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ABSTRACT. Stochastic finite element model updating in structural dynamics needs statistical 
information on measurements and structural parameters. A stochastic model updating method based 
on a least squares estimator and the perturbation method is formulated. The method is capable of 
determining the uncertainty in structural parameters using established propagation methods such as 
Monte Carlo simulation and perturbation. The proposed method has been applied to the case of a 
simulated three degree-of-freedom mass-spring system. The results are validated by a second-order 
sensitivity method. The use of weighting matrices to balance errors between the two statistical 
indices of the estimated parameters is introduced.  
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1 INTRODUCTION 
Conventional model updating methods use measurement information from a single structure [1, 2, 
3, 12, 13] whereas stochastic model updating methods generally need multiple sets of test data from 
many structures built in the same way from the same materials, but with manufacturing and material 
variability [4, 5, 6]. This leads to improved confidence in the parameters of the updated model. 
Stochastic model updating may also include the case of a single test structure with varying vibration 
characteristics due to environmental erosion, operating loads, fatigue, wear etc. [7, 8, 9]. Observed 
variability in measured modal data is caused mainly by manufacturing tolerances (represented by 
uncertain parameters) and measurement noise.  
 

It is clear that the use of randomised structural parameters leads to increased computation in 
model updating, and therefore it is important to use statistical estimation methods so that the 
computational effort does not become unreasonable. In this paper we consider the statistical inverse 
problem in which statistical information from measurements is used to identify randomized 
parameters. Similar to the conventional model updating problem, an initial estimate of system-
parameter statistical indices must been chosen and then updated iteratively. The choice of 
parameters in stochastic model updating is as important as in conventional model updating and 
requires considerable physical insight [2, 10, 11].  

 
In the statistical model updating of Collins et al. [12] and Friswell [13] the randomness arises 

only from the measurement noise and the updating parameters have unique values, to be found by 
iterative correction to the estimated means, whilst the variances are minimised. In the method 
described in this paper, the randomness arises from two sources, product variability (principally due 
to manufacturing tolerances) and measurement noise. In this case, multiple tests are carried out on 
nominally identical test structures each having a set of unique values for the updating parameters 
different from the others. Thus two spaces are defined representing the space of the measurements 
and the space of predictions, and our purpose is to converge the prediction space upon the space of 
experimental measurements. This is achieved by a least squares method which then defines a 
complete space of updated parameters and not just their mean values. The assumption in [12, 13] 
that the expected values of the parameters do not change from iteration to iteration is not 



appropriate in this case and the transformation matrix becomes a function of prediction variability 
as will be explained in the sequel. The expected value of the transformation matrix is expressed in 
terms of two weighting matrices which allow a balanced estimate of both the mean and standard 
deviation of the parameters to be achieved.  

 
Stochastic model updating by the perturbation method [7, 8, 9, 14] needs the second-order modal 

sensitivities, which is time-consuming. These methods have been validated by Monte Carlo 
simulation. We refer to these methods as second order sensitivity methods and use them for 
validation in this paper. The method proposed here needs only the first-order sensitivity matrix 
evaluated at the expected values of estimated parameters when propagation by the perturbation 
method is used or by multivariate multiple regressions [5] when propagation by the Monte Carlo 
method is applied. 

 
The proposed method is applied to a simulated three degree-of-freedom mass-spring system. The 

results obtained are shown to be in good agreement with those obtained by the second-order 
sensitivity method. The weighting matrices introduced are capable of balancing the errors between 
statistical indices of the parameters. It is shown that use of the weighting matrices can reduce the 
estimation errors for the standard deviation.  

2 THEORY 

According to the conventional, deterministic, model updating method [2], the estimate  can 
be updated using prior estimate  as,  

1+jθ

jθ
 

)(1 jmjj zzTθθ −+=+                                                                                                            (1)  
 

where  is the vector of estimated output parameters (eigenvalues and eigenvectors),  is the 
vector of measured data,  is the vector of system parameters and T is a transformation matrix.  
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Previous authors, using the minimum variance estimator [2, 12, 13] with the constant 

transformation matrix T, have supposed that the estimated parameters are unbiased at each iteration. 
For the stochastic model updating presented here the assumption of unbiasedness of  the 
parameters,θ , must be abandoned owing to the form of T, which becomes a function of the model 
variability. To begin, we define the parameters, outputs and transformation in terms of the expected 
value  and the variability , [ ]•E ∆
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jz∆  denotes variability in vibration response of the mathematical model at the jth iteration. This 

variability arises from uncertain parameters, θ , deemed responsible for the observed variability in 
the measured vibration data . We seek the statistics (mean and standard deviation) of these 
parameters that cause the convergence not only of 

mz∆
( )jzE on ( )mzE  but also of on . jz∆ mz∆



 
We observe from equation (1) that the prediction space, defined in equation (3), should be made 

to converge upon the space of measured outputs, defined in equation (4). There are two measures of 
this convergence, namely convergence of the means, and convergence of the standard deviations. 
The conventional minimum variance method allows only for a single mathematical prediction, and 
not for the space of predictions defined in equation (3) – in this sense the minimum variance 
estimator provides only an incomplete statistical description.  This explains why the minimum 
variance estimator generally produces a very good estimate of the mean, but a poor estimate of the 
standard deviation. A consequence of this understanding is that the transformation matrix should be 
different for different mathematical models within the variability jz∆ . Equation (5) is then obtained 
by a truncated Taylor series expansion. A different matrix  generally exists for every term kkT jkz∆  
in the vector of model variability . jz∆
 

