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A systematic approach to the model order reduction of high �d elity coupled �uid-
structure/�ight dynamics models and the subsequent contro l design is described. It uses
information on the eigenspectrum of the coupled-system Jac obian matrix and projects the
system through a series expansion onto a small basis of eigen vectors representative of the
full-model dynamics. A nonlinear reduced order model is der ived and is exploited for a
worst case gust and adaptive control design. The investigat ion focuses on a �ight control
design based on the model reference adaptive control scheme via the Lyapunov stability
approach. The novelty of this paper is two-fold. Firstly, it uses a single nonlinear reduced
model for parametric worst case gust search. Secondly, it is shown that it makes feasible
an implementation of a complex control methodology for a lar ge nonlinear system. The
adaptive controller is able to alleviate gust loads for a thr ee degrees-of-freedom aerofoil
and for an unmanned aerial vehicle. An investigation for the adaptation parameters is
performed and their e�ect on control input actuation and aer oelastic closed-loop response
is discussed.

Nomenclature

b = semi-chord
K � ; K � ; K � = plunge sti�ness,torsional and �ap sti�ness about elastic axis
K � 3; K � 3; K � 3 = plunge, torsional and �ap third order terms of sti�ness
K � 5; K � 5; K � 5 = plunge, torsional and �ap �fth order terms of sti�ness
I � = second moment of inertia of aerofoil about elastic axis
I � = �ap moment of inertia
m = aerofoil sectional mass
h = plunge displacement
k = reduced oscillation frequency, ! c = 2U1

t = physical time
x � = aerofoil static unbalance, S� =m b
x � = reduced centre of gravity distance from �ap hinge.
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R = residual vector
ch = non-dimensional distance from the mid-chord to the �ap hin ge
ra = radius of gyration of aerofoil about elastic axis, r 2

a = I � =m b2

r � = reduced radius of �ap gyration
U1 = freestream velocity
UL = linear �utter speed
U � = reduced velocity, U=b ! �

w = vector of unknowns
A ; B ; C = �rst,second and third order Jacobian operators
B c; B w = control,and disturbance recuded vector
A m ; B m = jacobian and control input vector of the reference model
wg = gust vertical normalized velocity
W0 = intensity of gust vertical velocity

Greek

� = angle of attack
� = trailing-edge �ap de�ection
� = non-dimensional time, t U1 = b
! � = uncoupled plunging mode natural frequency,

p
K � =m

! � = uncoupled pitching mode natural frequency about elastic axis,
p

K � =I �

! � = uncoupled �apping mode natural frequency
p

K � =I �

�! 1 = ratio of ! � =! �

�! 2 = ratio of ! � =! �

� � = damping ratio in plunge, C� =Cc
�

� � = damping ratio in pitch, C� =Cc
�

� � = damping ratio in �ap, C� =2
p

I � K �

� = non-dimensional displacement in plunge,h=b
� = mass ratio, m=� � b 2

� = matrix of right coupled system eigenvectors

I. Introduction

The following investigation focuses and builds on previouswork done on the development of a systematic
approach to �ight control system (FCS) design for very �exib le or very large aircraft.1� 4 In this paper,
the focus is on the exploitation of model order reduction forgust load alleviation by an adaptive control
implementation. Previous work by the authors has focused ongust load prediction and alleviation using
standard robust optimal control techniques based onH1 and H2.3, 5 Recent work 4 has dealt with �utter
suppression by means of active control and use of control surfaces for an experimental wind tunnel model.
The role of reduced order models was also investigated.

A large body of work has been done in linear control design fornonlinear aeroelastic systems and even
though linear controllers can most times stabilize a nonlinear system around a stable controllable equilibrium,
stability is not guaranteed under strong nonlinear regimes. Thus, several studies focused on eliminating the
nonlinearity that induced pathologies such as limit cycle oscillations based on partial feedback linearisation
control.6 The nonlinear active control designed by Strganac et al6 required that the controller needed a well
known nonlinearity for the exact cancelation. As a continuation of this work, the authors of this investigation
performed partial feedback linearization for a numerical model corresponding to a low speed wind tunnel
model with a nonlinearity in the plunge degree of freedom.7 It was shown that the nonlinear controller
outperforms a linear control design based on pole placementas the latter fails to achieve any signi�cant
reduction in the amplitude of the LCO. Also, optimal control has been tested for �utter suppression, for
example, Huang et al8 designed a Linear Quadratic Gaussian control that takes into account a control input
delay and applied the control at an experimental wind tunnel model for �utter suppression. Aside from
�utter suppression signi�cant amount of e�ort for control d esign has been shown for stability augmentation

