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ABSTRACT
A perturbation method is employed in this paper and the

problem of model updating in the presence of uncertainty due
to manufacturing variability is addressed. Statistical properties
of experimental data are considered and updating parameters
are treated as random variables. The perturbation equations
are used for estimation of means and covariances of updating
parameters. The perturbation formulation is included and two
approaches of parameter weighting matrix assignments are ex-
plained. Results from one of the approaches demonstrate good
correlation between the predicted mean natural frequencies and
their measured data, but poor correlation is obtained between
the predicted and measured covariances of the outputs. In an-
other approach, different parameter weighting matrices are as-
signed to the means and covariances updating equations. Results
from the latter approach are in very good agreement with the ex-
perimental data and excellent correlation between the predicted
and measured covariances of the outputs is achieved.

∗Presenting author.
†Corresponding author.

NOMENCLATURE
b Overall width of structure.
d Diameter of weld.
h Overall height of structure.
l Overall length of structure.
u Eigenvectors.
w Total weight of structure.
z Predicted output measurements
zm Measured output measurements
E Young’s modulus.
G Shear modulus.
K Stiffness matrix.
M Mass matrix.
S Sensitivity matrix.
T Transformation matrix.
Wεε Weighting matrix of output measurements.
Wθθ Weighting matrix of parameters.
λ Regularisation parameter.
Λ Eigenvalue.
θ Structural parameters.
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ρ Mass density of bulk material.

INTRODUCTION
Interest in uncertainty in the design of engineering struc-

tures are growing; owing to the fact that structural properties
are normally uncertain and hence consequent uncertainty exist in
the dynamic response. Properties of an individual structure nor-
mally change with time due to environmental erosion and dam-
age [1], and also when the structure is being reassembled. It is
also unavoidable to have manufacturing variability [2–4] that ex-
ists among nominally identical structures, built in the same way
from the same materials, such as in a mass production of auto-
motive body-in-white (BIW).

Uncertainty and variability are frequently used inconsis-
tently in literature. Therefore, for the purpose of clarity, uncer-
tainty and variability terminologies are used based on definitions
presented in Ref. [5] in this paper. Variability is defined as a
measure of heterogeneity or diversity in a population (for exam-
ple, intrinsic randomness in a set of structures) and usually is
irreducible through further study or measurement. Variability is
classified as aleatory uncertainty. Uncertainty (or epistemic un-
certainty), on the other hand, represents lack of knowledge, and
can be reducible through further study or measurement. How-
ever, since a variability could also be a subject to lack of knowl-
edge when information within its range is missing, consequently
such variability becomes an uncertainty.

Issues relating to uncertainty and variability, such as safety
and reliability, leads to increasing demands for improved compu-
tational methods that incorporate uncertainties in the structural
properties. When these uncertainties are taken into account, a
deterministic problem then changes to a non-deterministic (or
stochastic) problem. It is highly appreciated that the ability to
numerically predict the behaviour of a structure with uncertain-
ties is very useful and of great scientific value.

Finite element (FE) model updating has become an active
research topic in the past decades [6]. In the FE model updat-
ing, adjustment is made to the system parameters so that the dif-
ference between the measured and predicted modal parameters
(i.e., natural frequencies, mode shapes, etc.) is minimised. Ap-
plication of model updating is well established for deterministic
problems, but due to uncertainties in real test structures, stochas-
tic model updating has become more popular.

