problem

of interval flutter analysis is also introduced and described in Section (4.6.2). Fi-

nally, the application of fuzzy logic methods to flutter problems are described in

Section (4.6.3).

4.6.1 Probabilistic flutter analysis in the presence of un-
certain structural parameters

In the presence of random structural parameters, represented by θ ∈ ℜp, the

mass, damping and stiffness matrices (Mφ,Cφ and Kφ) in Eq. (4.1) and Ass,

Asf and Afs in Eq. (4.6) becomes random matrices. This results in random

aeroelastic responses which are obtained from these equations. As explained in

Section (2.3.2), the aeroelastic response can be expanded about the mean value

of the uncertain parameters θ̂ as,

y = ŷ +

p∑

i=1

∂y

∂θi

|θi=θ̂i

(
θi − θ̂i

)
+

p∑

i=1

p∑

j=1

∂2y

∂θi∂θj

|θi=θ̂i, θj=θ̂j

(
θi − θ̂i

)(
θj − θ̂j

)

(4.14)

where ŷ = y
(
θ̂
)
, •̂ denotes the mean value of • and θ is the vector of uncertain

structural parameter. In the above equation, y denotes the aeroelastic response

such as real, imaginary parts of the solution of eigenvalue problem or the flutter

speed/altitude and the partial derivatives are evaluated at the mean values of the

structural parameters using Eqs. (4.12) and (4.13). The cumulants of y may be

obtained based on quadratic theory (explained in Section (2.3.2)) as,
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κ(1) = ŷ +
1

2
Trace

(
Gy

∣∣
θ=θ̂

Vθ

)
(4.15)

κ(r) =
r!

2
gT

y

∣∣
θ=θ̂

[
VθGy

∣∣
θ=θ̂

]r−2
Vθgy

∣∣
θ=θ̂

+
(r − 1)!

2
Trace

([
Gy

∣∣
θ=θ̂

Vθ

]r)
r ≥ 2

(4.16)

where gy

∣∣
θ=θ̂

and Gy

∣∣
θ=θ̂

are the gradient vector and Hessian matrix respectively

evaluated by RSM at the mean values of structural parameters θ̂. If only the

first-order terms are retained then κ(1) = ŷ = y
(
θ̂
)
, κ(2) = gT

y

∣∣
θ=θ̂

Vθgy

∣∣
θ=θ̂

.

Therefore the PDFs of aeroelastic responses, may be assumed to be normally

distributed,

f (y) =
1√

2πκ(2)
exp

(
−
(
y − κ(1)

)2

2κ(2)

)
(4.17)

If the Hessian matrix is retained then the first four moments of the aeroelastic

responses can be determined using Eqs. (4.15) and (4.16). It should be noted that

the third and fourth moments are more inaccurate than the first and second mo-

ments because of the second-order perturbation used to represent the aeroelastic

response. In this case if only the first two moments are considered, Eq. (4.17)

may be used to estimate the PDF of the aeroelastic response. However if the

second-order model is a quite accurate description of the aeroelastic response in

the region of structural parameter variation, then the accuracy of higher order

moments will be increased. In this case the probability density function may be

evaluated using Pearson’s theory ( [48] and [49]) as explained in Section (2.3.3)

of Chapter (2).

4.6.2 Interval flutter analysis

The parameter vertex solution [19] is the simplest and most efficient method for

interval analysis, but its application is only valid for a restricted class of eigenvalue

problems. In particular the eigenvalue problem must be symmetric and linear.

As stated before, the eigenvalue problems in Eqs. (4.1) and (4.7) are nonlinear.

In addition the matrices Al and Ac are asymmetric. Therefore it is necessary to

apply global optimisation procedures in search of the maximum and minimum
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damping, frequency or flutter speed/altitude. The optimisation problem may be

expressed by the following statement.

Determine,
[
y, y
]

= [min (y) , max (y)] (4.18)

subject to,

θ ≤ θ ≤ θ

where • and • represent the lower and upper bounds of • respectively, y is an

aeroelastic response and θ ∈ ℜp is the vector of uncertain system parameters.

Different optimisation methods may be used in Eq. (4.18). The method of Feasible

Directions (FD) based on Newton’s approach [131] is used for global optimisation

in this study. However it is important to choose an efficient optimisation method.

The response surface method can also be used for reducing the computational time

of optimisation. As mentioned earlier, a quadratic function is used to approximate

the aeroelastic response in this work. Therefore a quadratic optimisation method

may be used to evaluate the upper bound and lower bound of aeroelastic responses

in Eq. (4.18). The reflective Newton method [132] for minimisation/maximization

of a quadratic function subject to bounds on variables is used here. The method

is available in the optimisation toolbox of MATLAB. Figure 4.1 shows a typical

graph of the interval results for the eigenvalue real part of an unstable mode and

flutter speed/altitude. ‘LB’ denotes the lower bound and ‘UB’ denotes the upper

bound in the figure. The procedure for interval flutter analysis may be described

according to the following steps,

1. Select uncertain structural parameters from sensitivity analysis and define

their intervals.

2. Generate samples from the space of structural parameters using CCD.

3. Evaluate the aeroelastic responses at these samples.

4. Fit a second-order model using the least-square technique.

5. Find the upper and lower aeroelastic responses using quadratic program-

ming optimisation.
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4.6.3 Fuzzy method in flutter analysis

The fuzzy finite element method, explained in Section (2.3.5), is now used for

the solution of the problem of flutter analysis in the presence of uncertain struc-

tural parameters. In this particular application the fuzzy-output membership

function is the aeroelastic responses, typically the flutter speed. The procedure

for a function of two triangular fuzzy variables with four α-levels was shown in

Figure 2.10. The response surface method can be used for construction of fuzzy

membership functions of the output data. In the numerical example in this work,

it is observed that an adequate RSM approximation can be obtained by using a

CCD (Central Composite Design) at the mid-level of the fuzzy diagram of input

parameters. If the samples from axial points of this design are chosen to coincide

with the bounds of the lowest α-level of the fuzzy diagram of input parameters

then only one response surface at the mid-level is estimated and this model will

be used for interval analysis at all the α-levels considered. The computational

time for propagation using fuzzy methods is then reduced considerably.
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Figure 4.1: Flutter speeds bounds and real parts of the flutter mode
bounds.
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4.7 Numerical examples for linear flutter anal-

ysis

4.7.1 Goland wing without structural damping

The Goland wing, shown in Figure 4.2, has a chord of 6 feet and a span of 20

feet. It is a rectangular cantilevered wing with a 4%-thick parabolic section. The

structural model is built based on the description given in [133] and is shown in

Figure 4.3. The wing is composed of upper and lower skins, three spars, eleven

ribs, three spar caps, eleven rib caps and 33 posts (1D elements) with nominal,

but uncertain, thicknesses and areas as defined in Table 4.1. These components of

the wing are shown in Figure 4.4. Four mode shapes, shown in Figure (4.5) were

retained for the aeroelastic simulation. Flutter analysis was carried out using the

aerodynamic module of MSC-NASTRAN, exploiting the double-lattice subsonic

lifting surface theory (DLM). The standard linear aeroelastic equation for modal

flutter analysis by the PK-method (Eq. (4.1)), available in the aeroelastic module

of MSC-NASTRAN [125], is used in this section.

Root: 4% Thick Circular Arc

Tip: 4% Thick Circular Arc

Span: 20ft

Chord: 6ft

Figure 4.2: Geometry of the Goland wing.

Sensitivity analysis was carried out in order to find the random parameters

having most affect on the damping of the aeroelastic modes. The sensitivities

of damping with respect to the normalised structural parameters were evaluated
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Figure 4.3: Finite element model of the Goland wing.

Table 4.1: Nominal values of thicknesses and areas for the Goland wing
finite element model.

Parameter Thickness ft (m) Parameter Area ft2 (m2)

Upper and lower wing skins 0.0155 (0.0047) Leading and trailing edge spar caps 0.0416 (0.003865)

Leading and trailing edge spars 0.0006 (0.00018) Centre spar cap 0.1496 (0.013898)

Centre spar 0.0889 (0.0271) Rib caps 0.0422 (0.003921)

Ribs 0.0347 (0.01058) Posts 0.0008 (0.000074)

at four velocities close to the flutter speed at different Mach numbers. Solving

the deterministic flutter equation at the mean values of the random parameters

showed that flutter occurred in the first mode for the complete range of Mach

numbers chosen. The sensitivities, scaled to avoid ordering effects. Figure 4.6

shows the values of the sensitivities for the Mach number of 0.7, where it is seen

that among the 63 random parameters, just seven are capable of significantly

changing the damping and the flutter speed. The damping ratios were found to

be most sensitive to the same seven parameters at different Mach numbers.

For interval analysis, the selected random parameters were considered to be

in intervals defined by ±5% of the mean values given in Table 4.1. The damping

and frequency of modes 1 and 2 are shown in Figures 4.7(a) and 4.7(b). MCS was

used to verify the results obtained by interval analysis using samples generated

from uniform distributions. Figure 4.7 shows that a good agreement between

results obtained from interval analysis and MCS is achieved. It is also seen
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(a) Skins (b) Spars

(c) Ribs (d) Spar caps

(e) Rib caps (f) Posts

Figure 4.4: Views of the main structural model components for the Goland
wing.

in Figure 4.7 that the results achieved by RSM optimisation match with those

obtained from global optimisation using the method of feasible direction (FD).

Also from Figure 4.7(a) it is observed that the flutter speed is defined within the

interval from 410 ft/s (125 m/s) to 440 ft/s (134 m/s) at Mach 0.7. Modes 3 and 4

remained stable at all the velocities considered. The flutter-speed bounds versus

Mach number are shown in Figure 4.8 where it is seen that the interval-analysis

94



(a) Mode (1), 1.97 Hz (b) Mode (2), 4.05 Hz

(c) Mode (3), 9.65 Hz (d) Mode (4), 13.45 Hz

Figure 4.5: The first four mode shapes of Goland wing.

and MCS results are in good agreement.

From Figures 4.7(a) and 4.7(b) it can be also seen that whereas the variability

of the frequency remains unchanged throughout the velocity range, the damping

becomes sensitive as the flutter speed is approached and at higher velocities the

damping variability becomes similar in extent to the frequency variability. This

result demonstrates how the damping becomes dependent upon the mass and

stiffness structural parameters at the flutter speed and beyond. At low speeds

the damping ratios are mostly unaffected by mass and stiffness variability so that

in this range the behaviour is similar to normal-mode structural behaviour. This

can be easily shown by calculating the MAC matrix [64] between normal-mode

and aeroelastic mode using Eq. (3.1). At low velocities, e.g. 300 ft/s (91.44 m/s),
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Figure 4.6: Aeroelastic damping sensitivity at different velocities (mode 1)
*only the greatest sensitivity among 33 posts is shown.
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Figure 4.7: Interval and MCS results for (a) damping and (b) frequency
for modes 1 and 2.

the MAC matrix is,

MAC =

[
0.995 0.004
0.062 0.931

]
(4.19)
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Figure 4.8: Interval and MCS results showing flutter speeds versus Mach
values.

and at high velocity, e.g. 420 ft/s (128 m/s), the MAC is found to be,

MAC =

[
0.897 0.013
0.530 0.223

]
(4.20)

According to the MAC matrices, given in Eqs. (4.19) and (4.20), the aeroelastic

eigenvalues may be expressed as a complex linear combination of the structural

normal-mode eigenvalues. Therefore, the first and second complex aeroelastic

eigenvalues can be approximately written as,

λ1 (θ) ≈ α1λ
(n)
1 (θ) + α2λ

(n)
2 (θ) (4.21)

λ2 (θ) ≈ β1λ
(n)
1 (θ) + β2λ

(n)
2 (θ) (4.22)

where α1, α2, β1, β2 are complex functions of velocity and the superscript (n)

distinguishes a real structural normal-mode eigenvalue from an aeroelastic eigen-

value. At low velocities α2, β1 → 0, α1, β2 → 1 (according to MAC matrix given

in Eq. (4.19)) so that the aeroelastic damping values are close to the normal-mode
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eigenvalues. At higher speeds the complex constants are given more generally by

0 ≤ |α1| , |α2| , |β1| , |β2| ≤ 1 (according to MAC matrix given in Eq. (4.20) so

that the damping values include structural mass- and stiffness-variability present

in the normal mode eigenvalues.

Figures 4.9(a) and 4.9(b) shows the sensitivity of damping ratio and frequency

of the first two eigenvalues (crossing modes) with respect to thickness of leading

edge spar, the most effective parameter from Figure 4.6, at different velocities and

Mach number 0.7. As it can be seen from Figure 4.9(a), the damping ratios of

both modes are insensitive to the uncertain parameter at low velocities and they

reach their maximum value at flutter speed regardless of sign. The sensitivity

values decrease when the flutter speed is exceeded. Figure 4.9(b) shows that

the sensitivities of frequencies of both modes reach a maximum at flutter speed.

Sensitivity curves of similar symmetric form to Figures 4.9(a) and 4.9(b) were

found for the sensitivities of both modes to the other randomised parameters.

This verifies the observation shown in the previous paragraph which are justified

by Eqs. 4.21 and 4.22.

(a) (b)

Figure 4.9: The sensitivities of (a) damping and (b) frequency for modes
1 and 2 with respect to thickness of leading spar edge.

Gaussian distributions were chosen for the probability perturbation analysis

using seven randomised parameters with mean values as in Table 4.1 and coeffi-

cients of variation COV = 0.05 (as in Ref. [114]). Other parameters were taken

to be deterministic with values as in Table 4.1. Propagation methods were ap-

plied to the Goland wing to estimate the output PDFs. In MCS, 1000 samples

98



were taken from the parameter PDFs. For propagation by the fuzzy method, the

Gaussian probability density functions of system parameters were approximated

by triangular membership functions as explained in Section 2.2.4. The maximum

variation of the parameters (i.e. at level α1) was given by Eq. (2.38). First eigen-

value damping distributions by first- and second-order probabilistic perturbation

using normal distribution (Eq. (4.17)) and Pearson’s theory (Section 2.3.3), and

MCS are shown together in Figure 4.10(a) at velocity 400 ft/s (121.9 m/s) and

Mach number 0.7. Although the first-order perturbation and second-order pertur-

bation using normal distribution accurately captures most of the PDF generated

by MCS, it is clear that there are differences at the tails that might be important

from a practical engineering point of view. The tails are better represented by

the second-order perturbation using Pearson’s theory, which is close to the MCS

result at the tails. Figure 4.10(b) shows the fuzzy membership function for the

damping (first eigenvalue) at velocity 400 ft/s (121.9 m/s) using FD optimisation

and RS optimisation. There is a good agreement between results obtained by

the two optimisation methods. Significantly, it is seen from Figures 4.10(a) and

4.10(b) that the fuzzy membership function captures the nonlinearity in the tails

of the MCS distributions. In fact the range of variability of aeroelastic-damping

variability obtained from the fuzzy method exceeds that determined from MCS.
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Figure 4.10: Aeroelastic damping at velocity 400 ft/s (121.9 m/s): (a)
PDFs obtained by 1st and 2nd order perturbation and MCS
(b) membership function obtained by RSM and FD optimi-
sation.
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The flutter speed distributions by first- and second-order probabilistic pertur-

bation using normal distribution (Eq. (4.17)) and Pearson’s theory (Section 2.3.3),

and MCS are shown together in Figure 4.11(a) at Mach 0.7. Two fuzzy member-

ship functions of flutter speed at Mach 0.7 obtained from optimisation method

using the method of feasible direction (FD) and RS optimisation are also shown in

Figure 4.11(b). Generally there is a good agreement between the PDFs obtained

by perturbation method and PDF generated by MCS. However the second-order

perturbation method using Pearsons theory is slightly in better agreement with

PDF generated by MCS. From Figure 4.11(b), it can be seen that the member-

ship function of flutter speed estimated by RS optimisation matches well with

membership function of flutter speed achieved by global optimisation using the

method of feasible direction (FD).

360 380 400 420 440 460
0

0.01

0.02

0.03

0.04

0.05

0.06

Flutter speed Vfs
(ft/s)

f
(V

f
s
)

Mach=0.7

 

 

MCS

PB 1st normal

PB 2nd normal

PB 2nd Pearson

(a)

360 380 400 420 440 460 480
0

0.2

0.4

0.6

0.8

1

Vfs
(ft/s)

M
em

b
er

sh
ip

fu
n
ct

io
n

o
f
V

f
s

Mach=0.7

 

 

FD opt.

RS opt.

(b)

Figure 4.11: Flutter speed: (a) PDFs obtained by 1st and 2nd order per-
turbation and MCS (b) membership function obtained by
RSM and FD optimisation.

Table 4.2 shows the lower and upper bounds of flutter speed obtained from

cumulative distribution function of flutter speed from the range of 0.1% to 99.9%

at different Mach numbers. The bounds of zero levels of membership function of

flutter speed and the mean values of flutter speed are also shown in the table.

Generally the bounds achieved by perturbation method are in good agreement

with bounds generated by MCS. However, as it can be seen in this table the

bounds obtained from second-order perturbation using Pearson’s theory are in

better agreement with the bounds achieved by MCS at Mach numbers 0.7, 0.8,
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0.85 and 0.9. It may be noted, from an engineering point of view, that the

bounds of flutter speed from fuzzy membership functions looks greater than those

obtained from probabilistic distributions.