2 of 21

American Institute of Aeronautics and Astronautics



and gust load alleviation in �exible aircraft. 9, 10 A common approach is to fully account for the nonlinear
structural behaviour while simple linear aerodynamic models based on two-dimensional theory were used for
the aerodynamics.

In general, common linear control methodologies have been found e�cient for aeroelastic systems at a
speci�c freestream speed region but ideally as the �ow conditions during �ight may change, an adaptive
control methodology is preferred. Recent advances in adaptive control and especially inL 1 adaptive control
theory made possible the application of adaptive controllers to the control of uncertain nonlinear systems.11

This design uses a state predictor similar to indirect modelreference adaptive systems however the control
input is obtained by �ltering the estimated control signal w ith a low pass �lter. L 1 adaptive approach
has been applied to the wing-rock control12 and missile control.13 In Ref.14 an L 1 adaptive controller
for a prototypical pitch-plunge 2-D aeroelastic system in the presence of gust loads was developed. Other
techniques of adaptive control such as model reference adaptive control have been applied at a �exible
aircraft problem by using a rigid aircraft as a reference model and a neural network adaptation to control
the structural �exible modes and compensate for the e�ects of unmodeled dynamics.15 Recently Chowdhary
et al.16 presented �ight tests results for adaptive controllers based on the Model Reference Adaptive Control
(MRAC) architecture on the Georgia Tech GT Twinstar �xed win g engine aircraft with 25% of the wing
missing. A recent promising adaptive control architecturewas based on the derivative free MRAC17 method.
This new algorythm is expected to provide faster adaptationand smoother error transients particularly for
situations where the system dynamics are changing fast.

The paper continues in ŸII with a description of the full order model. The approach to model reduction
and the control design is introduced in ŸIII and in ŸIV , respectively. Finally, validation of the code against
existing numerical and published data, a worst-case gust search and the application of the controller for load
alleviation for a 3 degrees-of-freedom and an unmanned aerial vehicle are presented.

II. Full Order Model

The general form of the fully coupled nonlinear model for thedescription of the �ight dynamics of a very
�exible aircraft can be represented in state-space form. Denote by w the n-dimensional state-space vector
which is conveniently partitioned into �uid, structural an d rigid body degrees of freedom.

w =
�
w T

f ; w T
s ; w T

r

�
(1)

The state-space equations in the general vector form are

dw
dt

= R (w ; u c; u d) (2)

where R is the nonlinear residual, u c is the input vector (e.g. control �ap de�ections or thrust) a nd u d is
the exogenous vector for the description of some form of disturbance acting on the system (e.g. gust). The
homogeneous system has an equilibrium point,w0, for given constant u c0 and u d0 = 0 corresponding to a
constant solution in the state-space and satisfying

dw0

dt
= R (w0; u c0; u d0) = 0 (3)

The residual form in Eq. (3) forms the reference for the model reduction described below. The system is
often parametrized in terms of an independent parameter (freestream-speed, air density, altitude, etc.) for
stability analysis. The options for the residual evaluation are described in the next section.

A. Linear Aerodynamic Model

A cheaper computational alternative to the computational � uid dynamics (CFD) valid for an irrotational and
incompressible two-dimensional �ow is the aerodynamic model given by the classical theory of Theodorsen.18

This is a reasonable assumption when dealing with low-speed�ow characteristics in 2-D. The total unsteady
aerodynamic forces and moments can be separated into three components, circulatory, non-circulatory due
to the wing motion and a contribution from the gust disturban ce. The aerodynamic loads due to an arbitrary
input time-history are obtained through convolution against a kernel function. For the in�uence of aerofoil
motion on the loads, the Wagner function is used.19 In a similar way, the in�uence of the gust is performed
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by introducing the Küssner function.20 Since the assumption is of linear aerodynamics, the e�ects of both
in�uences are added together to �nd the variation of the forces and moments for a given motion and gust.
For a practical evaluation of the integral, a two lag exponential approximation is used for the Wagner and
Küssner functions.