Following equations may be developed from equation (1), the expectation of equation (1) and 
equations (2)-(5), 
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where [ ] [ ] [ ] 0zzθ =∆=∆=∆ mjj EEE  
 
Equation (6) leads to the estimate of the mean of the parameters and equation (7) is used in the 
determination of the covariance matrix.  
 

A form similar to that achieved by first order perturbation [7, 8, 9, 14] may be achieved by 
ignoring the second-order variability terms in equation (6). We introduce an expression for the 
expected value of the transformation T that makes use of two weighting matrices, W and We,  
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The choice of  results in the pseudo inverse and 0WIW == e, ee VWW == ,Vj  gives the 
transformation matrix defined by Collins et al. [12]. It will be seen that this transformation allows 
the estimates of the parameter means and standard deviations to be balanced, i.e., the standard 
deviation may be improved at the expense of the estimate of the mean and vice-versa.  
 

The other unknown transformation matrices, ,...,k,kk 21=T , can be found by using a least 
squares estimator. Minimising the difference between measured covariance matrix and analytical 
covariance matrix as:  
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leads to two recursive systems of equation having the following form for the estimation of the 
expected value and co-variance matrix of the parameters, 
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where  and  are co-variance matrix of the parameters at jjV 1+jV th and j+1th iterations and 

[ ]T
jjE zz ∆∆ , [ ]T

jjE zθ ∆∆  can be found by well established propagation techniques such as Monte 
Carlo simulation and the perturbation method [15]. The expected value of sensitivity matrix in 
equation (8) can be evaluated by multivariate multiple regression, as in [5], when using Monte 
Carlo methods. But Monte Carlo propagation usually needs large runs of the finite element models, 
which can be extremely time-consuming. Therefore we propose using propagation by a perturbation 
approach, which has similar results to Monte Carlo in linear cases [4]. Perturbation propagation 
methods need the sensitivity matrix evaluated at the expected values of the parameters . We use 
the following weighting matrices, from equation (8), based on the transformation matrix introduced 
in [12], 
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where  is a parameter to be selected by analyst to approximately represent the level of 
measurement noise and may be determined, for example, from measurements on a single test 
structure. The weighting matrix W

α

e is important because it accounts for the difference, due to 
measurement noise, between the space of measurements and the prediction space as will be 
demonstrated later in a simulated example.  
 

The variability in measured data arises from two sources, namely measurement noise and model 
variability due to uncertain parameters. Therefore the co-variance of measured data may therefore 
be written in the following form: 
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where  is the measurement co-variance matrix,  is co-variance matrix arising from model 
uncertainty and  is the co-variance matrix due to measurement noise. The measurement noise 
depends on the experimental equipment, the test environment and data processing. Therefore modal 
variability due to uncertain parameters and measurement noise are statistically independent.  
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3 SIMULATED EXAMPLE 
The proposed method was applied to the simple three degree-of-freedom mass-spring system shown 
in Figure 1. The nominal values for the simulated experimental system are chosen to be the same as 
in [5],  
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where 21, kk σσ  and 5kσ  are nominal standard deviation of three uncertain parameters and 

. Simulated co-variances of the experimental modal data due to uncertain parameters (  in 
equation (14)) can be found (e.g. [16]), 
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where  is sensitivity matrix evaluated at nominal expected values of the parameters and  is 
nominal co-variance matrix of the parameters. The erroneous random parameters are assumed as 
follow, 
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 Indeed, the measured covariance matrix ( in equation (14)) is much more significant than 

measurement noise ( in equation (14)) in the presence of variability in measured data due to 
manufacturing tolerances, damage and wear etc. In order to have a good estimation of measurement 
noise, the following indicator is defined, 

mV

eV

 
( )( )

( )( )22

22

Ediag

Ediag

m
T
nnn

m

eu

e

m

e
er

zSVS

z

VV
V

V
V

α

α

+
=

+
==                                                                       (16) 

 
where  denote the norm of the matrix. This indicator shows how much of the space created by 
variability in measured data is occupied by measurement noise. Now we demonstrate the proposed 
method with a plausible simulation. In this case we assume that there is an exactly-simulated fully-
populated covariance matrix of measured model variability according to equation (15). Three cases 
of ,  and  are considered. We expect that the method should be capable of 
regenerating the exact values of simulated parameters when 