The correlation coefficients between the real parts and the imaginary parts

of crossing modes at different velocities can be directly calculated from the pop-

ulation which has been generated by MCS. However this needs large number of

samples and is computationally expensive. Another alternative method that is

computationally more efficient than the MCS is asymptotic integral as explained

in Section (2.3.3). According to Eq. (2.17), the correlation coefficient between

the real parts of two crossing eigenvalues can be expressed as,

ργi,γj
=

Cov (γi, γj)

σγi
σγj

=
E (γiγj) − E (γi) E (γj)√

E (γ2
i ) − (E (γi))

2
√

E
(
γ2

j

)
− (E (γj))

2
(4.23)

where E (γr
i ) and E

(
γr

j

)
may be estimated by using Eq. (2.62) as follows:

E (γr
i ) = γr

i (ϑir) exp

{
−1

2

(
ϑir − θ̂

)T

V−1
θ

(
ϑir − θ̂

)} ∣∣∣I + G̃γi

∣∣∣
− 1

2
r = 1, 2

(4.24)

where the vector of uncertain parameter θ follows a joint normal distribution with

mean vector θ̂ and covariance matrix Vθ, |•| shows the determinant of matrix •,
and

G̃γi
=

r

γ2
i (ϑir)

Vθgγi
|θ=ϑir

gT
γi
|θ=ϑir

− r

γi (ϑir)
VθGγi

|θ=ϑir
(4.25)

In the above equation, g and G are gradient vector and Hessian matrix and ϑir

may be obtained according to

ϑir = θ̂ +
r

γi (ϑir)
Vθgγi

|θ=ϑir
(4.26)

By using the same approach, E (γiγj) may be calculated using the following ex-

pression:

E (γiγj) = γi (ϑij) γj (ϑij) exp

{
−1

2

(
ϑij − θ̂

)T

V−1
θ

(
ϑij − θ̂

)} ∣∣∣I + G̃γij

∣∣∣
− 1

2

(4.27)
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Table 4.2: Flutter speed bounds from different methods.

Mach Lower bound of flutter speed Mean flutter speed Upper bound of flutter speed
ft/s (×0.3048 m/s) ft/s (×0.3048 m/s) ft/s (×0.3048 m/s)

MCS Pb 1st Pb 2nd n Pb 2nd p Fuzzy MCS Pb 1st Pb 2nd n Pb 2nd p Fuzzy MCS Pb 1st Pb 2nd n Pb 2nd p Fuzzy

0.7 387.0 393.5 392.8 390.9 374.0 417.1 417.1 416.5 416.5 417.1 443.4 440.8 440.2 440.6 463.0

0.8 365.5 366.0 366.3 366.5 349.3 388.7 387.4 387.8 387.8 387.4 415.2 408.9 409.2 411.9 430.9

0.825 357.8 357.7 356.6 354.1 340.1 379.2 379.0 378.0 378.0 379.0 401.6 400.2 399.3 400.2 419.8

0.85 346.3 347.1 347.4 346.2 331.1 368.2 366.9 367.2 367.2 366.9 390.7 386.7 387.0 388.0 407.4

0.88 334.7 333.5 333.7 332.3 319.3 353.8 352.7 353.0 353.0 352.7 375.0 372.0 372.3 373.4 390.6

0.90 321.3 326.0 325.4 323.9 312.1 343.6 343.4 342.9 342.9 343.4 363.5 360.9 360.3 360.7 378.6

0.92 318.2 317.9 317.5 316.2 306.1 335.1 334.6 334.3 334.3 334.6 355.4 351.4 351.1 351.6 366.9

0.94 314.8 314.4 314.4 314.2 304.1 330.1 329.1 329.1 329.1 329.1 346.2 343.8 343.9 345.6 358.0

0.95 315.5 314.8 314.8 314.2 306.0 329.7 328.7 328.7 328.7 328.7 344.8 342.6 342.7 343.8 355.5

0.96 316.2 316.0 315.9 315.9 307.7 330.5 329.6 329.6 329.6 329.6 344.6 343.1 343.2 343.6 354.9

Pb 1st: First order perturbation method

Pb 2nd n: Second order perturbation method using normal PDF

Pb 2nd p: Second order perturbation method using Pearson’s theory for determining PDF
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where

G̃γij
=

1

γ2
i (ϑij)

Vθgγi
|θ=ϑir

gT
γi
|θ=ϑir

− 1

γi (ϑij)
VθGγi

|θ=ϑir

1

γ2
j (ϑij)

Vθgγj
|θ=ϑir

gT
γj
|θ=ϑir

− 1

γj (ϑij)
VθGγj

|θ=ϑir

(4.28)

and ϑij is found by solving the following equation numerically,

ϑij = θ̂ +
1

γi (ϑij)
Vθgγi

|θ=ϑir
+

1

γj (ϑij)
Vθgγj

|θ=ϑir
(4.29)

Substituting Eqs. (4.27) and (4.24) into (4.23) gives the correlation coefficient.

The procedure for the calculation of the correlation coefficient between frequencies

is similar to the above procedure (Eqs. (4.23) to (4.29)).

Figure 4.12 shows the correlation coefficient between the damping ratios and

the frequencies of the crossing modes in Goland wing. There is excellent agree-

ment between the results obtained by the asymptotic integral and the MCS. A

very interesting observation in this figure is that there is a velocity in which the

correlation coefficient between the first and second damping ratios and the cor-

relation coefficient between the first and second frequencies of crossing modes

become zero. This happens at velocity 327 ft/s which is referred to as zero cor-

relation velocity. It can be seen from the figure that the correlation coefficient

of the damping ratios of the crossing modes decreases after the zero correlation

speed and becomes -1 at flutter speed and beyond. However, the correlation

coefficient of the frequencies also decreases after the zero correlation speed but

starts increasing after flutter speed and goes to 1 at velocity 500 ft/s. This shows

that after flutter speed two crossing modes tend to behave as a pair of complex

conjugate modes.

In order to visualise the extreme values (-1 and 1) of the correlation coefficients

that are shown in Figure 4.12, the scatter diagrams that show the variability in the

aeroelastic damping and frequency at 420 ft/s (128.02 m/s) (for damping) and 520

ft/s (158.5 m/s) (for frequency) are plotted and shown in Figure 4.13. An ellipse

at two standard deviations is superimposed upon the scatter in the figures. As

can be seen in the figure, the scatter diagrams for the damping and frequency have

a particular structure close to a -45◦ line and +45◦ respectively. Figure 4.13(a)
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Figure 4.12: The correlation coefficients between the first and second
damping ratios and the first and second frequencies.

shows that at the flutter boundary the uncertainty in the damping has a particular

structure that renders the unstable mode less damped while the stable mode

is rendered more damped to a similar degree, and vice versa. Figure 4.13(b)

shows that if a scatter point is chosen that corresponds to increased frequency in

aeroelastic mode 1 then the frequency in mode 2 is increased to a similar degree

and vice-versa. These observations confirm the correlation coefficients which are

shown in Figure 4.12.

4.7.2 Goland wing with structural damping

The effect of structural damping on the flutter stability boundaries by adding

twelve dashpot elements, uniformly located along the length of the Goland wing

from tip to root, is considered in this section. Complex eigenvalue analysis was

carried out, resulting in modal damping parameters for the first four modes as:

3.403772×10−2, 1.345800×10−2, 4.506277×10−2 and 4.539254×10−2, being rep-

resentative of structural damping in an aircraft wing. The damping of the aeroe-
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Figure 4.13: Scatter of the aeroelastic eigenvalues (a) Damping at 400 ft/s
(121.92 m/s), and (b) frequency at 520 ft/s (158.5 m/s).

lastic eigenvalues for the damped and undamped system is shown at different

velocities in Figure 4.14. It can be seen in the figure that a small but significant

increase in the flutter speed is observed when structural damping is included. It

was also observed that the frequencies of the aeroelastic modes are not affected by

structural damping at lower velocities but they changed as flutter occurs. Gaus-

sian distributions were chosen for the twelve damping parameters with mean

values of 200 lbs/ft (2919 Ns/m) and coefficients of variation COV = 0.05.

Probabilistic perturbation and MCS was found to result in very narrow bands

of variation for the damping, frequency and flutter speed. This shows that struc-

tural damping variability has virtually no effect upon the flutter intervals.

The results obtained by different methods from numerous test cases, with

and without structural damping, show that reliable flutter boundary estimates

may be obtained by a combination of interval analysis and RSM. Therefore it

was decided to use interval analysis for the test case described in the following

section.

4.7.3 Generic fighter FE model

Having demonstrated the approach on a model wing, a second case is computed

to show feasibility on a realistically sized aircraft model. The intention here is

to show that the method can scale to models of the size required for the analysis
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Figure 4.14: Damping ratios for modes 1 and 2 with and without damping.

of aircraft. The generic fighter was built on data publically available for the F-

16 aircraft, since this has been the subject of much interest from an aeroelastic

viewpoint.

The finite element model of the generic fighter wing, based on the model

described by Cattarius [134], consists of a fuselage, wings, pylon and stores, all

modelled using MSC-NASTRAN QUAD4 elements. The fuselage, pylon and

stores were considered to be effectively rigid, having very large values for the

elastic modulus assigned to them. The mass properties of the pylon and stores

were represented by lumped masses, the masses of the pylon and stores being

161 kg and 1027.5 kg respectively and the principal moments of inertias of the

stores, Ixx = 27.5 kg×m2, Iyy = Izz = 1000 kg×m2. The wing-pylon connection

was assumed to be rigid and each store was connected to a pylon by six springs

(three translational and three rotational). The wings were divided into three

regions, root, pylon and tip as shown in Figure 4.15. The Young’s modulus and

density of each region of the wing was adjusted in order to match the normal

mode frequencies with data from a Ground Vibration Test (GVT). Table 4.3
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shows updated wing-model properties. Table 4.4 shows the first five symmetric

natural frequencies from the updated finite element model and the GVT [135,136].

Figure 4.16 and 4.17 show the first and second structural normal-mode shapes

and aeroelastic mode shapes of the full model respectively. It can be seen from

Figure 4.17 that both first and second aeroelastic mode shapes at the flutter speed

are a combination of the bending mode and store pitch.

Table 4.3: Updated wing-model properties.

Parameter Root Pylon Tip

E (Gpa) 157.3 96.7 95.6

G (Gpa) 62.92 38.68 38.24

ρ (kg/m3) 5680 3780 3780

ν 0.25 0.25 0.25

t (m) 0.075 0.03 0.03

Table 4.4: Symmetric mode frequencies (Hz).

Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) Mode 4 (Hz) Mode 5 (Hz)

Updated FE 3.74 5.91 8.12 11.00 11.51

model (h1) (α + θ) (µ) (h2 + α) θαT

GVT [134–136] 4.07 5.35 8.12 12.25

(h1) (α + θ) (µ) (h2)

Figure 4.15: Parameterisation of the wing.

An aerodynamic model of the wing was established by dividing the left and

right wing into panels with 21 span wise and 11 chord wise grid points and dividing
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(a) (b)

Figure 4.16: Normal modes (a) mode 1, first bending (h1), symmetric, 3.74
Hz, (b) mode 2, torsion + pitch (α + θ), symmetric, 5.91 Hz.

(a) (b)

Figure 4.17: Aeroelastic modes at velocity 350 m/s, (a) mode 1, 4.106 Hz,
(b) mode 2, 4.136 Hz.

the fuselage with 11 span wise and 11 chord wise grid points. Figure 4.18 shows

the damping and frequency of the first five symmetric modes. It can be seen that

modes 1 (bending) and 2 (torsion + pitch) cross each other at a velocity of 350

m/s.
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Figure 4.18: The damping and frequencies of first five symmetric modes.

The sensitivities of the eigenvalues to small changes in the six spring coef-
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Figure 4.19: Sensitivity of the damping (first eigenvalue) to small changes
in the scaled parameters (Mach 0.8).

ficients at the stores attachments, the elastic moduli and mass densities of the

three regions of the wing and the mass properties of the stores (total mass and

three principal moments of inertia) were determined. Figure 4.19 shows the sen-

sitivities of the first eigenvalue to these parameters, only eight of which have a

significant effect on the flutter speed. The pitching spring is the most important

parameter. The mass and pitch moment of inertia (z direction) of the stores were

also found to be significant but were not randomised. The reason why the mass

and pitch moment of inertia were not included is that they were well defined and

therefore should not be randomised. Therefore six uncertain parameters were

considered in following intervals:

• Rotational spring coefficient:
[

0.7 1.3
]
×2000 kNm/rad.

• Young’s modulus of the root:
[

0.9 1.1
]
×1.573×1011 N/m2.

• Young’s modulus of the pylon:
[

0.9 1.1
]
×9.67×1010 N/m2.

• Mass density of the root:
[

0.9 1.1
]
×5680 kg/m3.
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• Mass density of the pylon:
[

0.6 1.1
]
×3780 kg/m3.

• Mass density of the tip:
[

0.9 1.1
]
×3780 kg/m3.

Figure 4.20 shows the interval analysis results for the damping of the first

eigenvalue close to the flutter speed. The minimum-bound flutter speed was

found to be 322 m/s, considerably lower than the deterministic flutter speed of

343 m/s. The rotational spring coefficient was found to be 1400 kNm/rad, the

Young’s modulus of the root was 1.416×1011 Pa, the Young’s modulus of the

pylon was 8.703×1010 Pa, and the mass densities of the root, pylon and tip were

6248 kg/m3, 2268 kg/m3 and 3402 kg/m3, respectively at the minimum flutter

speed. Increasing the wing mass at the tip and Pylon and decreasing the mass

at root leads to a higher flutter speed, as does a stiffer connection between the

store and pylon.
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Figure 4.20: Bounds on damping for the first eigenvalue determined by
interval analysis.
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4.8 Numerical examples for CFD based flutter

analysis

In this section, the feasibility of applying the uncertain propagation methods to

CFD based Schur method, introduced in Section 4.4, is investigated in terms of

computational time. Similar test cases (Goland wing and generic fighter aircraft)

are considered again in this section. The linear flutter sensitivity analysis is

assumed to be valid for identifying the important structural parameters in this

section. Thus the uncertain structural parameters are similar to those selected

in the previous section. In the first case, all propagation methods including the

MCS, perturbation and interval are used again to investigate the performance of

them when CFD is used for aerodynamic.

4.8.1 Goland Wing

The Goland wing, shown in Figure 4.2 is considered in this section. The structural

model and uncertain model are similar to those explained in Section 4.7.1. The

CFD model is constructed by the first and second authors of the paper [137] where

the details of CFD model is explained in details. Four mode shapes were retained

for the aeroelastic simulation. The Schur eigenvalue formulation, described in

Section (4.4), was used for flutter analysis. The same 7 parameters which are key

to determining the flutter speed (as explained in Section (4.7.1)), are considered

as uncertain parameters.

The wing flutter response was calculated at the mean structural parameters

which are shown in Table 4.1. This was done at Mach 0.5 or matched conditions.

At Mach 0.5, an interaction between the wing first bending and torsion modes

gives flutter between ground level and 10000 ft.

The seven identified structural parameters were randomised in similar way

to Section (4.7.1) by taking a coefficient of variation of 0.05 about the mean

value, and a set of 1000 normal modes was generated. The series approximation

was calculated at the mean parameter values, at a cost of 64 linear solves, and

this matrix was then used to drive convergence of the quasi-Newton method for

the random parameter combinations. The four aeroelastic eigenvalues were then
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computed for the 1000 samples. In each case the eigenvalues converged in 3-4

quasi-Newton steps, meaning that the computational cost at each altitude was

3-4 linear solves.

The mean-centred first-order perturbation method requires the calculation

of the Jacobian of the aeroelastic eigenvalue with respect to each of the seven

uncertain structural parameters at each altitude of interest, requiring 3-4 linear

solves per parameter per altitude.

For the interval method, the first step is to calculate the mean parameter

aeroelastic eigenvalues. The eigenvalues which are close to becoming undamped

and the range of critical altitude for these eigenvalues are selected. The interval

analysis optimisation is then run at these altitudes and for these eigenvalues.

The Schur matrix is re-evaluated at the mean value for each altitude chosen to

drive rapid convergence for each function evaluation during the optimisation. It

was found that in the worst case around 12 optimisation steps was required to

achieve convergence to the maximum or minimum eigenvalue real part, needing

96 eigenvalue calculations. In total this took around 4 hours of CPU time on a 3

GHz personal computer in the worst case to define both ends of the range.

The mode tracking, together with the influence of structural variability, is

shown in Figure 4.21. In this figure the lines indicate the eigenvalues predicted

using the series approximation to the residual of Eq. (4.8) whereas the points are

from a full evaluation at that altitude. The two sets of results are in perfect agree-

ment for this case. On parts (a) and (b) of this figure the mean parameter mode

tracking is shown. The interaction of the first wing bending and torsion modes is

clear in Figure 4.21(b) with the convergence of these frequencies below 10000 ft.