B. Residual Formulation

The residual formulation for the two testcases investigated here follows the general formulation of the full
order model as described inII . Both testcases include a nonlinear structural model. The 3degrees of
freedom aerofoil model, can have a cubic or quintic structural polynomial sti�ness nonlinearity in any of the
structural degrees of freedom while the beam model is based on an exact geometric nonlinearity.

1. Three Degree-of-Freedom Model

The size of the coupled aeroelastic model is 14 and consists of 8 aerodynamic states and 6 structural states
(pitch, plunge and �ap degrees-of-freedom and their corresponding velocities) . The nondimensional torque
is used as control input related to the �ap rotation. De�ne th e state vector x s of the structural degrees-of-
freedom andw f for the augmented aerodynamic states.

x s = ( �; �; � )T (4)

w f = ( w1; w2; w3; w4; w5; w6; w7; w8) (5)

Following the general de�nition of the Residual in Ÿ II the system is recast in a coupled �rst order ODE
of the general form where the unknowns are partitioned into structural and �uid contribution as

w =
�
w T

s ; w T
f

� T
where w s =

�
x T

s ; _x T
s

� T
(6)

and the residual R is given by
R = A L w + bN (w ) + ba + be (7)

The matrix AL is de�ned as

A L =

2

6
4

0 I 0
� M � 1K � M � 1C A sf

A fs 0 A f f

3

7
5 (8)

bN =

8
><

>:

0
� M � 1FN

0

9
>=

>;
; ba =

8
><

>:

0
� M � 1f a

0

9
>=

>;
; be =

8
><

>:

0
� M � 1f e

A fg u d

9
>=

>;
(9)

The matrix terms M , C and K are the e�ective mass, damping and sti�ness matrices containing structural
and aerodynamic contributions. The matrix blocks A sf and A fs couple the structural equations and the
�uid equations. The matrix A f f relates the �uid unknowns to their �rst time derivatives. Th e term FN is
a nonlinear vector arising from the polynomial sti�ness. The vector f a arises from the in�uence of initial
conditions upon the unsteady aerodynamic forces. The termf e is the nondimensionalised form of any applied
external force or moment, for e.g. the �ap hinge moment for control input. Overall, vectors bN , ba and
be denote contributions from nonlinear terms, aerodynamics due to initial conditions and external inputs,
respectively.

2. Geometrically-Nonlinear Flexible Wing

The stuctural dynamic description based on the geometrically-exact nonlinear beam equations detailed in21 is
used for the structural model and a thin-strip theory is usedfor the unsteady aerodynamics. The coupled full
order model follows the formulation presented in.1 Results are obtained using two-noded displacement-based
elements. In a displacement-based formulation, dominant nonlinearities arising from large deformations are
cubic terms, as opposed to an intrinsic description where they appear up to second order.22 The nonlinear
beam code was coupled with strip aerodynamics using the description above. The motion of each structural
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node is described by 6 degrees-of-freedom. The coupling between aerodynamic and structural models is
performed considering that each structural node coincideswith an aerodynamic section. No aeroelastic
interface is required in this case, as the aerodynamic forces and moments are applied directly on each
structural node. For cases where an aeroelastic interface is required to couple non-coincident and non-
overlapping aerodynamic/structural models, the method described in Ref.23 provides an excellent solution
to the problem.

Similarly, the system is recast in a coupled �rst order ODE of the general form as in Eq. (2)

R = Aw + B cu c + B gu d + FN (w ) (10)

where the unknowns are partitioned into structural and �uid contribution as Eq. (6)

w =
�
w T

s ; w T
f

� T
where w s =

�
x T

s ; _x T
s

� T
(11)

The matrix A is de�ned as,

A =

2

6
4

0 I 0
� M � 1

T K T � M � 1
T CT A sf

A fs 0 A f f

3

7
5 (12)

while the contributions from gust and control rotation are given in Eq. (13) respectively.