Stochastic model updating method [2] allows for manufac-
turing variability and modelling uncertainty to be incorporated
so that numerical models with randomised parameters can be
updated to match their experimental counterparts. As a result,
robust and credible models are produced which in turn increase
trust in design and analysis of such structures. Stochastic model
updating problems are computationally expensive, mainly due to
the randomised parameters, hence various assumptions and sim-
plifications have to be made to ensure the efficiency of the meth-

Figure 1. THE LASER SPOT WELDED STRUCTURE

ods, as investigated by Haddad Khodaparast and Mottershead in
Ref. [7]. Two efficient methods in stochastic model updating,
1) a perturbation method, and 2) a method based upon the min-
imisation of an objective function, were developed and the first
method was shown to be viable and the needs to compute sec-
ond order sensitivities was removed, leading to considerable re-
duction in computational effort in practical engineering applica-
tions. Another study using the perturbation method is presented
in Ref. [8]. This work demonstrates a method to adjust param-
eter means and covariance matrix from multiple sets of experi-
mental modal data. The method is performed by updating mean
parameters to minimise the difference between the measured and
predicted outputs, followed by updating of parameter covariance
matrix, where the difference between the measured and analyti-
cal output covariance matrices is minimised.

In this work, the perturbation method used by Haddad Kho-
daparast et al. [4, 7] is employed. Variability that exists between
a set of nominally identical test structures is investigated. The
variability is quantified using the perturbation method and prop-
agated using the Monte Carlo simulation method. Experimental
modal analysis (or modal testing) [9, 10] is conducted to obtain
the measured means and covariances of the outputs, which are
then used in the stochastic model updating to estimate the means
and covariances of the structural parameters. Two approaches of
parameter weighting matrix assignments are employed and ex-
plained. Results from both approaches are discussed and com-
pared.

DESCRIPTION OF STRUCTURES AND EXPERIMEN-
TAL PROCEDURE

A set of nine laser spot welded structures (see Fig. 1), which
are simplification of substructures normally used in automotive
BIW, are investigated in the study. The structures are made by
following a manufacturing specification by Mottershead et al. [3]
in order to reduce the manufacturing variability in the test struc-
tures. The physical and geometrical properties of the structures
are shown in Table 1 and the thickness of the metal sheets used
to construct the welded structures is 1.5 mm.

Modal testing [9, 10] was performed by conducting three
main aspects of experimental modal analysis [9], which are (1)
excitation of the structure, (2) measurement of response, and
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Table 1. MATERIAL AND GEOMETRIC PROPERTIES OF THE
WELDED STRUCTURES

Properties Values

Overall length (l) 564 mm

Overall width (b) 110 mm

Overall height (h) 40 mm

Mass density (ρ) 7860 kgm−3

Young’s modulus (E) 209 GPa

Shear modulus (G) 83 GPa

Total weight (w) 1.8 kg

Figure 2. THE EXPERIMENTAL SETUP

(3) data acquisition and processing. The welded structures were
tested with free-free hammer tests using two hammer points and
seven measurement points (as depicted in Fig. 2) to determine
the first five natural frequencies. Hammer point 1 was hit in two
directions (i.e., the x- and z-directions), while hammer point 2
was hit only in the z-direction. Multiple hammer points were
chosen to excite certain modes that apparently could not be ex-
cited when a single hammer point was employed. Seven Kistler
accelerometers were used, with six of them placed on the flat
plate where most deformations occur and only one was placed
on the sidewall of the hat. Both hammer and measurement points
were chosen with care so that they are not near any nodal points.
The responses were measured by using a 12-channel LMS sys-
tem and extracted using an LMS PolyMAX curve-fitting pro-
cedure. The first five measured natural frequencies of the nine
structures, together with their means and standard deviations, are
given in Table 2.

An FE model (shown in Fig. 3) developed in previous
work as reported in Ref. [11] is used to represent the structures.
The model was developed using MSC NASTRAN with approxi-
mately 3500 CQUAD4 elements and 20 CWELD elements. The
problem can also be modelled in a more detailed approach, such
as using solid elements and a finer mesh, but that will result in