The bending mode becomes undamped, as shown in Figure 4.21(a). The influ-

ence of structural variability is shown at three altitudes in Figure 4.21(c). This

figure includes the Monte-Carlo simulation results (with each sample indicated by

one point on the graph), the perturbation results (with the 2σ results indicated

by circles) and the interval maximum and minimum indicated by the lines. As

similar to the linear flutter analysis, it is observed that the scatter of the results

on the real part of the eigenvalue is very small before the modes start to interact

strongly. After this interaction starts the spread of results grows dramatically.
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The interval results capture the Monte-Carlo samples, as they are likely to. The

PDFs from the Monte-Carlo and perturbation methods are shown in Figure 4.22.

There are minor differences in the tails at 2000ft where the interaction has started

at this freestream Mach number.

Interval calculations at a number of altitudes allow lower and upper interval

bounds to be traced as a function of altitude. These curves are shown in Fig-

ure 4.23 which shows that the altitude range for flutter onset is from 14000 ft

down to 5000 ft.
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Figure 4.21: Goland Wing mode tracking for M = 0.5,α = 0o, including
the influence of structural variability. MC refers to Monte
Carlo and the circles on the figure are the 2σ values from the
perturbation PDF.

The costs of the different approaches are shown in Table 4.5. These costs
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Figure 4.23: Range of flutter altitude from interval analysis for Goland
wing Mode 1 at M = 0.5, α = 0o.

are shown both in terms of the number of eigenvalue calculations and also the

CPU time on a Pentium 3GHz processor (i.e. a desktop computer). The linear

perturbation method has a small cost, but cannot capture skewness in the PDF

if this is present. The interval method requires up to 4 hours to define the worst

case interval. Finally, even the Monte-Carlo simulation only requires 50 hours for
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1000 samples.

Given that the choice of variability in the structural parameters is likely to

be based on the intuition of an analyst rather than on hard statistical data,

the essential information in the results of these analyses is in the spread of the

results rather than in the PDF. If this is accepted then the interval results have

a good balance between capturing the spread (including any skewness) and the

computational cost, and it will be used for the next case. This is the same as the

conclusion which obtained in the linear flutter analysis.

Table 4.5: Comparison of methods to calculate the eigenvalue real part
variability for the critical mode at one altitude for the Goland
Wing Clean case

.

Method Number of eigenvalue evaluations Wall Clock Time
Monte Carlo 1000 50h

Perturbation 7 21min

Interval 60 - 190 2.5 - 8h

Single Flutter Point 1 3min

4.8.2 Generic Fighter Model

The structural finite element model of the generic fighter wing is similar to the

one that demonstrated in Section 4.7.3. As mentioned in the section, it is at-

tempted to establish the actual behaviour of the F-16 fighter aircraft in this case.

Therefore, available data for the wing geometry (dimensions and airfoil section),

together with published data from wind-tunnel test was exploited. Similar to the

CFD model of the Goland wing, this part of study was carried out by the first

and second authors of the paper [137] which is published in the journal of aircraft.

Therefore the details of the geometry, together with CFD grids can be found in

this paper.

Based on linear sensitivity analysis for the flutter speed against the structural

parameters which is described in Section (4.7.3), the most important structural

parameters namely the rotational spring coefficient for the store attachment, the

Young’s modulus of the wing root section and the pylon, and the densities for the

wing root and tip regions and the pylon are idendified. An interval was defined
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for each of these parameters as ±15% for the rotational spring coefficient and

±10% for the other parameters.

The Schur flutter analysis for the mean and varying structural parameters is

shown in Figure 4.24. On parts (a) and (b) the real and imaginary parts at the

mean structural parameters are shown for all modes. The asymmetric second

and third modes interact, with the third mode going undamped at about 2000m.

The intervals for mode 3 at 5000m, 2400m and 100m are shown in part (c) of

the figure. It is seen in Figure 4.24(c) that the interval grows significantly after

the modal interaction becomes strong (this behaviour was also observed in the

linear results and was explained). Again the mean parameter matrices were used

to drive convergence of the Schur calculations during the optimisation. This was

done on 44 processors of a PC cluster and took around 7 hours. The structural

variation chosen was high in this case and the mean matrices were not sufficient

to drive convergence for some extreme parameter values. If Newton convergence

is not observed then the iterations are stopped, the Schur matrices regenerated

to provide a better Jacobian to drive convergence, and the iterations restarted.

An assessment of the variability over a range of transonic Mach numbers is

shown in Figure 4.24(d). Figure 4.24(a) shows mode 3 to be lightly damped.

Small changes to this mode can lead to large variations of the flutter altitude.

Linear calculations using Nastran showed that mode 1 is the mode to become

undamped, which for most of the envelope is not near the instability boundary

and therefore can withstand structural variations for larger parts of the flight

envelope. The flutter boundary shown in Figure 4.24(d) also allows the flutter

onset Mach number at a fixed altitude to be estimated. The flutter altitude at

M=0.8 for the mean structural parameters is 1500m, and at M=0.91 is 5000m.

From the interval analysis shown in Figure 4.24(d), flutter at M=0.8 can develop

at 5000m within the range of structural variation assumed.

4.9 Closure

Different forward propagation methods, interval, fuzzy and perturbation, have

been applied to linear and CFD-based aeroelastic analysis for a variety of wing

116



Altitude [ft]

R
ea

l

0 20000 40000 60000

-0.1

-0.08

-0.06

-0.04

-0.02

0

Nastran Flutter Point

(a) Mean Eigenvalues - Real Part

Altitude [ft]

Im
ag

0 20000 40000 60000

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) Mean Eigenvalues - Imaginary Part













 

Altitude [ft]

R
ea

l

0 10000 20000

-0.004

-0.002

0

0.002

0.004

0.006

0.008
Series
Mode 3 - Full
Mode 3 - Interval
Mode 3 - MC

(c) Variability on Mode 3 Eigenvalue - Real
Part









Mach

A
lti

tu
de

[ft
]

0.7 0.75 0.8 0.85 0.9 0.95

0

5000

10000

15000

20000

25000

(d) Flutter boundary uncertainty

Figure 4.24: Eigenvalue variation with altitude at M = 0.85 and α = 0o for
the Generic Fighter Case. The lines are generated using the
series approximation and the points are from the full nonlinear
solution.

models. Linear flutter sensitivity analysis was used to select parameters for ran-

domisation that had a significant effect on flutter speed/altitude. These random

parameters were then propagated through the aeroelastic analysis to obtain esti-

mates of intervals, fuzzy membership functions or PDFs for aeroelastic damping

and flutter speed/altitude. The Response Surface Method (RSM) was used to

approximate the derivatives of aeroelastic response of the system with respect to

uncertain structural parameters. Monte Carlo Simulation (MCS) was used for

verification purposes. In both linear and CFD based uncertain flutter analysis,

it was concluded that a combination of response surface method and interval
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analysis is found not only to be computationally efficient but also to provide a

sufficiently good approximation to flutter bounds determined by MCS.

From linear flutter analysis of the Goland wing, nonlinear behaviour was ob-

served in tails of the damping PDFs of the flutter mode. Second-order probabilis-

tic perturbation analysis was found to represent the behaviour at the tails with

acceptable accuracy. Fuzzy analysis also correctly predicted nonlinear behaviour

at the tails. Flutter analysis of the Goland wing showed the instability to be crit-

ically dependent upon certain structural mass and stiffness terms. At velocities

less than the flutter speed, the intervals of uncertainty on damping were found to

be small, but increase at around the flutter speed and beyond to become similar

in extent to the bounds on the frequencies across the entire range of frequencies.

The inclusion of structural damping was found to result in a small but significant

increase in the deterministic flutter speed. Structural damping variability had

virtually no effect upon the flutter intervals. At velocities close to the flutter

speed particular structures were revealed, close to -45◦ and +45◦ lines, in the

aeroelastic-damping and frequency scatter diagrams. Then for a chosen point

where the unstable mode was rendered less damped, the stable mode became

more damped to a similar degree, and vice-versa. In the linear flutter analysis

of a generic fighter plane flutter instability was found to involve the coupling of

wing bending with store pitching behaviour. Flutter bounds were determined

by the propagation of structural stiffness parameters (including the pylon - store

connection) by interval analysis.

The feasibility of the uncertain propagation methods in terms of computa-

tional cost was demonstrated, when using CFD, by exploiting an eigenvalue-based

method, which can be configured for the purpose of computing stability for many

similar structural models. The test cases used in linear analysis, were again con-

sidered for CFD-based analysis. For the Goland wing, 1000 structural samples

were computed in two days on a desktop PC and the interval results in around

3 hours. A rapid increase in the sensitivity of the real part of the critical eigen-

value to the structural variability which was observed in linear flutter analysis

was again observed after the modal interaction started by the CFD aeroelastic

analysis. The interval CFD-based flutter analysis was then applied to the generic
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fighter model and the bounds of flutter altitude were identified.
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Chapter 5

Probabilistic perturbation methods in
stochastic model updating

5.1 Introduction

In the previous chapter, it was shown how structural variability could be propa-

gated through aeroelastic analysis. Many uncertain parameters such as thickness

are measurable and the distribution or range of their variation may be measured.

However, some of structural parameters such as damping and stiffness in the

joints are not measurable. In this case an inverse approach may be used to iden-

tify the variability in these parameters from variability in the measured data such

as natural frequencies and mode shapes. As previously mentioned, these methods

are known as stochastic model updating.

In this chapter a new method, based upon the perturbation procedure, is

developed in two versions for the purpose of stochastic finite element model up-

dating. In the first version of the method, the correlation between the updated

parameters and measured data is omitted. This results in a procedure that re-

quires only the first-order matrix of sensitivities. The second procedure includes

this correlation (after the first iteration) but is a more expensive computation

requiring the second-order sensitivities. It is shown in numerical simulations that

the first method produces results that are equally acceptable to those produced

by the second method. Another method, based upon the minimisation of an ob-

jective function, is also proposed. The objective function consists of two parts: 1-

the Euclidian norm of the difference between mean values of measured data and

analytical outputs vectors, and 2- the Frobenius norm of the difference between
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the covariance matrices of measured data and analytical outputs. This chapter

also includes a discussion of different methods (including mean-centred first-order

perturbation, the asymptotic integral, and Monte-Carlo simulation) used to eval-

uate certain covariance matrices as part of the updating procedure. Issues of

sample size and regularisation of the ill-conditional stochastic model updating

equations are considered. A series of simulated case studies are presented and

then the first version of the perturbation method is applied to the problem of

determining thickness variability in a collection of plates from measured natural

frequencies. Gaussian distributions are used in the simulated and experimental

examples. The method based on minimising an objective function is also verified

numerically and experimentally using multiple sets of plates with randomized

masses. The validity of the updated finite element model is assessed using mea-

sured higher natural frequency distributions beyond the set of distributions used

for updating the first and second statistical moments of the parameters.

5.2 The perturbation method

According to the conventional, deterministic model updating method an estimate

θj+1 may be updated by using a prior estimate θj as

θj+1 = θj + Tj (zm − zj) (5.1)

where zj ∈ ℜnr is the vector of estimated output parameters (e.g. eigenvalues

and eigenvectors), zm ∈ ℜnr is the vector of measured data, θ ∈ ℜp is the vector

of system parameters and Tj ∈ ℜp×nr is a transformation matrix. In order to

take into account the variability in measurements arising from multiple sources,

including manufacturing tolerances in nominally identical test structures as well

as measurement noise, the modal parameters are represented as

zm = ẑm + ∆zm (5.2)

zj = ẑj + ∆zj (5.3)

where the hat denotes mean values and ∆zm, ∆zj ∈ ℜnr are vectors of random

variables. The hyperellipses represented by {ẑm,Vzm} and
{
ẑj,Vzj

}
define the
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space of measurements and predictions, respectively. Correspondingly, the vari-

ability in physical parameters at the jth iteration is defined as

θj = θ̂j + ∆θj (5.4)

and now cast the stochastic model updating problem as,

θ̂j+1 + ∆θj+1 = θ̂j + ∆θj +
(
T̂j + ∆Tj

)
(ẑm + ∆zm − ẑj − ∆zj) (5.5)

where the transformation matrix becomes,

Tj = T̂j + ∆Tj (5.6)

∆Tj =
nr∑

k=1

∂Tj

∂zmk

∆zmk (5.7)

In the above equations, T̂j denotes the transformation matrix at the parameter

means, T̂j = T
(
θ̂j

)
, and ∆zmk denotes the kth element of ∆zm. The parame-

terisation, θ̂j +∆θj, that converges the prediction space, ẑj+1 +∆zj+1, upon the

measurement space, ẑm + ∆zm is sought. Consequently, Tj becomes a function

of measured variability ∆zm according to Eqs. (5.6) and (5.7), since the updated

parameters are determined at each iteration by converging the model predictions

upon the measurements. Application of the perturbation method, by separating

the zeroth-order and first-order terms from Eq. (5.5), leads to,

O
(
∆0
)

: θ̂j+1 = θ̂j + T̂j (ẑm − ẑj) (5.8)

O
(
∆1
)

: ∆θj+1 = ∆θj + T̂j (∆zm − ∆zj) +

((
nr∑

k=1

∂T̂j

∂zmk

∆zmk

)
(ẑm − ẑj)

)

(5.9)

Eq. (5.8) gives the estimate of the parameter means and Eq. (5.9) is used in

determining the parameter covariance matrix. It will be seen that Eqs. (5.8)

and (5.9) are different from the equations developed by Hua et al. [27] using

an apparently similar approach. This difference arises because Hua et al. [27]

expand zm, zj and θj in terms of ∆zmk (just as Tj in Eqs. (5.8) and (5.9) was
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expanded in this work) before applying the perturbation method. Also, Hua et

al. [27] worked in terms of the sensitivity matrix Sj rather than the matrix Tj

used in the present analysis. Both approaches are perfectly acceptable but the

method described in in Ref. [27] does not contain an equivalent to the second

right-hand-side term, T̂j (∆zm − ∆zj). It will be seen in what follows that the

presence of this term leads to significant advantages not available to users of the

method by Hua et al. [27].

Changing the position of variable ∆zmk and the vector (ẑm − ẑj) in Eq. (5.9)

leads to the expression,

∆θj+1 =∆θj +
[

∂T̂j

∂zm1
(ẑm − ẑj)

∂T̂j

∂zm2
(ẑm − ẑj) ...

∂T̂j

∂zmnr
(ẑm − ẑj)

]
∆zm

+ T̂j (∆zm − ∆zj)

(5.10)

or,

∆θj+1 = ∆θj + Aj∆zm + T̂j (∆zm − ∆zj) (5.11)

where the deterministic matrix,

[
∂T̂j

∂zm1
(ẑm − ẑj)

∂T̂j

∂zm2
(ẑm − ẑj) ...

∂T̂j

∂zmnr
(ẑm − ẑj)

]

is now replaced by the matrix Aj. The matrix
∂T̂j

∂zmk
=

∂Tj

∂zmk
|zmk=ẑmk

is determin-

istic since it is evaluated at the means of measured system responses (zmk = ẑmk).

It now becomes apparent, from Eq. (5.11) that the parameter covariance ma-

trix can be found at j + 1th iteration as,

Vθj+1
=

Cov
(
∆θj + Aj∆zm + T̂j (∆zm − ∆zj) , ∆θj + Aj∆zm + T̂j (∆zm − ∆zj)

)
=

Vθj
+ Cov (∆θj, ∆zm)AT

j + Cov (∆θj, ∆zm) T̂T
j − Cov (∆θj, ∆zj) T̂

T
j

+
(
Cov (∆θj, ∆zm)AT

j

)T
+ AjVzmAT

j + AjVzmT̂T
j − AjCov (∆zm, ∆zj) T̂

T
j

+
(
Cov (∆θj, ∆zm) T̂T

j

)T

+
(
AjVzmT̂T

j

)T

+
(
T̂jVzmT̂T

j

)T

− T̂jCov (∆zm, ∆zj) T̂
T
j −

(
Cov (∆θj, ∆zj) T̂

T
j

)T

−
(
AjCov (∆zm, ∆zj) T̂

T
j

)T

−
(
T̂jCov (∆zm, ∆zj) T̂

T
j

)T

+ T̂jVzj
T̂T

j

(5.12)
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A common assumption, that originated with the 1974 paper of Collins et

al. [26], is to omit the correlation between the measurement, zm, and the system

parameters, θj. Friswell [93] corrected this omission by including the correlation

after the first iteration. In this work the effect of the omitted correlation on the

converged prediction space using the formulation described above is considered.