B c =

8
><

>:

0
M � 1

T A sc

A fc

9
>=

>;
; B g =

8
><

>:

0
0

A fg

9
>=

>;
(13)

Lastly the structural nonlinearities are assembled in the vector FN forming the nonlinear residual. Note that
Eq. (10) has the same structure that Eq. (7) has, even though they were derived from di�erent modelling
techniques.

III. Nonlinear Model Reduction

Denote � w = w � w0 the increment in the state-space vector with respect to an equilibrium solution.
The large-order nonlinear residual is expanded in a Taylor series around the equilibrium point

R (w) � A � w +
@R
@u c

� u c +
@R
@u d

� u d +
1
2

B (� w ; � w ) +
1
6

C (� w ; � w ; � w ) + O
�
j� w j4

�
(14)

retaining terms up to third order in the perturbation variab le to describe the nonlinear full order dynamics.
The Jacobian matrix of the system is denoted asA and the vectors B and C indicate, respectively, the
second and third order Jacobian operators. The control surface de�ection and gust disturbance is indicated
by u c and u d, respectively.

A x =
R 1 � R � 1

2�
(15)

B (x ; x ) =
R 1 � 2R 0 + R � 1

� 2 (16)

C (x ; x ; x ) =
� R 3 + 8 R 2 � 13R 1 + 13 R � 1 � 8R � 2 + R � 3

8� 3 (17)

where R l = R (x 0 + l � � x ).
The full order system is projected onto a basis formed by a small number of eigenvectors of the Jacobian

matrix evaluated at the equilibrium position. Right and lef t eigenvectors are scaled to satisfy the biorthonor-
mality condition. 1 The projection of the full order model is done using a transformation of coordinates

� w = � z + �� � z (18)

where z is the state space vector governing the dynamics of the reduced order system and� is the modal
matrix of right coupled system eigenvectors. The result is asystem of uncoupled ordinary di�erential
equations in z. The dependencies of the residual on control surface de�ection and gust are evaluated by
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�nite di�erences. A clear choice for the basis is to use eigenvectors corresponding to structural modeshapes
modi�ed by the �ow at the speci�c equilibrium point, which ar e readily available when tracking frequencies
and modeshapes for increasing air speed. This is equivalentto adding aerodynamic mass, damping and
inertia. If required, the basis can be enhanced by includingadditional eigenvectors until convergence.

The advantages of the approach are that: 1) it can retain non�linear e�ects from the original full order
model; 2) once created, it is independent of the gust formulation and one reduced model can be used for
parametric searches; 3) it allows control design on a small non�linear system and o�ers the possibility to
investigate non�linear control techniques; and 4) the approach is systematic because control design is done
in the same way independently of the formulation of the full order model. This technique only requires a
coupled system in �rst order form.

IV. Model Reference Adaptive Control

This section describes how linear and nonlinear reduced models are used to design control laws based on
model reference adaptive control. The stability proof of this methodology is well known.24 This approach
assumes an ideal reference model which will induce some constraints on the response of the actual aeroelastic
system. The dynamics of the reduced model are given by Eq. (19)

x (t)0 = A x (t) + B c u c (t) + B gu d (t) + FNR (x ) (19)

whereFNR is the nonlinearity that results from the nonlinear model order reduction technique. The assumed
ideal model reference follows dynamics of the form

x m (t)0 = A m x m (t) + B m u c (t) + B gu d (t) + FNR (x m ) (20)

The nonlinearity in the reference model has been selected tosatisfy FNR (x ) = FNR (x m ) = FNR . Matrix
A m is a stable Hurwitz matrix that satis�es the desired propert ies of the reference system. This could
mean eigenvalues with increased damping compared to the actual aeroelastic system. Matrix B m is user
de�ned and describes the in�uence of the control inputs on the states of the reference model. The states of
the reference model due to the increased damping in matrixA m will decay to zero faster under the same
disturbances or �ap actuation while their magnitude will be smaller as well. The physical displacements of
the system can be retrieved by using the eigenvectors.

y (t) = Cx (t)

ym (t) = Cx m (t) (21)