Table 2. MEASURED NATURAL FREQUENCIES (in Hz) OF THE
WELDED STRUCTURES

Modes

Samples 1 2 3 4 5

1 509.33 557.16 578.25 634.42 646.65

2 511.08 554.14 577.00 626.59 640.17

3 508.67 554.53 575.92 626.59 645.54

4 501.33 541.26 567.79 616.64 634.45

5 512.18 558.39 580.89 630.84 646.44

6 509.32 552.90 578.38 627.65 646.08

7 507.04 550.40 572.83 625.47 643.49

8 508.03 558.13 573.71 630.04 645.74

9 506.15 556.29 573.74 628.78 644.40

Mean 508.12 553.69 575.39 627.45 643.66

Std. 3.15 5.33 3.87 4.88 4.00

Figure 3. FE MODEL OF THE STRUCTURES

highly expensive computational effort. The FE model did not in-
corporate the Kistler accelerometers used in the experiments as
they were considerably lighter (approximately 1.6 grams each)
than the structure under investigation.

FE models of the components, i.e., the flat plate and the top-
hat, has been updated prior to being used in modelling the welded
structures to isolate any uncertainties from the models. There-
fore, it is assumed that the main uncertainties in the FE model
comes from the weld parameters. Nominal value is used for the
thickness (i.e., 1.5 mm) and the values for the material properties
are assigned as tabulated in Table 1. Initial values of the weld
and patch parameters follow the guidelines given by Ref. [11], as
shown in Table 3.

METHODOLOGY
Structural parameters are normally assumed to be known in

forward problem, but unknown for inverse problem such as in
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Table 3. MATERIAL AND GEOMETRIC PROPERTIES OF THE WELDS

Properties Values

Diameter of welds (d) 5.5 mm

Young’s modulus of welds (Eweld) 220 GPa

Young’s modulus of patch (Epatch) 650 GPa

model updating [6]. It is often easier to measure the structural
response (such as modal properties and frequency response func-
tions (FRFs)) than measuring the parameters. The statistical es-
timates from the response measurements may then be used to
deduce the statistical estimates of the parameters. This inverse
problem of estimating the parameter distributions from the re-
sponse measurements is called uncertainty identification or quan-
tification [12], and is the subject of this paper.

Statistical methods have been widely used in model updating
and methods for dealing with the estimation of parameter vari-
ability in the stochastic model updating has evolved over the past
years. One of the most widely used methods is the perturbation
method, which is based on the Taylor series expansion and uses
the sensitivities expressing the influence of the stochastic input
parameters on the output quantity. The perturbation method gen-
erally aims at calculating the first two statistical moments (i.e.,
mean and standard deviations) of the parameters, which is fur-
ther explained in the following subsection. Driven by its pop-
ularity, the perturbation approach remains under continuous de-
velopment.

The Perturbation Method
Conventional, deterministic model updating methods are

based on the simple first-order Taylor series expansion and the
general form of this expansion is

zm = z j +S j
(
θ j+1 −θ j

)
(1)

In equation (1), S j is an mxn sensitivity matrix at jth iteration,
which denotes the rates of change of the structural eigenvalues
(δΛ j) with respect to changes in parameters (δθ ), which can be
expressed as [13]

S j =
δΛ j

δθ
= uT

j

[
δK
δθ

−Λ j
δM
δθ

]
u j (2)

Rearranging Eq. 1 and introducing a weighting matrix of mea-
surements (Wεε) and a weighting matrix of parameters (Wθθ )
into the equation gives

θ j+1 = θ j +T j (zm − z j) (3)

where θ ∈ Rnx1 is the vector of structural parameters, zm ∈ Rmx1

is the vector of measured data and z j ∈ Rmx1 is the vector of
predicted outputs. T j is a transformation matrix, which can be
written as

T j = (ST
j Wεε S j +Wθθ )

−1ST
j Wθθ (4)

Wεε and Wθθ are positive definite weighting matrices. Wεε is
usually given by the reciprocals of the measurements variance,
while Wθθ must be chosen so that only uncertain parameters will
change more during the updating procedure than the other pa-
rameters. The choice of Wεε = I and Wθθ = 0 would results in
pseudo-inverse [6]. For an ill-conditioned model updating prob-
lem, Wθθ = λ ∗ I where λ is a regularisation parameter found
by plotting an L-curve [14]. The weighting matrix assignment is
explained and discuss further in the next subsection.