When the measurements and parameters are assumed to be uncorrelated, then

Cov (∆zm, ∆θ) = 0 and also Cov (∆zm, ∆zj) = 0. It will be shown later that

the matrix Aj vanishes under the same assumption. Consequently, Eq. (5.12)

simplifies to give,

Vθj+1
= Vθj

− Cov (∆θj, ∆zj) T̂
T
j

+ T̂jVzmT̂T
j − T̂jCov (∆zj, ∆θj) + T̂jVzj

T̂T
j

(5.13)

Eq. (5.13) does not include the second-order sensitivity matrix. This leads

to very considerable reduction in computational effort, of great practical value

in engineering applications if the Cov (∆zm, ∆θ) = 0 assumption is shown to

be viable. Under this assumption model updating is carried out using the two

recursive Eqs. (5.8) and (5.13). The transformation matrix may be expressed as

the weighted pseudo inverse, which is analogous to the transformation used in

deterministic model updating [3, 4]. To the zeroth order of smallness the same

equation applies,

T̂j =
(
ŜT

j W1Ŝj + W2

)−1

ŜT
j W1 (5.14)

In Eq. (5.14), Ŝj denotes the sensitivity matrix at the parameter means,

Ŝj = Sj

(
θ̂
)
, and the choice of W1 = I and W2 = 0 results in the pseudo

inverse. In the case of ill-conditioned model-updating equations, the minimum-

norm regularised solution is obtained as described in Section 3.3 in Chapter 3.

The above procedure may be implemented in the following steps:

1. Determine the mean vector and covariance matrix of the measured data

(ẑm,Vzm) using Eq. (2.20) and (2.21) and set j = 0..

2. Initialise the means and standard deviations of the system parameters.
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3. Determine the mean value of the analytical output parameters, ẑj , and

the covariance matrices, Cov (∆θj, ∆zj) and Vzj
, using a forward propaga-

tion method such as perturbation, the asymptotic integral or Monte-Carlo

simulation.

4. Calculate the sensitivity matrix Sj at the current mean values of system

parameters, choose suitable weighting matrices for regularisation and de-

termine the transformation matrix T̂j according to Eq. (5.14).

5. Update the mean values and covariance matrix of the system parameters

using Eqs. (5.8) and (5.13), respectively.

6. If both the means and standard deviations of the parameters have converged

go to step (7); otherwise set j = j + 1, go to step (3).

7. Stop.

If the correlation between the parameters and measurements is included, then

Cov (∆θj, ∆zm) and matrix Aj must be updated as follows,

Cov (∆θj+1, ∆zm) = Cov
(
∆θj + Aj∆zm + T̂j (∆zm − ∆zj) , ∆zm

)

= Cov (∆θj, ∆zm) +
(
Aj + T̂j

)
Vzm − T̂jCov (∆zj, ∆zm)

(5.15)

The matrix Aj+1 is determined from

Aj+1 =
[

∂T̂j+1

∂zm1
(ẑm − ẑj+1)

∂T̂j+1

∂zm2
(ẑm − ẑj+1) ...

∂T̂j+1

∂zmnr
(ẑm − ẑj+1)

]
(5.16)

where

∂T̂j+1

∂zmk

=
∂Tj+1

∂zmk

|zmk=ẑmk
=

p∑

i=1

∂Tj+1

∂θ̂(j+1),i

∂θ̂(j+1),i

∂zmk

|zmk=ẑmk
; k = 1, 2, ..., n

(5.17)
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∂T̂j+1

∂θ̂(j+1),i

=
(
ŜT

j+1W1Ŝj+1 + W2

)−1 ∂ŜT
j+1

∂θ(j+1),i

W1

−
(
ŜT

j+1W1Ŝj+1 + W2

)−1
(

∂ŜT
j+1

∂θ(j+1),i

W1Ŝj+1 + ŜT
j+1W1

∂Ŝj+1

∂θ(j+1),i

)

×
(
ŜT

j+1W1Ŝj+1 + W2

)−1

ST
j+1W1

(5.18)

and,

∂θ̂j+1

∂zmk

=
∂θ̂j

∂zmk

+ T̂j

(
∂ẑm

∂zmk

− ∂ẑj

∂zmk

)
+

∂T̂j

∂zmk

(ẑm − ẑj) (5.19)

The terms of (∂ẑm/∂zmk) = (∂zm/∂zmk) |zmk=ẑmk
are given by

∂ẑmj

∂zmk

=

{
1 if j = k
0 if j 6= k

(5.20)

and from the chain rule,

∂ẑj

∂zmk

= Ŝj
∂θ̂j

∂zmk

(5.21)

Hence, a system of four recursive Eqs. (5.8), (5.12), (5.15) and (5.19) are

required to determine the means and co-variance matrix of the parameters.

By the analysis above it is seen that the parameter covariances Vθj+1
are

expressed in terms of the measured output covariance matrix Vzm together with

the covariances Cov (∆θj, ∆zj), Vzj
and in the case of Eq. (5.15) in terms of

Cov (∆θj, ∆zm) which is updated using Eq. (5.15). The derivatives ∂T̂j/∂zmk,

∂ẑj/∂zmk and matrix Aj are found by using Eqs. (5.17), (5.21) and (5.16),

respectively, and

Cov (∆zj, ∆zm) = ŜjCov (∆θj, ∆zm) (5.22)

This procedure may be implemented according the following steps:

1. Determine the mean vector and covariance matrix of the measured data

(ẑm,Vzm) using Eq. (2.20) and (2.21) and set j = 0.

2. Initialise the means and standard deviations of the system parameters.
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3. Initialise Cov (∆θj, ∆zm) and ∂θ̂j/∂zmk to zero, consequently matrix Aj

and Cov (∆zj, ∆zm) are zero (Eqs. (5.16), (5.17) and (5.22).

4. Determine the mean value of the analytical output parameters, ẑj, and the

covariance matrices, Cov (∆θj, ∆zj) and Vzj
, using a forward propagation

method such as perturbation, the asymptotic integral or Monte-Carlo sim-

ulation.

5. Calculate the sensitivity matrix Sj at the current mean value of system pa-

rameters and choose suitable weighting matrices for regularisation in order

to compute the transformation matrix introduced in Eq. (5.14).

6. Update the mean values and covariance matrix of the system parameters,

Cov (∆θj, ∆zm) and ∂θ̂j/∂zmk using Eqs. (5.8), (5.12), (5.15), and (5.19),

respectively.

7. If both the mean values of the parameters and their standard deviations

have converged go to step (8); otherwise set j = j + 1, go to step (4).

8. Stop.

5.3 Minimisation of an objective function

The second method, much simpler in concept, is based upon the minimisation

of an objective function. As mentioned in the previous section, the hyperellipses

represented by (ẑm,Vzm) and (ẑj,Vzj
) define the space of measurements and

predictions respectively. In order to minimise the distance and also the size

difference in between these two spaces, an objective function is proposed in this

work as follows,

(ẑm − ẑj)
T W1 (ẑm − ẑj) + w2

∥∥Vzm − Vzj

∥∥
F

(5.23)

where ‖•‖F is Frobenius norm, ẑm is estimated mean values of test results, Vzm

is the covariance matrix of measured data, ẑj and Vzj
are the estimated mean

values and the covariance matrix of predictions from mathematical model at jth
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iteration respectively. ẑj and Vzj
may be found by using different propagation

method. Therefore the stochastic model updating problem can be expressed as,

min
θ̂,Vθ

(
(ẑm − ẑj)

T W1 (ẑm − ẑj) + w2

∥∥Vzm − Vzj

∥∥
F

)
(5.24)

subject to θi ≥ 0 and Vθii
≥ 0, ∀i. The weighting matrix, W1 , and weighting

coefficient, w2, may be chosen to make two terms in objective function as the

same order. This method is not concerned with any assumption of statistical

independence between the updating parameters and measurements.

5.4 Case studies on the evaluation of covariance

matrices

As explained in the previous section, the proposed methods require evaluation of

the following vector and matrices:

ẑ

Vz

Cov (θ, z)

(5.25)

where the subscript j and prefix ∆ on ∆θj and ∆zj is omitted for reasons of

simplicity. The MCS can be used for evaluation of the above vector and matrices

from the scatter of responses and the system parameters that provide the input

to the simulation. Although the MCS is the most accurate method but is compu-

tationally expensive and can be extremely time consuming. Two other methods

namely mean-centred perturbation and asymptotic integral which are introduced

in Chapter (2) (Sections (2.3.2) and (2.3.3)) are also used for evaluation of the

vector and matrices in Eq. (5.25) in this section.

Two case studies are considered, a 3 degree-of-freedom mass-spring system

and a finite-element beam model with three elements having uncertain elastic

moduli. In both cases the covariance matrices obtained by mean-centred first

order perturbation and the asymptotic integral are compared to the covariance

matrix obtained from Monte-Carlo simulation.
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5.4.1 Case study 1: 3 Degree-of-freedom mass spring sys-
tem

The model shown in Figure 2.13 is again considered in this section. It is assumed

that the model has deterministic parameters,

mi = 1.0kg (i = 1, 2, 3) , ki = 1.0N/m (i = 3, 4) , k6 = 3N/m (5.26)

and also uncertain random parameters,

θ = [k1, k2, k5]
T ∈ N3

(
θ̂,Vθ

)
(5.27)

where

θ̂ =
[

2 2 2
]T

and Vθ = diag
[

0.09 0.09 0.09
]

(5.28)

and N3 denotes the multivariate normal (Gaussian) distribution in three random

variables.

It is assumed that the vector of output data z contains three eigenvalues of

the system. The covariance matrix Vz being symmetric has six independent

elements. The covariance matrix Cov (θ, z) has nine elements. Figure 5.1 shows

the errors obtained by using mean-centred first-order propagation and asymptotic

approximation with respect to the results obtained by Monte-Carlo simulation.

Generally, the errors are smaller when using the asymptotic integral.

5.4.2 Case study 2: Finite-element model of a cantilever
beam

The beam, with a rectangular cross-section 25mm × 5.5mm and a length of 0.5

m, is modelled using 10 EulerBernoulli beam elements as shown in Figure 5.2.

The elastic moduli of elements 3, 7 and 10 are considered as random variables,

θ =
[

E1 E7 E10

]T ∈ N3

(
θ̂,Vθ

)
(5.29)

where
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Figure 5.1: Mass spring system, estimation of Vz and Cov (θ, z).

Figure 5.2: Case study 2: cantilever beam.

θ̂ =
[

2.1 × 1011 2.1 × 1011 2.1 × 1011
]T

Vθ = diag
[

1.0 × 1020 1.0 × 1020 1.0 × 1020
] (5.30)

It is assumed that the vector of output data z contains the first three eigenval-

ues of the system. The errors in the estimated covariance matrices, with respect

to Monte-Carlo simulation, are shown in Figure 5.3. The errors in elements (3,1)

and (3,2) of Cov (θ, z) appear larger than the others because the values of these

terms are three orders of smallness less than the values of the other terms.
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Figure 5.3: Cantilever beam, estimation of Vz and Cov (θ, z).

5.5 Numerical case studies on the identification

of uncertainty

Two numerical case studies are used to illustrate the working of the perturbation

methods, namely the 3 degree-offreedom system described in Section (5.4.1) and

also a finite-element pin-jointed truss structure.

5.5.1 Case study 1: 3 Degree-of-freedom mass spring sys-
tem

The three methods that are developed in Sections (5.2) and (5.3) are applied to

the simple 3 DOF mass-spring system that is shown in Figure 2.13. The deter-

ministic, nominal and initial estimates of parameters are assumed to be the same

as Eqs. (3.57), (3.58) and (3.59) respectively. The measured data are obtained

by using Monte-Carlo simulation with 10,000 samples (similar to Section (3.5)).
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Results obtained by the perturbation methods W1 = I, W2 = 0 and the method

of minimisation of an objective function are shown in Table 5.1. The numbers,

(1)-(3) in the table denote the following methods:

1. The proposed method in which the correlation between measured data and

system parameters is omitted (Eqs. (5.8) and (5.13)).

2. The proposed method in which the correlation between measured data and

system parameters is included after the first iteration (Eqs. (5.8), (5.12),

(5.15) and (5.19)).

3. Second proposed method (minimising Eq. (5.24)). The optimization prob-

lem is solved using the Matlab Optimization Toolbox.

Table 5.1: Updating results obtained by various methods (10,000 samples)

Parameters Initial error % Error (1)% Error (2)% Error (3)%

k1 100.00 1.22 1.01 0.30

k2 100.00 -2.57 -2.12 -4.11

k5 100.00 0.63 0.51 1.72

σk1 50.00 2.00 2.59 1.52

σk2 50.00 0.97 1.81 -0.46

σk5 50.00 -0.70 0.17 -0.17

Firstly, it is seen that the results obtained by method (1), when the correlation

of system parameters with the measured data is omitted, are at least as good

as when this correlation is included. Method (2) requires the evaluation of the

second-order sensitivity, which is an expensive computation and not needed when

using method (1). In the similar example which is used in Section (3.5), it

is seen in Table (3.1) that the perturbation method developed by Hua et al.

[27] is also capable of the estimation of the mean and standard deviation of

uncertain parameters accurately. However, this method needs the evaluation of

the second-order sensitivity as does the method (2). It is seen in Table (3.1) that

the method (3) is also capable of producing accurate results. The method (3)

is originally proposed in this work. Convergence of the parameter estimates by

133



each of the different methods is shown in Figures 5.4 to 5.6. Figure 5.7 shows

the convergence of the predictions upon experimental data in the space of the

first three natural frequencies using method (1). As mentioned in Section (3.5),

ten thousand samples are clearly enough to obtain an accurate estimate of the

parameter variability.
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Figure 5.4: Convergence of parameter estimates by method (1).
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Figure 5.5: Convergence of parameter estimates by method (2).

Figure 5.8 shows the convergence of the parameter standard deviations by

method (1) as the number of samples is increased from 10 to 1000. In each case

10 runs of the updating algorithm were carried out to enable a range of solution

errors to be determined. A different set of samples was used in each of the 10

runs. When only 10 samples were used errors were found in the range of 24-54%,

134



while in the case of 1000 samples the errors ranged from 3% to 7%.
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Figure 5.6: Convergence of parameter estimates by method (3).

Table 5.2 shows the converged results and percentage errors of the parameter

statistics using only 10 samples with methods (1), (2) and (3). The 10 samples

were different in each of the three cases, which are shown to converge to similar

results. Figures 5.9 and 5.10 show the convergence of scatter of predictions upon

the scatter of simulated measurements in the planes of the first and second, and

second and third natural frequencies, respectively. Ten measurement samples and

10,000 predictions from the estimated parameter distributions by method (1) are

shown.

Table 5.2: Updating results obtained by various methods (10 samples)

Parameters Initial error % Error (1)% Error (2)% Error (3)%

k1 100.00 4.53 5.42 -8.69

k2 100.00 8.25 1.52 -7.78

k5 100.00 4.21 0.69 6.75

σk1 50.00 20.03 12.60 5.13

σk2 50.00 14.35 19.33 31.50

σk5 50.00 17.65 13.66 16.92

The effect of using different propagation methods (Monte-Carlo simulation,

mean-centred first-order propagation, or the asymptotic integral) is considered in

Table 5.3 and Figures 5.11 to 5.13. It is seen that in this case specifically there is
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Figure 5.7: Initial and updated scatter of predicted and measured data:
identification using method (1) with 10,000 samples.
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Figure 5.8: Error norm for parameter standard deviations using different
sample sizes each with 10 runs of the algorithm.

little advantage gained by using the more computationally demanding approaches

(Monte-Carlo simulation, and the asymptotic integral) over the mean-centred

first-order perturbation technique.
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Figure 5.9: Initial and updated scatter of predicted data (10,000 points)
based upon 10 measurement samples: identification by method
(1).
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Figure 5.10: Initial and updated scatter of predicted data (10,000 points)
based upon 10 measurement samples: identification by
method (1).

Table 5.3: Updating results obtained by various methods (10 samples)

Parameters Initial error % Monte Carlo % Perturbation % Asymptotic%

k1 100.00 5.03 -7.51 4.79

k2 100.00 -5.93 -13.50 -2.00

k5 100.00 7.26 -15.63 -2.36

σk1 50.00 5.94 10.36 -25.72

σk2 50.00 -11.25 11.68 -1.22

σk5 50.00 10.23 -15.42 9.11

5.5.2 Case study 2: Finite-element model of a pin-jointed
truss

The finite-element model consisting of 20 planar rod elements, each having 2

degree-of-freedom at every node, is shown in Figure 5.14. The elastic modulus,
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Figure 5.11: Convergence of parameter estimates by method (1) using
Monte-Carlo simulation.
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Figure 5.12: Convergence of parameter estimates by method (1) using
mean-centred first-order perturbation.

mass density and cross sectional area were assumed to take the values,

E = 70Gpa, ρ = 2700kg/m3, A = 0.03m2 (5.31)

The diagonal elements in the finite-element model were represented by generic

rod elements [68], having the generic stiffness matrices given by

K = ki

[
1 −1
−1 1

]
(5.32)

where ki is generic parameter for the ith diagonal element. This parameter was a

Gaussian random variable defined by
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Figure 5.13: Convergence of parameter estimates by method (1) using the
asymptotic integral.

k̂i =
EiAi

Li

= 1.485 × 108, COVi =
σki

k̂i

= 0.135, i = 1, ..., 5 (5.33)

and the initial uncertain generic parameters were set as

k̂
(0)
1 = 0.85 × 1.485 × 108, k̂

(0)
2 = 1.05 × 1.485 × 108,

k̂
(0)
3 = 0.95 × 1.485 × 108, k̂

(0)
4 = 0.90 × 1.485 × 108,

k̂
(0)
5 = 1.10 × 1.485 × 108, COV(0) (ki) = 2 × 0.135, i = 1, ..., 5

(5.34)

where COV denotes the estimated coefficient of variation (ratio of the standard

deviation to the mean). The measurements consisted of the first four natural

frequencies and four vertical displacements at nodes 5, 6, 11 and 12 for each of the

first four modes, thereby generating 20 equations for updating five randomised

parameters. Firstly, it was assumed that these equations do not contain any

measurement noise. As expected, method (1) is capable of regenerating the exact

simulated values of mean and COV for each of the randomised parameters as

shown in Figure 5.15. The weighting matrices were W1 = I and W2 = 0.