%0=er %10=er %30=er
%0=er . Table 1 shows this to be the 

case and the second-order sensitivity based method verifies the results. Convergence of the 
Expected value and standard deviation of the uncertain parameters by using proposed method is 
shown in Figure 2. In the cases of  and %10=er %30=er , results have were obtained when (a) the 
weighting matrices were neglected ( 0WIW == e, ) and (b) when weighting matrix were 
determined according to equations (12) and (13). As can be seen in Table 2, the weighting matrices 
can be used to balance the errors in the estimation of both statistical indices of updated parameters. 
In other words using the weighting matrices can reduce the errors in estimated standard deviation 
while increasing the errors in the estimation of the expected value. Figures 3-6 show of the expected 
value and standard deviation of the uncertain parameters converge for the cases of  and 
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Figure 1. Three degree-of-freedom mass-spring system [5] 

 
 

 
Parameter 

Initial Error 
 

(%) 

Error after 
updating by 

PM  
% 

%0=er  

Error after 
updating by 

SSM  
% 

%0=er  
( )1kE  100 0.00 0.00 
( )2kE  100 0.00 0.00 
( )5kE  100 0.00 0.00 

1kσ  50 0.00 0.00 

2kσ  50 0.00 0.00 

5kσ  50 0.00 0.00 
 

Table 1. Results by the proposed method (PM) and the second-order sensitivity method (SSM) 
 in an ideal case. 
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Figure 2. Convergence of parameter estimates in proposed method-  %0=er

 
 

Parameter 
%Error after 

updating  
 

0WIW == e,  
%10=er  

%Error after 
updating  

 
eej VWVW == ,

%10=er  

%Error after 
updating  

 
0WIW == e,  

%30=er  

%Error after 
updating  

 
eej VWVW == ,  

%30=er  

1k  0.00 11.90 0.00 18.75  

2k  0.00 -11.32 0.00 17.22 

5k  0.00 3.32 0.00 4.87 

1kσ  31.44  -24.86 83.2995  -28.16 

2kσ  31.96 -23.24 84.5194 24.87 

5kσ  4.91 -7.55 15.3439 11.63 
 

Table 2. Errors after updating by the proposed method  
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Figure 3. Convergence of parameter estimates in proposed method- %10=er - 0WIW == e,  
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Figure 4. Convergence of parameter estimates in proposed method - %10=er - eej VWVW == ,  
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Figure 5. Convergence of parameter estimates in proposed method- %30=er - 0WIW == e,  
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Figure 6. Convergence of parameter estimates in proposed method - %30=er - eej VWVW == ,  
 

 
The effect of the weighting matrices may be understood from Figure 7, which shows the error 

norm of the expected parameter values and the standard deviations versus the measurement noise 
indicator . Two cases are considered, er 0WIW == e,  and the weighting matrices determined by 
equations (12)-(13).  Figure 7 shows that the latter case leads to the better estimation of the standard 
deviation when the measurement noise is significant. 
 

Another important limitation in practical work is the effect of errors in measured covariance 
matrix due to uncertain parameters (  in equation (14)). In practice there are likely to be errors in 
this matrix due to the scarcity of data from nominally identical test pieces manufactured within 
tolerances. Therefore as an example of a practical limitation, a matrix achieved by equation (15) 
containing 20% error is considered for the simulated co-variance matrix . Figure 8 shows error 
norm of the estimated parameters versus measurement noise indicator . The effective weighting 
matrix can improve the error caused by inaccurate measurement of . Although the estimation of 
the expected value of the parameters are less accurate when using the weighting matrices (left 
diagram in Figure 8), the right diagram shows that the estimation of the standard deviation is 
improved. In particular the considerable errors in the estimated standard deviation caused by model 
variability and measurement noise can be reduced by applying the weighting matrices. For instance 
if we have1.4% measurement noise (

uV

uV

er

uV

014.0=α ) which leads to %10=er , the error norm increases 
in the mean value by 15.1% (blue curve instead of zero (red line)) but decreases in the standard 
deviation (24.4 % (blue line) instead of 57.2 % (red line).  The standard deviation is calculated with 
a very significant error when the weighting matrices are not used, as can be seen from the red line in 
the right-hand diagram of Figure 8. 

 
Figure (9) shows convergence of the prediction space upon the space of simulated experimental 

measurements. This space may define by variation of system-eigenvalues within a normal 
distribution function.  This convergence is achieved in a case of 1.4 % measurement noise by using 
the weighting matrices defined in equations (12)-(13).  
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Figure 7. Error norm in expected value and STD vs. measurement noise indicator  
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Figure 8. Error norm in expected value and STD vs. measurement noise indicator 
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Figure 9. Convergence of analytical space upon measured space. 

4 CONCLUSION 
A method is developed for stochastic model updating using statistical indices and a perturbation 
approach with first-order sensitivities. Monte-Carlo and perturbation methods for uncertainty 
propagation may be applied. The method makes us of a variable transformation matrix to converge 
the space of model predictions upon the space of measured modal data. Weighting matrices are used 
to balance the errors between the means and standard deviations of the estimated structural 
parameters. The method is validated by using a second-order sensitivity approach and simulated 
examples with a three degree-of-freedom mass-spring system provide a demonstration of how the 
technique could be applied in practice.   
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