Including the variability in measurements,

zm = ¯zm +∆zm and z j = z̄ j +∆z j (5)

where z̄ denotes the mean values of the measurements and ∆z
represents the vectors of random variables.

Similarly, the variability of the structural parameters at jth

iteration is defined as,

θ j = θ̄ j +∆θ (6)

where θ̄ denotes the mean values of the parameters and ∆θ rep-
resents the vectors of random variables.

The transformation matrix is now represented by

T j = T̄ j +∆T j (7)

where

∆T j =
n

∑
k=1

∂T j

∂ zmk

∆zmk (8)
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∆zmk denotes the kth element of ∆zm. Substituting Eqs. 5 to 7 into
the deterministic problem (Eq. 3) produces the stochastic model
updating equation, as follows.

θ̄ j+1 +∆θ j+1 = θ̄ j +∆θ j +(T̄ j +∆T j)( ¯zm +∆zm − z̄ j −∆z j)
(9)

Separating the zeroth-order and first-order terms from Eq. 9
gives,

∆0: θ̄ j+1 = θ̄ j + T̄ j ( ¯zm − z̄ j) (10)

∆1: ∆θ j+1 = ∆θ j +∆T j (∆zm −∆z j) (11)

Eqs. 10 and 11 are used to determine the parameter means and
the parameter covariance matrix, respectively, in the perturbation
method [4]. The parameter covariance matrix equation can be
written as,

Cθθ j+1 = Cθθ j −CθZ j T̄
T
j + T̄ jCEET̄T

j − T̄ jCZθ j + T̄ jCZZ j T̄
T
j

(12)
with the parameters covariance matrix,

Cθθ = Cov(∆θ ,∆θ)

the covariance matrix of the measured outputs,

CEE = Cov(∆zm,∆zm)

the covariance matrix of the predicted outputs,

CZZ j = Cov(∆z j,∆z j)

the covariance matrix of the parameters and the predicted
outputs,

CθZ j = Cov(∆θ ,∆θ) j ×ST
j

and the covariance matrix of the predicted outputs and the
parameters,

CZθ j = S j ×Cov(∆θ ,∆θ) j

where ‘Cov’ represents the covariance between two random vari-
ables, which are computed using mean-centred first order per-
turbation method. A significant advantage of the perturbation

method [4,7] used in this paper over another similar perturbation
method by Hua et al. [15] is that only the first-order sensitivity
matrix is needed in Eq. 12, hence big reduction in terms of com-
putational effort is achieved.

The outlined procedure in Ref. [4] is followed to deter-
mine the statistical data (i.e., means and standard deviations) of
the structural parameters that converge: (1) the mean predicted
modal data (z̄) on the mean measured modal data ( ¯zm), and (2)
the covariance matrix of the predicted modal data (CZZ) on the
covariance matrix of the measured modal data (CEE). The values
of the means and standard deviations of the structural parame-
ters can then be propagated in the numerical model by using the
multivariate normal distribution Monte Carlo simulation. In this
work, 500 samples are generated according to the statistical data
obtained by the perturbation method and the respective analytical
model outputs (i.e., natural frequencies) are computed.

Modifications of the weighting assignment
The stochastic model updating in the case of variability in

the experimental data where the output means and their covari-
ances are known requires two steps to be carried out:

1. Adjustment of the mean parameters, where the difference
between the measured and predicted outputs are minimised
using a weighted least squares method. This is performed
by using Eq. 10.

2. Adjustment of the parameter covariance matrix, where the
difference between the measured and analytical output co-
variance matrix are minimised using the Frobenius norm.
This is performed by using Eq. 12.