Method (1) was again applied, with and without regularisation, when 1%

measurement noise with zero-mean Gaussian distribution was added to the mea-

sured data. Considerable errors were found in the estimated distribution when

W1 = I and W2 = 0 as shown in Figure 5.16. Regularisation was then applied
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Figure 5.14: FE model of pin-jointed truss.
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Figure 5.15: Identified parameters-zero noise.

with the regularisation parameter rg = 0.001 determined from the L-curve in

Figure 5.17. As can be seen from Figure 5.18, the estimated distribution was

greatly improved by the regularisation. The standard deviations were affected

more by the presence of the noise than were the estimated means.
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Figure 5.16: Identified parameters with 1% measurement noise and W1 =
I and W2 = 0.
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Figure 5.18: Identified parameters with 1% measurement noise and W1 =
I and W2 = rgI.
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5.6 Experimental case studies:

5.6.1 Case study 1: Aluminium plates with random thick-
nesses

Ten aluminium plates were prepared so that a contrived distribution of thick-

nesses, close to Gaussian, was obtained by machining. Care was taken to try

to obtain a constant thickness for each plate. This was not achieved perfectly

and the thickness variations were measured using a long-jaw micrometer at 4×14

points as shown in Figures 5.19 to 5.28. The distribution of nominal thicknesses

is shown in Figure 5.29. The mean value of the thicknesses was 3.975mm with

a standard deviation of 0.163mm. In the experimental set up (shown in Fig-

ure 5.30) free boundary conditions were used to avoid the introduction of other

uncertainties due to clamping or pinning at the edges of the plates. All 10 plates

had the same overall dimensions, length 0.4 m and width 0.1 m. A hammer test

was carried out using four uniaxial fixed accelerometers. Figure 5.31 shows the

excitation point, marked ‘F’, and the positions of four accelerometers, marked

‘A’, ‘B’, ‘C’ and ‘D’. The mass of each accelerometer was 2 grams represented

by lumped masses in the finite-element model. The first 10 measured natural

frequencies of all 10 plates are given in Table 5.4 and Table 5.5.

Figure 5.19: Measured thickness of plate 1.

The thickness of the plates was parameterised in four regions as shown in

Figure 5.32 and a finite-element model was constructed consisting of 40×10 four-

noded plate elements. The first six measured natural frequencies were used for

stochastic model updating by method (1). A regularisation parameter, rg = 110,

was found from an L-curve. Figure 5.33 shows convergence of the mean values and
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Figure 5.20: Measured thickness of plate 2.

Figure 5.21: Measured thickness of plate 3.

Figure 5.22: Measured thickness of plate 4.

Figure 5.23: Measured thickness of plate 5.
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Figure 5.24: Measured thickness of plate 6.

Figure 5.25: Measured thickness of plate 7.

Figure 5.26: Measured thickness of plate 8.

Figure 5.27: Measured thickness of plate 9.
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Figure 5.28: Measured thickness of plate 10.

Table 5.4: The first five measured natural frequencies (Hz) for the ten
plates

Mode Number

Plate number 1 (Hz) 2 (Hz) 3 (Hz) 4 (Hz) 5 (Hz)

1 119.774 284.283 331.970 589.404 656.359

2 121.615 291.922 337.186 605.160 665.854

3 123.156 291.440 340.184 602.603 673.357

4 128.048 298.163 355.210 620.139 700.798

5 128.533 303.809 357.110 630.809 704.505

6 128.596 301.010 361.488 635.533 713.207

7 129.796 311.726 361.114 646.765 712.792

8 135.058 315.393 374.368 653.584 738.395

9 134.478 312.215 374.406 649.130 737.256

10 138.141 321.812 382.932 667.203 755.189

Mean 128.720 303.177 357.597 630.033 705.771

Standard deviation 6.011 12.032 17.048 25.235 32.854
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COV for the four parameters. The initial mean and standard deviation of all four

parameters were taken to be, t̂i = 4 mm, σti = 0.8 mm, i = 1, ..., 4. The initial

mean value was chosen to be close to the true mean while the initial standard

deviation was deliberately overestimated to represent a realistic stochastic model

updating problem where little is known other than an approximation to the mean

value.

Table 5.5: The 6th to 10th measured natural frequencies (Hz) for the ten
plates

Mode Number

Plate number 6 (Hz) 7 (Hz) 8 (Hz) 9 (Hz) 10 (Hz)

1 932.576 1091.603 1343.097 1628.879 1825.215

2 953.666 1106.861 1372.890 1650.395 1860.225

3 955.515 1119.445 1376.298 1669.899 1868.071

4 980.403 1165.177 1414.181 1736.714 1924.260

5 995.188 1169.660 1433.020 1743.750 1946.155

6 999.248 1184.455 1440.134 1765.415 1957.581

7 1019.052 1184.608 1467.366 1766.361 1987.556

8 1031.837 1225.375 1487.512 1825.602 2021.640

9 1023.229 1224.420 1479.268 1824.121 2013.354

10 1053.974 1253.610 1519.011 1866.665 2031.377

Mean 994.469 1172.521 1433.278 1747.780 1943.543

Standard deviation 38.877 53.840 56.771 79.232 72.908

The updated and measured means and standard deviations of the plate thick-

nesses are given in Table 5.6. These results are not in exact agreement but do

show a considerable improvement in the thickness distributions when updated.

It can be seen that the initial values of the means were chosen to be extremely

close to the measured mean values. Small changes are observed in Table 5.6 after

updating, away from the measured values obtained from averaged micrometer

measurements at discrete points. The convergence of the standard deviations

(shown in Table 5.6) from a considerable initial error is a much more significant

result, demonstrating very clearly how well the method performs in converging

the distribution of updating parameters upon the collection of measured thickness

values. Of course, the measured standard deviations are likely to be less accurate
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Figure 5.29: Distribution of plate thicknesses.

than the measured means.

Figure 5.30: Experimental set up.

The means and standard deviations of the first six measured natural frequen-

cies were used in updating, whereas 10 modes were measured in total. It is seen

from Tables 5.7 and 5.8 that not only are the first six natural frequency distribu-

tions improved by updating but also the 7th to 10th natural frequency predictions
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Figure 5.31: Arrangement of accelerometers (A, B, C, D) and excitation
point (F).
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Figure 5.32: Parameterisation into four regions of plate thickness.
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Figure 5.33: Convergence of parameter estimates.

(mean and standard deviations) are equally improved. This provides a good

demonstration of the validity of the updated statistical model.

5.6.2 Case study 2: Aluminum plates with random masses

Thirteen sets of masses having a distribution close to Gaussian were prepared.

The experimental set up is shown in Figure 5.34. Each set included eight equal

masses. The 11.5 gram set, for example, included eight masses all of 11.5 grams.

The distribution of nominal masses is shown in Figure 5.35. The mean value of
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Table 5.6: Measured, initial and updated mean and standard deviation of
parameters

Mode Number

Measured Initial Updated Initial FE Updated FE

parameters parameters parameters % error % error

t̂1 (mm) 3.978 4.000 4.140 0.553 4.072

σt1 (mm) 0.159 0.800 0.129 403.145 18.868

t̂2 (mm) 3.969 4.000 4.002 0.781 0.831

σt2 (mm) 0.161 0.800 0.204 396.894 26.708

t̂3 (mm) 3.982 4.000 3.986 0.452 0.100

σt3 (mm) 0.164 0.800 0.166 387.805 1.219

t̂4 (mm) 3.981 4.000 3.820 0.477 4.044

σt4 (mm) 0.167 0.800 0.206 379.042 23.353

Table 5.7: Measured, initial and updated mean natural frequencies

Mode Number

Measured Initial FE Updated FE Initial FE Updated FE

(Hz) (Hz) (Hz) % error % error

Mode (1) 128.720 128.321 128.111 0.310 0.473

Mode (2) 303.177 307.147 306.339 1.310 1.043

Mode (3) 357.597 356.645 355.185 0.266 0.675

Mode (4) 630.033 637.433 633.188 1.175 0.501

Mode (5) 705.771 705.467 701.777 0.043 0.566

Mode (6) 994.469 1002.229 996.865 0.780 0.241

Mode (7) 1172.521 1173.395 1169.087 0.075 0.293

Mode (8) 1433.278 1444.018 1435.848 0.750 0.179

Mode (9) 1747.780 1748.977 1743.491 0.069 0.245

Mode (10) 1943.543 1952.882 1935.851 0.481 0.396

the masses was 10.063 grams with a standard deviation of 2.798 grams. Each

set was glued to the surface of a plate and a hammer test was carried. The

experimental set up and the positions of accelerometers and excitation points

were the same as previous case study. The positions of added masses on the plate

are shown in Figure 5.36. Each of added mass and mass of the accelerometer

were represented by lumped masses in the finite element model. The first six

natural frequencies of all 13 sets are given in Table 5.9. The second proposed

method (method 3 in Section 5.4.1) was used in this case. As mentioned earlier,
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Table 5.8: Measured, initial and updated standard deviation natural fre-
quencies

Mode Number

Measured Initial FE Updated FE Initial FE Updated FE

(Hz) (Hz) (Hz) % error % error

Mode (1) 6.011 20.943 5.750 248.411 4.342

Mode (2) 12.032 47.385 13.777 293.825 14.503

Mode (3) 17.048 39.231 15.180 130.121 10.957

Mode (4) 25.235 65.655 26.797 160.175 6.190

Mode (5) 32.854 71.379 28.644 117.261 12.814

Mode (6) 38.877 108.445 40.166 178.944 3.316

Mode (7) 53.840 118.628 46.536 120.334 13.566

Mode (8) 56.771 148.418 59.571 161.434 4.932

Mode (9) 79.232 177.244 70.452 123.702 11.081

Mode (10) 72.908 202.753 83.427 178.094 14.428

this method is an optimization problem and various optimization procedures may

be used. A genetic algorithm from the MATLAB optimisation toolbox was used.

Figure 5.34: Experimental setup.

The first three measured natural frequencies were used for stochastic model

updating by method 3 which is introduced in Section 5.4.1. There is no need to
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Figure 5.35: Distribution of masses.
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Figure 5.36: The positions of the masses on the plate.

choose initial values for mean and standard deviation of parameters in the GA

algorithm but they were subjected to bounded constraints indicated in Table 5.10.

The identified and measured means and standard deviations of the masses

are given in Table 5.10. As it can be seen from the table, the errors in identified

mean and standard deviation of parameters with respect to measurements are

reasonable. Obviously the identified standard deviations are less accurate than

the identified means.

The means and standard deviations of the first three measured natural fre-

quencies were used in the optimisation, whereas six modes were measured in
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Table 5.9: The first six measured natural frequencies (Hz) for a plate with
13 different sets of 8 masses attached

Mass (grams) Mode (1) Mode (2) Mode (3) Mode (4) Mode (5) Mode (6)

5.025 121.080 286.799 333.896 595.693 688.093 915.365

6.588 119.002 280.460 327.573 585.042 684.618 894.911

7.538 117.817 277.315 323.931 579.240 681.073 882.836

8.55 116.385 272.994 319.427 570.238 674.886 864.382

9.088 115.659 271.367 317.253 566.972 672.319 858.409

9.563 115.071 270.059 315.601 564.025 670.297 851.946

10.075 114.413 267.771 313.152 558.999 663.869 844.604

10.613 113.766 266.462 311.447 555.173 660.905 833.890

11.113 113.021 264.995 309.576 552.080 662.606 828.573

11.5 112.802 264.543 308.426 552.121 662.895 836.105

12.575 111.514 261.684 304.884 544.291 655.675 813.238

13.575 110.809 259.442 302.668 541.900 660.888 808.048

15.013 108.870 254.557 296.379 528.127 639.655 777.946

Mean 114.632 269.111 314.170 561.069 667.522 846.943

Std 3.409 8.837 10.412 18.631 13.063 37.385

Table 5.10: Measured, identified mean and standard deviation of parame-
ter (LB: Lower Bound, UB: Upper Bound).

Measured [LB UB] Identified Error

parameters parameters %

m̂ (gram) 10.063 [0 20] 10.401 3.359

σm (gram) 2.798 [0 5] 3.278 17.155
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Table 5.11: Measured and identified mean natural frequencies

Measured Identified FE Identified FE

(Hz) (Hz) error %

Mode (1) 114.632 113.334 -1.132

Mode (2) 269.111 270.413 0.484

Mode (3) 314.170 310.460 -1.181

Mode (4) 561.069 568.016 1.238

Mode (5) 667.522 662.697 -0.723

Mode (6) 846.943 858.850 1.406

Table 5.12: Measured and identified standard deviation of natural frequen-
cies

Measured Identified FE Identified FE

(Hz) (Hz) error %

Mode (1) 3.409 3.415 0.176

Mode (2) 8.837 8.568 -3.044

Mode (3) 10.412 10.562 1.441

Mode (4) 18.631 16.182 -13.145

Mode (5) 13.063 6.949 -46.804

Mode (6) 37.385 33.486 -10.429

total. It is seen from Tables 5.11 and 5.12 that, apart from the 46.8% error in the

identified standard deviation of the frequency of mode 5, identified and measured

means and standard deviations of natural frequencies achieved by using method

(3) are in good agreement. The results show that the updated statistical model

is valid.

5.7 Closure

In this chapter, two versions of a perturbation approach to the stochastic model

updating problem, with test-structure variability, are developed. Distributions of

predicted modal responses (natural frequencies and mode shapes) are converged

upon measured distributions, resulting in estimates of the first two statistical mo-

ments of the randomised updating parameters. Regularisation may be applied

when the stochastic model updating equations are ill-conditioned. A computa-
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tionally efficient solution, without any significant loss of accuracy, is obtained

when the correlation between the randomised updating parameters and test data

is omitted. An alternative method based on minimising an objective function

to the stochastic model updating problem, is also presented. The methods are

demonstrated in numerical simulations and also in experiments carried out on a

collection of rectangular plates with variable thickness and also variable masses

on a flat plate.

From the numerical simulation results, it is found that the perturbation

method is quite sensitive to the sample size of the measured data and in some

cases the estimation of the distributions of updating parameters are very poor

when there are few samples of measured data. This is due to the fact that the

distributions of updating parameters are represented by probabilistic model and

therefore the method work well in the presence of large volumes of test data. How-

ever, having large volumes of test data available is unlikely in practice. Therefore,

interval model is deemed to work better with these restrictions. This idea leads

to the definition of interval model updating problem which will be discussed in

the following chapter.
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Chapter 6

Interval model updating

6.1 Introduction

Stochastic model updating methods, presented in the previous chapter make use

of probabilistic models as do Hua’s method [27] and Fonseca’s approach [24]. The

use of the probabilistic models usually requires large volumes of test data with

consequent high costs. These methods also assume Gaussian distributions for the

variability of uncertain parameters which is not always true. Probably a better

approach, given that large quantities of test data will not be produced, would be

to use an interval model for the uncertain parameters.

In this chapter, the problem of interval model updating in the presence of un-

certain measured data is defined and solutions are made available for two cases.

In the first case, the parameter vertex solution is used but is found to be valid only

for particular parameterisation of the finite element model and particular output

data i.e. when (i) the overall mass and stiffness matrices are linear functions

of the updating parameters, (ii) the overall mass and stiffness matrices can be

decomposed into non-negative-definite substructural mass and stiffness matrices

and (iii) the output data are the eigenvalues of the dynamic system. Two itera-

tive updating equations are then used in the first case to update the bounds of an

initial hypercube of updating parameters. However, it is shown that the parame-

ter vertex solution is not available generally when, for example, the output data

include the eigenvectors of the structural dynamic system and the system matri-

ces are non-linear functions of the updating parameters. In order to overcome

the limitations of the parameter vertex solution, a general solution based on the

use of a meta-model is considered. The meta-model acts as a surrogate for the

155



full finite-element /mathematical model. Thus, a region of input data is mapped

to a region of output data with parameters obtained by regression analysis. The

Kriging predictor is chosen as the meta-model in this work and is shown to be

capable of predicting the region of input and output parameter variations with

very good accuracy. The interval model updating approach is formulated based

on the Kriging predictor and an iterative procedure is developed. The method is

validated numerically using a three degree of freedom mass-spring system with

both well-separated and close modes. Finally the method is applied to a frame

structure with uncertain internal beams locations. The frame consists of two in-

ternal beams, each of which can be located at 3 different positions. Therefore nine

sets of measured data corresponding to each different combination of the beams

positions are available. Detailed finite element models of the frame structure with

different locations of the beams and a Kriging model describing the relationship

between the natural frequencies and updating parameters (beams positions) are

available. The procedure of interval model updating, incorporating the Kriging

model, is used to identify the locations of the beams for each case and to up-

date the bounds of beams positions based on measured data. The interval model

updating results for the frame structure are then presented.