In this work, the perturbation formulation for the stochas-
tic model updating is applied by using the reciprocals of the
measurements variance as the measurement weighting matrix
(Wεε ) and assigning two different approaches for the parameters
weighting matrix (Wθθ ). The first approach considers only the
main uncertain parameters, hence equal weighting is employed
when estimating the means and covariances of the parameters.
On the other hand, more parameters are considered in the second
approach regardless of their levels of variability. Two different
weightings have to be introduced, one for each step of updating.
Both approaches are explained as follows.

Approach 1 In this approach, the matrix of the parame-
ters weighting is

Wθθ = λ ∗ I

Regularisation parameter (λ ) of 400 is used and the weighting
is assigned for both steps of the stochastic model updating. As
mentioned beforehand, the main variability comes from the weld
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Table 4. MEAN NATURAL FREQUENCIES ESTIMATED USING AP-
PROACH 1

Experiment Initial FE Error Updated FE Error

Mode (Hz) (Hz) (%) (Hz) (%)

1 508.12 487.55 4.05 500.68 1.46

2 553.69 517.86 6.47 567.61 2.51

3 575.39 555.03 3.54 573.42 0.34

4 627.45 575.14 8.34 631.56 0.66

5 643.66 582.64 9.48 635.44 1.28

parameters (i.e., d, Eweld and Epatch), hence this approach uses
only the three weld parameters tabulated in Table 3 for the up-
dating procedure.

Approach 2 In contrast to Approach 1, Approach 2
includes eight parameters (i.e., five from the components and
three from the welds). The parameters of the components have
low level of variability in comparison with the weld parameters,
therefore, different assignments of weighting are used. The
weighting matrix used to update the mean parameters (step 1) is

Wθθ = λ ∗diag(1000, 1000, 1000, 1000, 1000, 1, 1, 1)

where bigger weighting is given to the components parameters
to limit their changes during updating. The weld parameters are
not weighted as much to allow them to change more.

In the second updating step (i.e., to update the parameter co-
variance matrix), similar weighting as in Approach 1 is used. The
variances of the parameters are assumed to have the same level of
variability due to the fact that the components may have changed
slightly during the welding process. This will increase the level
of variability in the welded structures as a whole. Assigning dif-
ferent weighting matrices for each updating step will ensure that
the mean parameter values reflects the physical parameters of
the structures, allowing for uncertainties after the components
are welded together to be considered.

RESULTS AND DISCUSSIONS
Results obtained by the perturbation method with Wθθ =

λ ∗ I are discussed first, followed by the results obtained when
modification of weighting is introduced. Firstly, it can be seen
from Table 4 that the updated mean natural frequencies obtained
using the first approach are close to the mean measured frequen-
cies.

The initial means and standard deviations of all weld param-
eters are shown in Table 5. The initial mean values are chosen

Table 5. IDENTIFIED MEAN PARAMETERS ESTIMATED USING AP-
PROACH 1

Parameter Initial value Identified value

d 5.5 mm 6.0 mm

Eweld 220 GPa 230 GPa

Epatch 650 GPa 1595 GPa

std. (d) 0.05 mm 0.16 mm

std. (Eweld) 2.00 GPa 5.57 GPa

std. (Epatch) 6.50 GPa 10.49 GPa

from deterministic study done prior to this work [11], while the
initial standard deviations are deliberately set at 1% of the mean
values. The results of the updated means and standard deviations
are not in good agreement with the deterministic values. Con-
siderable changes can be observed on the mean parameters, as
shown in Table 5, and the estimated standard deviations are gen-
erally bigger than the initial estimates.

The covariance matrix of the measured outputs (CEE)
obtained from the modal testing is

CEE =


9.95 13.31 11.53 11.51 8.70

28.42 15.71 24.32 18.47
15.01 14.75 11.52

sym. 23.85 17.30
16.00


while the covariance matrix of the predicted outputs (CZZ)
computed using the identified parameter estimates (see Table 5)
is given as follows.

CZZ =


0.91 3.16 0.56 3.54 3.23

12.92 4.11 14.35 12.58
6.78 2.49 4.69

sym. 18.09 14.19
14.10


The percentage of error between CEE and CZZ is shown in Fig. 4.
Generally, the errors are very big when using the first approach,
hence it can be concluded that the approach fails to produce a
good estimate of the CZZ.