6.2 Problem Definition

Consider the deterministic model updating equation introduced in Eq. (3.2). In

the presence of irreducible uncertain measured data modelled as a vector of inter-

vals z̃m, Eq. (3.2) will be changed to the following form which describe an interval

linear system of equations

z̃m − z̃j = S̃j

(
θ̃j+1 − θ̃j

)
(6.1)

where •̃ represents uncertain vector/matrix terms which modelled as intervals.

Seif et al. [138] provide a closed form solution of Eq. (6.1) when the sensitivity

matrix is square and uncertainty is present either in the outputs zm or sensitivity

matrix S, but not together at the same time. However, in interval model up-

dating Eq. (6.1) is either overdetermined or underdetermined with a non-square

156



sensitivity matrix. The predictions zj, the system parameters θ and the sensi-

tivity matrix Sj are all interval vectors/matrices if the uncertain measured data

zm is an interval vector. In this situation, a closed-form solution generally does

not exist. The solution of Eq. (6.1) is given in two cases in the following section.

In the first case, the relationship between the inputs and outputs are monotonic,

hence parameter vertex solution is applicable. In most cases, however, this desir-

able monotonic behaviour is not necessarily present and then there is a need to

consider other solutions based on optimisation procedures.

6.3 Solution Methods

6.3.1 Case 1: Parameter vertex solution

In this case, the global mass and stiffness matrices may be expanded as linear

functions of the updating parameters,

M = M0 +

p1∑

l=1

mlMl (6.2)

K = K0 +

p2∑

l=1

klKl (6.3)

where M is the global mass matrix, K is the global stiffness matrix, ml is the

updating parameter for the lth substructure mass matrix, Ml, and kl is the updat-

ing parameter for the lth substructure stiffness matrix, Kl. The Young’s modulus

and mass density of a substructure are examples of kl and ml respectively. The

decompositions in Eqs. (6.2) and (6.3) are non-negative decompositions of the

mass and stiffness matrices [19] because the substructure matrices are all semi-

positive definite. The eigenvalue derivatives of the global system with respect to

structural parameters (∂ω2
i /∂θl) (ω2

i = ω2
i ) can be obtained from Eqs. 3.6. When

the matrix of eigenvectors of the dynamic system is mass normalized, ΦTMΦ = I

where Φ is the eigenvector matrix, the eigenvalue sensitivity of the dynamic sys-

tem with respect to the mass and stiffness updating parameters, described in

Eq. (3.6), becomes,
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∂ω2
i

∂kl

= φ
T
i

∂K

∂kl

φi = φ
T
i Klφi (6.4)

∂ω2
i

∂mj

= −ω2
i φ

T
i

∂M

∂ml

φi = −ω2
i φ

T
i Mlφi (6.5)

From Eqs. (6.4) and (6.5), it can be seen that the signs of the derivatives of the

eigenvalues with respect to the updating parameters do not change within the

interval of variation
[

θ θ
]
. Therefore, the eigenvalues of the dynamic system

increase monotonically with the stiffness parameters and decreases monotonically

with the mass parameters. Consequently, two recursive equations can be defined

to update the initial hypercube of updating parameters based on the vertices of

measured data as,

zm = zj + S
∣∣
θj,zm

(θj+1,zm − θj,zm) (6.6)

zm = zj + S
∣∣
θj,zm

(
θj+1,zm

− θj,zm

)
(6.7)

where θj,zm =
[
kj mj

]T
and θj,zm

=
[
kj mj

]T
and S

∣∣
θj,•

is the sensitivity matrix

evaluated at θj,• and j is the iteration number.

The parameter vertex solution is not necessarily valid when either the output

data includes the system eigenvectors or the mass and stiffness matrices are not

linear functions of the updating parameters or both. Firstly, the output data

are restricted to be eigenvalues of the dynamic system with mass and stiffness

matrices that are nonlinear functions of the updating parameters decomposed as,

M = M0 +

p∑

l=1

ul (θl)Ml (6.8)

K = K0 +

p∑

l=1

vl (θl)Kl (6.9)

where ul and vl are nonlinear functions of the updating parameters. For example,

if the updating parameter is the thickness of shell element then ul (θ) = θ and

vl (θ) = θ3. In this case, the derivatives of the eigenvalues with respect to the

updating parameters may be written as,
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∂ω2
i

∂θl

= φ
T
i Klφi

∂vl

∂θl

− ω2
i φ

T
i Mlφi

∂ul

∂θl

(6.10)

The sign of the eigenvalue derivatives with respect to the updating parameters do

not necessarily remain unchanged within the region of variation of the updating

parameters. Certainly, if the solution of φ
T
i Klφi

∂vl

∂θl
− ω2

i φ
T
i Mlφi

∂ul

∂θl
= 0 lies

within the range of the updating parameters then the parameter vertex solution

is no longer valid.

Now the case in which the output data includes the eigenvectors of the dy-

namic system is considered. The eigenvector derivatives with respect to the up-

dating parameters may be calculated using Eq. (3.7). Therefore, the sign of the

derivative of an eigenvector term generally does not remain unchanged within

the variation of the updating parameters even if the mass and stiffness matrices

can be decomposed as in Eqs. (6.2) and (6.3). This is because the sign of the

αik terms change in the summation in Eq. (3.7) due to changes in the sign of the

denominator term ω2
i − ω2

k. Therefore the problem of interval model updating

cannot be solved by using the parameter vertex solution when eigenvector data

is included in the objective. In the following section the solution of the problem

in the general case where the outputs behave non-monotonically with respect to

the updating parameters is considered.

6.3.2 Case 2: General case

From the first case, the parameter vertex solution is always valid when the mass

and stiffness matrices are linear functions of the updating parameters and the

output data are the eigenvalues of the dynamic system. Eq. (6.1) shows that the

general case may be obtained by evaluating the inverse of the interval sensitivity

matrix at each iteration. However, this solution is not straightforward, may be

impossible and remains as an open problem. However the use of a meta-model

can lead to a solution with very good accuracy depending on the type of meta-

model, the sampling used and the behaviour of the outputs within the region

of variation. The relationships between the updating parameters and outputs

of the meta-model are described by known functions in the region of parameter

variations, which are not available when working directly with the FE models.
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Therefore the use of surrogate models makes the solution of the inverse interval

problem, Eq. (6.1), easier and more efficient as will be demonstrated.

The idea for the solution of the interval model updating problem using a

meta-model is illustrated in Figure 6.1 which shows specifically the procedure

for a dynamic system with two updating-parameter inputs and two outputs. It

should be remembered that in the problem of deterministic model updating it is

assumed that the measured eigenvalues and eigenvectors of one structure have

been obtained from experiments in the form of Eq. (3.3) while in stochastic model

updating problem, it is assumed that a set of vectors of measured data in the

form of Z =
[
z(1) z(2) ... z(ns)

]T
are available (e.g. from a collection of modal test

data from a set of nominally identical structures, built in the same way with the

same material within manufacturing tolerances). The vector of mean values of

measured data can be readily obtained from ns samples as shown in Figure 6.1.

Then the problem of deterministic model updating can be applied to identify

the deterministic values of updating parameters. If the solution of the updating

problem is unique, then the vector of updated parameters is represented by a point

in the parameter space. An initial hypercube around the updated parameters

may be constructed as illustrated in Figure 6.1. The meta-model is then used to

map the space of the initial hypercube of updating parameters to the space of

outputs. If the mapping is good enough to represent the relationship between the

input and output data then this model can be used to correct the dimensions of

initial hypercube of updating parameters based on the available measured data

(circles in the figure). Therefore, selection of the meta-model is a crucial step

in that it influences the performance of mapping and consequently the updating

procedure to a very significant degree. In the presence of multiple solutions of

the deterministic FE model updating based on mean values of measured data,

multiple meta-models correspond to each solution may be defined.

Amongst existing meta-model such as conventional response surface methods,

neural networks and Kriging models, the later are chosen in this work due to (i)

its excellent performance in dealing with non-smooth behaviour between inputs

and outputs, which often occurs in dynamic systems with close modes as will be

shown later in this paper, and (ii) the high level of degree of accuracy reported
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in the literature [61, 139]. The application of the Kriging predictor for the so-

lution of interval model-updating problems is explained in the following section.

The Kriging predictor theory and an optimal sampling method are explained in

Section 2.3.6 of Chapter 2.

1q

2q

c
1q

c

2q

1z

2z

cz1

cz2

Meta-model

:Measured data

Deterministic FE updating

Initial hypercube

Updated hypercube

Figure 6.1: Interval model updating using Kriging model.

6.4 The Kriging Predictor in Interval Model Up-

dating

In this section, the Kriging predictor, described in Section 2.3.6, is applied to the

problem of interval model updating in structural dynamics. A generalised form of

the Kriging predictor for a dynamic system with nr output data may be written

based on the equation of the Kriging predictor given in Eq. (2.78) as,

ẑ = α + H̆ (θ) θ + Λρ (θ) (6.11)

where ẑ ∈ ℜnr , ρ ∈ ℜnrns ; ρ =
[
rT
1 rT

2 ... rT
nr

]T
, α = [β0,1 β0,2 ... β0,nr ]

T. β•,i

are regression coefficients introduced in Eq. (2.78), ri ∈ ℜns is introduced in

Eq. (2.86),

H̆ (θ) =
[
H̆ij

]
nr×p

; H̆ij = βj,i + θjβjj,i +
1

2

p∑

k=1
k 6=j

βkj,iθk
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and Λ = [Λij]nr×nrns

Λij =

{
Λj,i (i − 1) ns + 1 ≤ j ≤ i × ns

0. elsewhere

Once the initial Kriging model is constructed based on the procedure proposed

in Section 6.3.2, the following error function can be defined for deterministic

model updating using the Kriging predictor formed from the measured samples,

ǫ = zm −
(
α + H̆θ + Λρ

)
= Υ − H̆θ − Λρ (6.12)

where Υ = zm−α and the function of (θ), • (θ), is omitted from H̆ (θ) and ρ (θ)

for reasons of simplicity. Now the updating problem for each sample of measured

data can be stated as an optimisation problem,

min
θ

(
ǫTǫ
)

(6.13)

It should be noted that the Kriging model has been constructed and validated

for the initial hypercube of the updated parameters. Therefore if the solution of

minimisation Eq. (6.13) converges to a point outside the initial hypercube then

a new Kriging model should be constructed by increasing the size of initial hy-

percube and the procedure repeated. According to Eq. (6.12), the error function,

Eq. (6.13), can be expanded as,

ǫTǫ = ΥTΥ − ΥTH̆θ − ΥTΛρ − θTH̆TΥ + θTH̆TH̆θ

+ θTH̆TΛρ − ρTΛTΥ + ρTΛTH̆θ + ρTΛTΛρ
(6.14)

A necessary condition for minimising the error function Eq. (6.14) is that,

∇
(
ǫTǫ
)

= {0} ∇ =

{
∂

∂θl

}

p×1

(6.15)

Substituting Eq. (6.14) into Eq. (6.15) leads to,

−H̆TΥ− Ăθ − ŭ (θ) + H̆TH̆θ + D̆θ + H̆TΛρ + V̆θ + Ŭθ + v̆ (θ) = {0} (6.16)

where • (θ) is omitted from H̆ (θ), D̆ (θ), V̆ (θ), Ŭ (θ), ρ (θ) and

Ă =
[
Ăij

]
p×p

; Ăij =
n∑

k=1

Υk
∂H̆kj

∂θi

;
∂H̆kj

∂θi

=
1

2
Bij,k
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D̆ (θ) =
[
D̆ij

]
p×p

; D̆ij =
1

2

p∑

k=1

n∑

l=1

(
H̆lj

∂H̆lk

∂θi

+ H̆lk
∂H̆lj

∂θi

)
θk

V̆ (θ) =
[
V̆ij

]
p×p

; V̆ij =
n∑

k=1

ns∑

l=1

Λl,k
∂H̆kj

∂θi

rl,k (θ)

Ŭ (θ) =
[
Ŭij

]
p×p

; Ŭij =
n∑

k=1

ns∑

l=1

Λl,kH̆kj
∂rl,k (θ)

∂θi

ŭ (θ) = {ŭi (θ)}p×1 ; ŭi (θ) =
n∑

j=1

ns∑

k=1

Λk,jΥj
∂rk,j (θ)

∂θi

v̆ (θ) = {v̆i (θ)}p×1 ;

v̆i (θ) =
1

2

n∑

l=1

ns∑

k=1

ns∑

j=1

Λj,lΛk,l

(
rk,l (θ)

∂rj,l (θ)

∂θi

+ rj,l (θ)
∂rk,l (θ)

∂θi

)

where Bij,k is the componenet of matrix B introduced in Eq. (2.78). The deriva-

tive of the correlation function, given in Eq. (2.83), may be calculated as follows,

∂rj,i

∂θk

=
∂Ci

(
θ,θ(j)

)

∂θk

= −ζk,i

∣∣∣θk − θ
(j)
k

∣∣∣
νi−1

sign
(
θk − θ

(j)
k

)
Ci

(
θ,θ(j)

)
(6.17)

In those cases when the function is not differentiable the derivative may be eval-

uated as,

E
(
u

′

1 (x̂)
)

= lim
σ→0

∫ +∞

−∞
u

′

1 (x) ϕ
(
x, x̂, σ2

)
dx

= − lim
σ→0

∫ +∞

−∞
u1 (x) ϕ

′
(
x, x̂, σ2

)
dx

(6.18)

where ′ represents d
dx

and ϕ (x, x̂, σ2) is Gaussian function with parameters x̂ and

σ2. Eq. (6.18) is obtained using integration by parts and it should be noted that

the Gaussian function ϕ (x) is zero at ±∞. Eq. (6.16) can be rearranged for the

solution of system parameters θ as,

(
H̆TH̆ + D̆ + Ŭ + V̆ − Ă

)
θ = ŭ (θ) + H̆TΥ − H̆TΛρ − ğ (θ) (6.19)

Since the matrix
(
H̆TH̆ + D̆ + Ŭ + V̆ − Ă

)
is a function of θ an iterative pro-

cedure needs to be defined. However, the solution requires the inverse of matrix(
H̆TH̆ + D̆ + Ŭ + V̆ − Ă

)
. If this matrix is not invertible an arbitrary weight-

ing matrix can be added to the both sides of Eq. (6.19) as,

(
H̆TH̆ + D̆ + Ŭ + V̆ − Ă + W

)
θ = f̆ (θ)+H̆TΥ−H̆TΛρ−ğ (θ)+Wθ (6.20)
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and following recursive equation is formed for the solution of Eq. (6.16),

θl+1 =
(
H̆TH̆ + D̆ + Ŭ + V̆ − Ă + W

)−1

|θ=θl

×
{
f̆ (θ) + H̆TΥ − H̆TΛρ − ğ (θ) + Wθ

}
|θ=θl

(6.21)

The iterations continue until convergence on the system parameters θ is achieved.

The matrix W is chosen so that the matrix
(
H̆TH̆ + D̆ + Ŭ + V̆ − Ă + W

)
is

invertible. The weighting matrix W in Eq. (6.21) has the effect of regularising

the ill-conditioned Eq, (6.19), equivalent to adding the side constraint given in

Eq. (3.8) [3] to the objective function Eq. (6.13).

In Eq. (6.21), the weighting matrix W may be chosen in the form W = rgI.

For small values of the regularisation parameter rg the original ill-conditioned

problem , Eq. (6.15), remains and when rg takes a large value it is seen from the

side constraint Eq. (3.8) that the updated parameters remain unchanged from

the previous iteration. An optimal value of rg may be obtained from the corner

of the L-curve as described by Ahmadian et al. [6].

The procedure for interval model updating can be defined as follows:

1. Select and update the parameters of the mathematical FE model using the

mean vector of measured data.

2. Initialize a hypercube around the updated parameters of the finite element

model.

3. Construct a meta-model based on updated mathematical FE model data.

This meta-model should describe the relationship between output data and

input data within the initial hypercube around the updated parameters

accurately.

4. Use the meta-model for updating the initial hypercube by using all sets of

measured data.

5. Construct the new hypercube on the region of updated parameters. If the

updated hypercube is bigger than the initial hypercube increase the size of

initial hypercube and go back to step 3; otherwise go to step 6.
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6. Generate output data by using the meta-model to find the region of varia-

tion of output data and compare it to the scatter of measured data.

7. End.

6.5 Numerical Case Studies

The three degree of freedom mass-spring system, shown in Figure 2.13, with well

separated and close modes is used in this section to illustrate the performance of

the interval model updating using the Kriging method.

6.5.1 Case study 1: 3-degree of freedom mass-spring sys-
tem with well separated modes

It is assumed that the true value of the bounds of the unknown uncertain param-

eters of the system are given by,

k1 = [0.8 1.2] N/m, k2 = [0.8 1.2] N/m, k5 = [0.8 1.2] N/m (6.22)

and other parameters are known and similar to those given by Eq. (3.57). The

measured data are obtained by using Monte Carlo Simulation (MCS) and Latin

Hypercube sampling (LHS) with 10 samples. The method is also applied with an

unrealistic number of measured data (10000 samples) to demonstrate the asymp-

totic properties of the method. Later, different runs of the updating algorithm

(with 10 different sets of 10 measured samples) are carried out and a range of

solution errors are determined.

As mentioned before the interval model updating approach needs an initial

estimate of the ranges of unknown parameters. The initial estimates are

k1 = [0.5 1.5] N/m, k2 = [0.5 1.5] N/m, k5 = [0.5 1.5] N/m (6.23)

It is assumed that the mean values of the updating parameters have already been

identified and the errors are in the estimation of the parameter bounds. The

output data are assumed to be three eigenvalues and the absolute value of the

first eigenvector at the first degree of freedom φ1,1,
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z =
[

z1 z2 z3 z4

]T
=
[

ω2
1 ω2

2 ω2
3 |φ1,1|

]T
(6.24)

The parameter vertex method is not applicable in this case because the mode

shape term φ1,1 is included in the response vector. To construct the Kriging

model, an initial sample was taken based on CCD with face centred points [59].

The MSE values show that these initial samples are enough for a Kriging model

to map the initial hypercube of input data to the output data. The Kriging

model was constructed using a second order polynomial. Results obtained by

the interval model updating with 10 and 10000 measured samples are shown in

Table 6.1. The weighting matrix in Eq. (6.21) was set to W = 0 in this case.

Figure 6.2 shows the initial, true and updated bounding hypercube of uncer-

tain parameters in the planes k1 − k2 and k2 − k5 in the presence of 10 measured

samples. The updated hypercube of uncertain parameters are in good agreement

with the true hypercube as shown in Figure 6.2 and Table 6.1. Figure 6.3 shows

the convergence of the initial output data space upon the space of 10 measured

samples in the planes of (a) λ1 and λ2, (b) λ1 and λ3, (c) λ2 and λ3, (d) λ1 and

|φ1,1|, (e) λ2 and |φ1,1| and (f) λ3 and |φ1,1|. The results in Table 6.1 show that

errors in estimating the bounds of uncertain parameters are significantly reduced

even in the case of only 10 measured samples. A very slight difference is seen be-

tween the exact space of output data and the updated one, shown in Figure 6.3.

It might be argued that these results are just for the one particular set of 10

samples. Therefore the interval updating procedure was repeated for 10 different

sets of measured samples and it appears that the errors in estimation of bounds

of updating parameters range from 0.0% to 4.9%. This shows an important ad-

vantage of using interval models rather than probabilistic models presented in

Chapters 3 and 5 in stochastic model updating. The initial and updated spaces

shown in Figure 6.3 are obtained by Monte Carlo Simulation (MCS) with Latin

Hypercube Sampling (LHS) and the Kriging predictor. The true space achieved

by MCS using eigenvalue solutions from the M, K system.
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Figure 6.2: Initial, updated and true hypercube of updating parameters
based upon 10 measurement samples (system with well sepa-
rated modes).

Table 6.1: Updated results: 3 DOF mass-spring system with well separated
modes

Parameters Initial error % Updated error % Updated error %

10 Measured samples 10000 Measured samples

k1 [−37.5 25.0] [0.4 0.0] [0.1 − 0.2]

k2 [−37.5 25] [0.8 − 1.7] [0.5 0.0]

k5 [−37.5 25] [0.8 − 0.7] [0.3 − 0.1]

6.5.2 Case study 2: 3-degree of freedom mass-spring sys-
tem with close modes

The quantification of uncertainty in a system with close modes is difficult because

of the non-smooth response surface. The three degree of freedom system, shown

in Figure 2.13, with close modes is again considered here. It is assumed that the

true value of the unknown uncertain parameters of the system are given by,

k2 = [7.5 8.5] N/m, k4 = [1.8 2.2] N/m, k5 = [1.8 2.2] N/m (6.25)

and other parameters are as given by Eq. (2.89). It is assumed that 10 samples of

measured data exist. The initial estimates of the bounds of uncertain parameters

are,

k2 = [6.5 9.5] N/m, k4 = [1.6 2.4] N/m, k5 = [1.6 2.4] N/m (6.26)
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(c) (d)

(e) (f)

Figure 6.3: Initial, updated and true spaces of predicted data (100,000
points) based upon 10 measurement samples (system with well
separated modes).
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As in the previous case, the application of interval model updating is illustrated

for correcting the bounds of the updating parameters. The output data are

assumed to be the same as the previous case study (the first three eigenvalues

and the absolute value of first component of the first eigenvector (φ1,1). Fifteen

samples were taken from the space of the initial hypercube of updating parameters

according to CCD. The MSE results showed that the initial samples based on

CCD were not good enough for mapping the initial hypercube of input data to

the output data. Therefore the sampling procedure described in Section 2.3.6 was

used to improve the Kriging model. The procedure starts with the first output and

continues until the maximum MSE value falls below a specified tolerance. Then

the procedure continues for the next output and so on until all four outputs are

accurately predicted by the Kriging model. Figure 6.4 shows how the maximum

value of the MSE decays as the sample size is increased. The iteration numbers

in Figure 6.4 represent the sample size at each step.
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Figure 6.4: Evolution of maximum MSE values for determining the optimal
sample number.
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The Kriging model was constructed using a first order polynomial and results

obtained using 10 measured samples are shown in Table 6.2. These results, also

shown in Figure 6.5, confirm that the modified bounds of uncertain parameters

have been determined with very good accuracy. Also, Figure 6.6 shows that

the updated output-data spaces obtained by Kriging are in good agreement with

the true output-data space. The latter were obtained by direct solution of the

eigenvalue problem of the dynamic system.

Table 6.2: Updated results: 3 DOF mass-spring system with close modes

Parameters Initial error % Updated error %

10 Measured samples

k1 [−13.3 11.8] [0.6 − 0.7]

k2 [−11.1 9.1] [0.8 − 1.0]

k5 [−11.1 9.1] [0.4 − 0.5]
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Figure 6.5: Initial, updated and true hypercube of updating parame-
ters based upon 10 measurement samples (system with close
modes).

The weighting matrix W, introduced in Eq. (6.21), was set to 10 I (I is identity

matrix) in this case. Figure 6.7 shows the evolution of error function, Eq. (6.14),

in two cases: (a)W = 0 and (b)W = 10 I. It is seen in the figure that the

procedure fails to converge when (a)W = 0, due to ill-conditioning. This problem

is overcome by using the technique described in Eq. (6.21).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Initial, updated and true spaces of predicted data (100,000
points) based upon 10 measurement samples (system with close
modes).
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Figure 6.7: Evolution of error function values Eq. 6.14 during optimisation
using Eq. 6.21.

6.6 Experimental case study: Frame structure

with uncertain beams positions

A frame structure with two internal beams is designed in which each beam is inde-

pendently located at three different positions. The design provides for 9 different

combinations of beam positions as shown in Figure 6.8. Detailed finite element

models of each of the nine cases were created in MSC-NASTRAN using 8-noded

solid elements (CHEXA). The physical structure is shown in Figure 6.9(a) and the

finite element model in one configuration of the internal beams in Figure 6.9(b).

The bolted joint connections are modelled using rigid elements over an area three

times greater than the cross-section of the bolts. The boundary conditions where

the frame is connected to a rigid base are represented by fixing the nodal dis-

placements in the three translational degrees of freedom over an area, the size of

a washer, between the frame and the base. Modal tests using an instrumented

hammer were carried out for the frame in both free-free conditions and when

fixed to the rigid base. The experimental results and finite element predictions

for both boundary conditions and 9 cases of internal beam locations are shown in

Tables 6.3 to 6.12. The closeness of the finite element predictions to the natural

frequencies found in modal test shows that the frame structure and the bound-

ary conditions are accurately modelled. To apply the interval model updating

method to this problem, the positions (θ1 and θ2) of the two internal beams are

assumed to be the unknown updating parameters as indicated in Figure 6.10. In
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conventional model updating this choice of updating parameters would require

remeshing of the finite element model at each iteration, which is time consum-

ing and inelegant. An important advantage of Kriging interpolation is that the

updating of nodal coordinates is as straightforward as any other parameter.

21 3CaseCaseCase

54 6CaseCaseCase

87 9CaseCaseCase

Figure 6.8: Beam locations in the frame structure.

It is supposed that the initial bounds on θ1 and θ2 to be
[

0.5 3.5
]

and a

Kriging model is constructed over this range. The Kriging model describes the

relationship between the input parameters (θ1 and θ2) and 6 outputs; the first and

second in-plane and out-of-plane bending natural frequencies and the first and

second torsion natural frequencies in Tables 6.4 to 6.12. It should be noted that

the parameter vertex solution is not necessarily valid due to the type of updating
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(a) (b)

Figure 6.9: (a) Frame structure (b) Finite element model.

Table 6.3: Measured and FE predictions of natural frequencies (free-free
frame structure-case 1)

Measured (Hz) FE (Hz) FE error %

Mode (1) 69.3 70.94 2.37
Mode (2) 79.5 80.27 0.97
Mode (3) 93.2 92.07 -1.21
Mode (4) 199.1 200.58 0.74
Mode (5) 235.6 236.17 0.24
Mode (6) 259.8 259.33 -0.18
Mode (7) 286.3 288.73 0.85
Mode (8) 297.1 296.4 -0.24
Mode (9) 299.1 303.03 1.31
Mode (10) 318.6 327.58 2.82
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Table 6.4: Measured and FE predictions of natural frequencies (fixed-frame
structure-case 1)

Measured (Hz) FE (Hz) FE error % Mode shape

Mode (1) 22.54 22.59 0.22 first in-plane bending mode
Mode (2) 27.84 27.27 -2.04 first out-of-plane bending mode
Mode (3) 47.63 48.14 1.08 first torsion mode
Mode (4) 81.19 80.89 -0.37 second in-plane bending mode
Mode (5) 201.35 201.55 0.10 higher order in-plane bending mode
Mode (6) 233.71 233.41 -0.13 higher order in-plane bending mode
Mode (7) 256.40 259.05 1.03 second out-of-plane bending mode
Mode (8) 257.68 256.54 -0.44 higher order in-plane bending mode
Mode (9) 283.09 283.35 0.09 higher order in-plane bending mode
Mode (10) 298.46 305.34 2.30 higher order in-plane bending mode
Mode (11) 312.39 316.49 1.31 second torsion mode

Table 6.5: Measured and FE predictions of natural frequencies (fixed-frame
structure-case 2)

Measured (Hz) FE (Hz) FE error % Mode shape

Mode (1) 23.78 23.97 0.82 first in-plane bending mode
Mode (2) 27.43 26.97 -1.65 first out-of-plane bending mode
Mode (3) 49.85 50.47 1.23 first torsion mode
Mode (4) 79.41 79.65 0.31 second in-plane bending mode
Mode (5) 194.40 193.01 -0.71 higher order in-plane bending mode
Mode (6) 222.84 227.90 2.27 second out-of-plane bending mode
Mode (7) 226.55 227.32 0.34 higher order in-plane bending mode
Mode (8) 256.09 254.80 -0.50 higher order in-plane bending mode
Mode (9) 263.06 264.44 0.52 higher order in-plane bending mode
Mode (10) 289.42 289.28 -0.05 higher order in-plane bending mode
Mode (11) 306.56 311.63 1.65 second torsion mode

Table 6.6: Measured and FE predictions of natural frequencies (fixed-frame
structure-case 3)

Measured (Hz) FE (Hz) FE error % Mode shape

Mode (1) 23.33 23.52 0.80 first in-plane bending mode
Mode (2) 26.92 26.40 -1.96 first out-of-plane bending mode
Mode (3) 48.94 49.43 1.00 first torsion mode
Mode (4) 74.60 74.73 0.17 second in-plane bending mode
Mode (5) 194.06 191.88 -1.12 higher order in-plane bending mode
Mode (6) 219.94 224.41 2.03 second out-of-plane bending mode
Mode (7) 232.23 231.90 -0.14 higher order in-plane bending mode
Mode (8) 253.54 255.83 0.90 higher order in-plane bending mode
Mode (9) 260.93 260.74 -0.07 higher order in-plane bending mode
Mode (10) 299.94 304.92 1.66 second torsion mode
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Table 6.7: Measured and FE predictions of natural frequencies (fixed-frame
structure-case 4)

Measured (Hz) FE (Hz) FE error % Mode shape

Mode (1) 24.31 24.53 0.89 first in-plane bending mode
Mode (2) 24.38 24.25 -0.55 first out-of-plane bending mode
Mode (3) 47.17 47.77 1.28 first torsion mode
Mode (4) 76.68 76.69 0.01 second in-plane bending mode
Mode (5) 198.89 199.23 0.17 higher order in-plane bending mode
Mode (6) 212.54 207.79 -2.23 higher order in-plane bending mode
Mode (7) 220.52 225.85 2.42 second out-of-plane bending mode
Mode (8) 248.41 247.78 -0.25 higher order in-plane bending mode
Mode (9) 257.87 258.93 0.41 higher order in-plane bending mode
Mode (10) 291.62 292.35 0.25 higher order in-plane bending mode
Mode (11) 299.65 304.99 1.78 higher order in-plane bending mode
Mode (12) 304.76 310.00 1.72 second torsion mode

Table 6.8: Measured and FE predictions of natural frequencies (fixed-frame
structure-case 5)

Measured (Hz) FE (Hz) FE error % Mode shape

Mode (1) 24.00 24.25 1.02 first in-plane bending mode
Mode (2) 24.65 24.49 -0.66 first out-of-plane bending mode
Mode (3) 48.36 48.93 1.18 first torsion mode
Mode (4) 80.83 80.93 0.12 second in-plane bending mode
Mode (5) 201.90 195.31 -3.26 higher order in-plane bending mode
Mode (6) 206.69 207.14 0.22 higher order in-plane bending mode
Mode (7) 229.51 230.13 0.27 higher order in-plane bending mode
Mode (8) 254.23 258.02 1.49 second out-of-plane bending mode
Mode (9) 269.10 271.75 0.98 higher order in-plane bending mode
Mode (10) 281.61 281.08 -0.19 higher order in-plane bending mode
Mode (11) 309.67 314.89 1.69 second torsion mode

Table 6.9: Measured and FE predictions of natural frequencies (fixed-frame
structure-case 6)

Measured (Hz) FE (Hz) FE error % Mode shape

Mode (1) 24.34 24.53 0.76 first in-plane bending mode
Mode (2) 24.43 24.25 -0.74 first out-of-plane bending mode
Mode (3) 47.13 47.77 1.37 first torsion mode
Mode (4) 76.63 76.69 0.07 second in-plane bending mode
Mode (5) 199.87 199.23 -0.32 higher order in-plane bending mode
Mode (6) 211.57 207.79 -1.79 higher order in-plane bending mode
Mode (7) 220.27 225.85 2.53 second out-of-plane bending mode
Mode (8) 247.48 247.78 0.12 higher order in-plane bending mode
Mode (9) 256.69 258.93 0.87 higher order in-plane bending mode
Mode (10) 289.20 292.35 1.09 higher order in-plane bending mode
Mode (11) 298.68 304.99 2.11 higher order in-plane bending mode
Mode (12) 304.66 310.00 1.75 second torsion mode
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Table 6.10: Measured and FE predictions of natural frequencies (fixed-
frame structure-case 7)

Measured (Hz) FE (Hz) FE error % Mode shape

Mode (1) 23.30 23.52 0.96 first in-plane bending mode
Mode (2) 26.59 26.40 -0.71 first out-of-plane bending mode
Mode (3) 48.83 49.43 1.22 first torsion mode
Mode (4) 74.38 74.73 0.46 second in-plane bending mode
Mode (5) 192.09 191.88 -0.11 higher order in-plane bending mode
Mode (6) 219.48 224.41 2.25 second out-of-plane bending mode
Mode (7) 232.17 231.90 -0.12 higher order in-plane bending mode
Mode (8) 253.90 255.83 0.76 higher order in-plane bending mode
Mode (9) 260.44 260.74 0.11 higher order in-plane bending mode
Mode (10) 299.72 304.92 1.73 second torsion mode

Table 6.11: Measured and FE predictions of natural frequencies (fixed-
frame structure-case 8)

Measured (Hz) FE (Hz) FE error % Mode shape

Mode (1) 23.794 23.97 0.76 first in-plane bending mode
Mode (2) 27.088 26.97 -0.43 first out-of-plane bending mode
Mode (3) 49.785 50.47 1.37 first torsion mode
Mode (4) 79.311 79.65 0.43 second in-plane bending mode
Mode (5) 193.21 193.01 -0.10 higher order in-plane bending mode
Mode (6) 222.013 227.90 2.65 second out-of-plane bending mode
Mode (7) 226.327 227.32 0.44 higher order in-plane bending mode
Mode (8) 253.794 254.80 0.40 higher order in-plane bending mode
Mode (9) 262.621 264.44 0.69 higher order in-plane bending mode
Mode (10) 288.139 289.28 0.40 higher order in-plane bending mode
Mode (11) 305.946 311.63 1.86 second torsion mode

Table 6.12: Measured and FE predictions of natural frequencies (fixed-
frame structure-case 9)

Measured (Hz) FE (Hz) FE error % Mode shape

Mode (1) 22.577 22.59 0.06 first in-plane bending mode
Mode (2) 27.497 27.27 -0.81 first out-of-plane bending mode
Mode (3) 47.536 48.14 1.28 first torsion mode
Mode (4) 81.122 80.89 -0.28 second in-plane bending mode
Mode (5) 200.543 201.55 0.50 higher order in-plane bending mode
Mode (6) 233.52 233.41 -0.05 higher order in-plane bending mode
Mode (7) 255.603 259.05 1.35 second out-of-plane bending mode
Mode (8) 256.764 256.54 -0.09 higher order in-plane bending mode
Mode (9) 280.807 283.35 0.91 higher order in-plane bending mode
Mode (10) 298.403 305.34 2.32 higher order in-plane bending mode
Mode (11) 311.538 316.49 1.59 second torsion mode
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Figure 6.10: Parametrisation of internal beam locations in the frame struc-
ture.

parameters. The maximum value of the MSE shows that the CCD design together

with 9 samples in Figure 6.10 provide an accurate fit. The optimisation procedure

described in Section 6.4 was used to identify the locations of internal beams based

on the six measured natural frequencies, thereby allowing the updating parameter

bounds to be corrected. The weighting matrix was set to W = 100I in this case.