The updated mean natural frequencies using the second ap-
proach is tabulated in Table 6. It can be seen from the table
that the identified and measured natural frequencies achieved by
using the second approach are in good agreement. The identi-
fied means and standard deviations using the second approach are
given in Table 7. As can be observed from the table, the changes
in the identified means and standard deviations of the parameters
with respect to the deterministic estimates are reasonable.

The identified estimates shown in Tables 6 and 7 give a CZZ
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Figure 4. Error after updating between the measured and predicted
measurements covariance using Approach 1

Table 6. MEAN NATURAL FREQUENCIES ESTIMATED USING AP-
PROACH 2

Experiment Initial FE Error Updated FE Error

Mode (Hz) (Hz) (%) (Hz) (%)

1 508.12 487.55 4.05 498.10 1.97

2 553.69 517.86 6.47 568.14 2.61

3 575.39 555.03 3.54 570.35 0.88

4 627.45 575.14 8.34 632.85 0.86

5 643.66 582.64 9.48 636.40 1.13

as follows,

CZZ =


10.65 13.30 11.60 11.84 9.99

25.39 13.78 22.39 18.57
13.37 13.22 11.32

sym. 22.35 18.36
16.84


and the error as shown in Fig. 5. The errors of each element
appear significantly small than the ones produced by the first ap-
proach. This shows that the estimated means and standard devia-
tions of the second approach are reasonable and the modification
made to the weighting matrices are valid.

Convergence of the normalised parameter estimates pro-
duced by the second approach is shown in Fig. 6. It can be seen
from the figure that convergence is achieved in ten iterations. Fig.
7 and 8 show the convergence of the predictions upon the exper-
imental data in the space of the first three natural frequencies us-
ing the second approach. Five hundreds samples are propagated
by the Monte Carlo simulation and it is clearly enough to obtain

Table 7. IDENTIFIED MEAN PARAMETERS ESTIMATED USING AP-
PROACH 2

Parameter Initial value Identified value

d 5.5 mm 5.6 mm

Eweld 220 GPa 222 GPa

Epatch 650 GPa 737 GPa

std. (d) 0.05 mm 0.06 mm

std. (Eweld) 2.00 GPa 2.65 GPa

std. (Epatch) 6.50 GPa 3.17 GPa

Figure 5. Error after updating between the measured and predicted
measurements covariance using Approach 2

an accurate estimate of the parameter variability. General trends
of the updated results are similar to that of the initials. The find-
ings demonstrate that modification to the weighting assignment
is capable of bringing the numerical results to convergence.

CONCLUSIONS
This paper studies a stochastic model updating problem for

a set of welded structures with parameter variability. A perturba-
tion method is employed and two approaches of assigning param-
eter covariance weighting matrices to the perturbation method
have been introduced. The first approach considers only the main
uncertain parameters, hence equal weighting has been employed
when estimating the means and covariances of the parameters.
On the other hand, more parameters are accounted for in the sec-
ond approach regardless of their levels of variability. Two differ-
ent weightings have to be introduced, one for each step of updat-
ing. The second approach has significantly improved the results
over the first approach, and the predicted space has converged
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(a) Initial scatter plot for the first and second natural fre-
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frequencies
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(c) Initial scatter plot for the first and third natural fre-
quencies
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(d) Updated scatter plot for the first and third natural
frequencies
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(e) Initial scatter plot for the second and third natural
frequencies
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(f) Updated scatter plot for the second and third natural
frequencies

Figure 7. Initial and updated scatter plots for the first, second and third natural frequencies
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Initial model outputs
Measured outputs

(a) Initial scatter plot for the first three natural frequencies
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Updated model outputs
Measured outputs

(b) Updated scatter plot for the first three natural frequencies

Figure 8. Initial and updated scatter plots for the first three natural frequencies
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