Table 6.13 shows the initial and identified beams locations in 9 cases obtained

by deterministic model updating. The maximum error of 11.00 % in Table 6.13

is an indicator of good performance. The Kriging model was used to generate

all possible variations of the 6 outputs due to the variation of the internal beam

locations in the range of
[

1.00 2.99
]

for θ1 and
[

0.89 3.09
]

for θ2 by interval

model updating.

Table 6.13: Deterministic model updating of beam locations

True parameters Initial parameters Updated parameters Initial error % Updated error %

θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

1.0 1.0 1.6 1.6 1.04 1.02 60.00 60.00 3.73 2.00
1.0 2.0 1.6 2.4 1.00 2.15 60.00 20.00 -0.21 7.56
1.0 3.0 1.6 2.4 1.00 3.08 60.00 -20.00 0.20 2.76
2.0 1.0 1.6 1.6 2.04 0.90 -20.00 60.00 1.81 -9.78
2.0 2.0 2.4 2.4 2.13 2.00 20.00 20.00 6.48 -0.12
2.0 3.0 2.4 2.4 1.95 3.09 20.00 -20.00 -2.36 3.06
3.0 1.0 2.4 1.6 2.98 0.89 -20.00 60.00 -0.58 -11.00
3.0 2.0 2.4 1.6 2.99 1.83 -20.00 -20.00 -0.31 -8.36
3.0 3.0 2.4 2.4 2.93 2.98 -20.00 -20.00 -2.18 -0.58
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Figure 6.11 shows the initial and updated regions of possible natural frequency

variation in (a and b) the planes of first and second natural frequencies, (c and

d) the planes of third and fourth natural frequencies and (e and f) the planes of

fifth and sixth natural frequencies together with 9 measured samples. It is seen

from Figures 6.11(b), 6.11(d) and 6.11(f) that the updated regions encloses some

measured samples but not all of them. This is due to the fact that the samples

which are just outside the regions were in reality located on the points close to the

boundaries. The errors from other sources of uncertainty, typically disassembly

and reassembly and measurement noise, affect the results causing the samples to

move over the boundaries. As can be seen in Figure 6.11, some of the areas within

the updated region of output data include greater number of output samples (they

look denser). These areas represent regions where the likelihood of the presence

of the output data due to these inputs variations is greater than the other areas.

The initial and updated bounds of natural frequencies are shown in Table 6.14

where a maximun error of 4.24% shows good agreement of the updated model

output bounds with the bounds of the measaured data. The errors are calculated

based on the percentage of difference between upper(lower) bounds of measured

data and their numerical predictions counterparts.

Table 6.14: Measured, initial and updated bounds of natural frequencies
(frame structure)

Measured Initial FE Updated FE Initial FE Updated FE

(Hz) (Hz) (Hz) % error % error

First in-plane bending mode [22.54 24.34] [21.62 24.61] [22.57 24.61] [−4.08 1.11] [0.13 1.11]
First out-of-plane bending mode [24.38 27.84] [23.66 35.53] [23.86 27.47] [−2.95 27.62] [−2.13 − 1.33]

First torsion mode [47.13 49.85] [43.72 67.57] [45.13 50.55] [−7.24 35.55] [−4.24 1.40]
Second in-plane bending mode [74.38 81.19] [71.09 82.50] [73.99 81.37] [−4.42 1.61] [−0.52 0.22]

Second out-of-plane bending mode [219.48 256.40] [224.08 267.34] [224.08 259.51] [2.10 4.27] [2.10 1.21]
Second torsion mode [299.72 312.39] [300.26 339.65] [303.58 317.20] [0.18 8.73] [1.29 1.54]

6.7 Closure

In this chapter, the problem of interval model updating, with test structure vari-

ability was formulated. In particular cases, when the output data are the eigen-

values of the dynamic system and updating parameters are substructure mass

and stiffness coefficients, the parameter vertex solution may be used. The Krig-

ing predictor for the solution to the inverse problem of a system with nr outputs
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Figure 6.11: Initial and updated spaces of predicted data (100,000 points)
based upon 9 measurement samples (frame structure)

was formulated and used for the solution of interval model updating in the general

case. The method was verified numerically in a three degree of freedom mass-
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spring system with well-separated and close modes. Results showed that interval

model updating was capable of identifying uncertain input parameters with very

good accuracy when only a small numbers of measured samples are available.

This represents a significant advantage of interval updating over probabilistic

methods, which require large volumes of test data. It was shown that by Kriging

interpolation the uncertain positions of internal beams in a frame structure could

be treated as updating parameters. Interval model updating with the Kriging

predictor was able to correct initial erroneous bounds on the beam positions with

good accuracy.
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Chapter 7

Conclusions and future work

7.1 Conclusions

Uncertainty analysis in structural dynamics has recently received considerable at-

tention since it can lead to improved confidence in the design process. Different

sources of uncertainty may exist in the numerical model, that can be generally

classified into two groups known as epistemic and aleatory. Epistemic uncertainty

includes limitations in knowledge or lack of understanding and uncertainty due

to human error. This uncertainty is reducible by further knowledge/information.

The second type of uncertainty, i.e. aleatory uncertainty, is not reducible and

includes randomness in parameters. For example, structural variability which

arises from manufacturing tolerances, material differences, and wear are consid-

ered as aleatory uncertainty as they really exist and need to be taken into account

in numerical model. This thesis considered the effect of aleatory uncertainty in

structural models and its influence on aeroelastic analysis.

Firstly, an extensive review has been carried out to provide the essential math-

ematical tools for uncertainty modelling and propagation. Two popular classes

of models known as probabilistic and nonprobabilistic are identified and used for

the propagation of uncertainty through the deterministic analysis (uncertainty

propagation). Various uncertainty propagation methods including Monte Carlo

Simulation (MCS), first and second order perturbation methods, asymptotic inte-

gral, interval analysis, fuzzy method and meta-model are studied and explained.

Knowledge gained from the literature shows that the application of uncer-

tainty propagation methods in the problem of flutter analysis has received less

attention. However, a study conducted on the McDonnell Douglas F-4 Phantom
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II [111] quantified the weight and inertia variability for this aircraft, showing

changes in mass and inertia of control surfaces by up to 15% which highlighted

the importance of the problem.

The propagation of structural uncertainty thorough aeroelastic analysis for de-

termining the range/distribution of flutter speed has been carried out in two cases.

In the first case, the linear aerodynamic theory based on the Doublet-Lattice

Method (DLM) is considered. Random parameters which have significant effect

on flutter speed have been identified through flutter sensitivity analysis, which is

then propagated through the aeroelastic analysis to obtain estimates of intervals,

fuzzy membership functions or PDFs for aeroelastic damping and flutter speed.

The derivatives of aeroelastic response of the system within the region of varia-

tion of the uncertain structural parameters are approximated using the Response

Surface Method (RSM). Three test cases: (1) Goland wing without structural

damping, (2) Goland wing with structural damping, and (3) a generic fighter air-

craft are considered in this study. In the analysis of the Goland wing, nonlinear

behaviour has been observed in tails of the aeroelastic damping PDFs (obtained

from MCS). This nonlinear behaviour has been predicted well when second-order

probabilistic perturbation analysis is used. Fuzzy analysis including a number of

interval analysis at different levels of membership function, also correctly predicts

the nonlinear behaviour at the tails. A rapid increase in the sensitivity of the real

part of the critical eigenvalue to the structural variability has been observed after

the modal interaction starts. At velocities close to the flutter speed, particular

structures are revealed, close to a -45◦ line, in the aeroelastic-damping scatter di-

agrams and to a +45◦ line, in the aeroelastic-frequency scatter diagrams. These

behaviours demonstrate if a chosen point on the unstable mode decreases the

damping and frequency then it will increase the damping and decrease the fre-

quency on the stable mode to a similar degree, and vice-versa. In the analysis of

the Goland wing, a velocity where two crossing modes have no correlations has

been determined. This velocity is called a zero-correlation velocity. The inclu-

sion of structural damping in the Goland wing is found to result in a small but

significant increase in the deterministic flutter speed. Structural damping has

virtually no effect upon the flutter intervals. The MCS is used for assessing the
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accuracy of the results obtained by the interval analysis, fuzzy and perturbation

methods which are computationally more efficient. From the results achieved by

the linear flutter analysis of the Goland wing, a combination of response surface

method and interval analysis is found not only computationally efficient but also

provide a sufficiently good approximation of flutter bounds determined by the

MCS. The interval flutter analysis is then carried out in the analysis of a generic

fighter plane for flutter instability involving the coupling of wing bending with

store pitching behaviour. Flutter bounds are determined by the propagation of

structural stiffness parameters (including the pylon - store connection) by interval

analysis.

In the second case, the feasibility of using uncertain propagation methods to

aeroelastic stability prediction when CFD is used for the aerodynamic has been

investigated. The feasibility in terms of computational cost is demonstrated by

exploiting an eigenvalue-based method, which can be configured for the purpose

of computing stability for many similar structural models. The same test cases

used in linear flutter analysis including the Goland wing and generic fighter air-

craft are considered. At altitudes higher than the flutter altitude, the intervals of

uncertainty on aeroelastic damping are found to be small, but increase at around

the flutter altitude and beyond to become similar in extent to the bounds on the

frequencies across the entire range of frequencies. This behaviour has also been

observed in the problem of uncertain linear flutter analysis. Similar uncertain

structural parameters which have been determined through a linear sensitivity

analysis are again used for the purpose of the uncertainty propagation. The un-

certain propagation methods including the MCS (with 1000 samples), perturba-

tion method and interval analysis are then applied to the CFD based aeroelastic

analysis. For the Goland wing, the application of the MCS method takes two

days on a desktop PC while the interval analysis is accomplished in around 3

hours. As previously mentioned, the important information obtained from the

uncertain flutter analysis are in the spread of the eigenvalue real parts and also

the skewness about the mean, which have been well captured by the interval

method in a reasonable computational cost. Therefore it may be concluded that

this method is favoured based on this consideration. The results of these studies
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are published in [137,140–142].

Whichever propagation method is used for uncertainty propagation, an inter-

esting question is how to use these methods for applications. For those uncertain

parameters which are measurable (such as thickness), the direct measurements

may be used to identify their ranges or distributions. However, the immeasur-

able uncertain parameters need to be identified in an inverse approach known as

stochastic model updating method. In the stochastic model updating approach,

it is assumed that modal parameters of a number of identical structures, taken

from a production line, are obtained by a series of experimental modal analysis.

Then the ranges/distributions of the uncertain input parameters are identified

based on the ranges/distributions of the modal data. Statistics have been in-

corporated in the development of the model updating methods known as the

minimum variance methods [26, 93] or the Bayesian method [94,95, 108] to over-

come the issues related to noisy measured data. However, it is shown in this work

that these methods are not applicable to the problem of model updating in the

presence of irreducible uncertainty in the measured data. Among existing model

updating approaches which deal with the irreducible uncertain measured data,

two methods namely the maximum likelihood estimator [24] and the perturbation

method [27] are found to be capable of predicting the ranges/distributions of the

updating parameters. The performance of these methods are assessed in a simple

numerical example and it is found that the maximum likelihood method has a

poor estimation of standard deviations of the updating parameters due to the

fact that it does not consider the correlation between the elements of the output

modal parameters.

In the present work a new method, based upon the perturbation procedure,

is developed in two versions. In the first version of the method, the correlation

between the updated parameters and measured data is omitted. This results in

a procedure that requires only the first-order matrix of sensitivities. The second

procedure includes this correlation (after the first iteration) but is a more ex-

pensive computation requiring the second-order sensitivities as does the method

proposed by Hua et al. [27]. It is shown in numerical simulations that the first

method produces results that are equally acceptable as those produced by the
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second method or by Hua’s approach [27]. These methods are demonstrated in

numerical simulations and also in an experiment carried out on a collection of

rectangular plates with variable thickness. Another stochastic model updating

approach based on minimising an objective function has also been proposed in

this study. The proposed objective function is the weighted sum of the Euclid-

ian norm of the difference between mean values of measured data and analytical

outputs vectors, and the Frobenius norm of the difference between the covariance

matrices of the measured data and analytical outputs. This method does not

involve any assumption of statistical independence between the parameters and

measurements. This method is also verified in numerical simulation and also in

experiments carried out on a collection of rectangular plates with variable masses

on it. In both methods, it is observed that the quality of identified parameters is

very sensitive to sample size of the measured data and also to the measurement

noise. Regularisation may be applied when the stochastic model updating equa-

tions are ill-conditioned due to measurement noise. However, the issue of sample

size may not be overcome with probabilistic approach and therefore it is decided

to use the interval model which probably requires fewer of measured data. Above

studies are published in [143,144].

In order to overcome the issue of sample size in the probabilistic perturbation

method, the problem of interval model updating with test structure variability is

defined and formulated. It is shown that when the output data are the eigenval-

ues of the dynamic system and updating parameters are substructure mass and

stiffness coefficients, the parameter vertex method can be used for the solution.

However, in general cases, another solution needs to be considered. In this thesis,

the meta-model is used to solve the interval model updating problem in general

cases. The Kriging predictor is chosen for the meta-model and the inverse prob-

lem of a system with nr outputs is formulated and used for the solution of the

interval model updating in the general case. The method is validated numerically

using a three degree of freedom mass-spring system with both well-separated and

close modes. Results show that the interval model updating is capable of identi-

fying input parameters with very good accuracy even when only a small number

of measured samples exist. This represents a significant advantage of the interval
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updating over the probabilistic methods, which require large amounts of data.

Another advantage of Kriging interpolation is that it enables the use of updating

parameters that are difficult to use by conventional correction of the finite element

model at each iteration. An example of this is demonstrated in an experimental

exercise where the positions of two beams in a frame structure are selected as

the updating parameters. Finally it is shown that the interval model updating

with the Kriging predictor is capable of correcting initial erroneous bounds on

the beam positions with good accuracy. This study is published in [145,146]

7.2 Suggestions for future work

The development of the probabilistic and nonprobablistic uncertainty propaga-

tion and identification methods has led to several questions and idea which can

be considered in future work. A very important question is that how these meth-

ods can be applied to the aeroelastic applications. By using stochastic model

updating it would, in principle, be necessary to carry out ground vibration tests

on a sufficient number of samples of nominally identical aircraft. A database

of information obtained from such an exercise might be deemed applicable to a

range of aircraft and not just the particular type of aircraft tested, depending

upon design similarities and engineering judgement etc.

The choice of parameters in the stochastic model updating is as important

as in the conventional model updating and requires considerable physical insight.

The effect of different parameterisations on the performance of the stochastic

updating procedure can be investigated in a set of identical realistic structures.

All uncertainty propagation methods, proposed in this thesis, can be used

for robust design of structures and may be worth investigating. At design stage

the uncertainty in design parameters may affect the performance of the product.

It is important to ensure that the design is robust enough with respect to the

uncertainties. This investigation can be done by implementing the propagation

methods in the design process of structure.

The analysis of uncertainty in the subject of nonlinear structural dynamics is

a challenging problem. This is due to the fact that discrimination between uncer-
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tainty and nonlinearity from measured data does not seem to be straightforward.

However, the effects of nonlinearity together with uncertainty in structural pa-

rameters can be investigated in numerical models and analysis.

In the stability analysis of aircraft structures, Limit Cycle Oscillation (LCO)

phenomenon is considered as a fatigue problem and must not be reached in the

flight envelope of aircraft [147]. The LCO can be triggered by either nonlinearity

in the structural model or the aerodynamic model. The uncertainty propagation

methods which are used in this thesis may be used for the LCO analysis in the

presence of nonlinear uncertain structural parameters in future work.

Finally, as mentioned in Chapter 6, a general solution of interval model updat-

ing problem based on evaluation of inverse of interval matrix is an open problem

and can be considered in future work.

7.3 Outcomes of the research

Four journal papers [137, 140, 143, 145] and four conference papers [141, 142, 144,

146] have been submitted and published from this thesis.
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