The goal is to �nd a dynamic control input u c (t) such that lim t !1 ky (t) � ym (t) k. The exact control
feedback for the model matching conditions is de�ned as

u c (t) = K �
x x (t) + K �

r r (t) (22)

where r (t) is a reference signal applied in both systems as shown in Fig.1 ( e.g. torque for the aerofoil
model or �ap angle for the �exible wing case) and K �

x ; K �
r are the exact gains acting on the states and

control input to match the two models. By replacing Eq. (22) in Eq. ( 19) and satisfying the model matching
conditions yields

A + B cK �
x = A m

B cK �
r = B m

(23)

SinceA and B c are considered to be unknown to the controller the values denoted in Eq. (22) (e.g K �
x ; K �

r )
are also unknown at initial time and the actual control signal applied at the current timestep is de�ned as

u c (t) = K x (t) x (t) + K r (t) r (t) (24)

The gains K x (t) and K r (t) in Eq.(24) are dynamic gains that need to be solved and at the end will be
required to converge to the values that provide a solution toEq. (23). The closed loop dynamics of the
nonlinear reduced model at this point can be expressed as

x (t)0 = ( A + B cK x (t)) x (t) + B cK r (t) r (t) + B gu d (t) + FNR (25)
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Let � � = [ K �
x K �

r ]T and � = [ K x (t) K r (t)]T . The estimation error between the instantaneous and the
ideal gains is de�ned as

�� = � � � � =
� �� x

�� r
� T

(26)

with �� x = K �
x � K x (t), �� r = K �

r � K r (t). Now de�ne � =
�

x (t)T r (t)
� T

. In that case the closed loop

system dynamics in Eq. (25) are expressed as

x (t)0 = ( A + B cK �
x ) x (t) + B cK �

r r (t) � B c
�� x x (t) � B c

�� r r (t) + B gu d (t) + FNR

= A m x (t) + B m r (t) � B c� T �� + B gu d (t) + FNR (27)

For the purpose of the stability proof of the closed loop system one needs to de�ne the error dynamics
between the two systems.

e (t) = x (t) � x m (t) (28)

The derivative of which, expresses the rate of change between the two systems and can be written as

e (t)0 = x (t)0 � x m (t)0

= A m x (t) + B m r (t) � B c� T �� + FNR � A m x m (t) � B m r (t) � FNR + B gu d (t) � B gu d (t)

= A m (x (t) � x m (t)) � B c� T ��

= A m e (t) � B c� T �� (29)

The Lyapunov equation is solved for the reference model and its solution will be part of the steady part of
the Lyapunov candidate function that will lead to the stabil ity proof of the nonlinear reduced model.

P A m + A m
T P = � Q; Q = QT � 0 (30)

where in Eq.(30) Q is a semi-de�nite positive user de�ned matrix. A scalar quadratic Lyapunov function V
in e and �� may be de�ned, such that the system becomes asymptotically stable by satisfying V > 0 and its
time derivative is semi de�nite negative V 0 � 0 24 . This function will provide insight on the selection of the
parameter update law of the time varying gains in Eq. (24). The Lyapunov function

V (e (t) ; � ) = e (t)T P e (t) + �� T � � 1 �� > 0 (31)

is considered, whereP = P T > 0 is the solution of the algebraic Lyapunov Eq. (30) for a particular selection
of Q while � = � T � 0 is a user de�ned semi de�nite positive matrix. Note that the p ositiveness of the
above Lyapunov function is guaranteed only if the system under examination is a minimum-phase system.
Di�erentiating the above equation with respect to time yiel ds

V 0(e (t) ; � ) = e (t)0T �
P + P T �

e (t) + 2 �� T � � 1 �� 0 (32)

By substitution of the error dynamics and by using Eq. (30) , Eq. (32) is expanded as follows

V 0(e (t) ; � ) = e (t)T
�

A m P + A m
T P

�
e (t) + 2 e (t)T P B c� T �� + 2 �� T � � 1 �� 0

= � e (t)T Qe (t) + 2 �� T � � 1
�

� � e (t)T P B c + �� 0
�

(33)

From the above equation one can determine the adaptation parameter to satisfy the semi de�nite nega-
tiveness of the derivative of the Lyapunov function as

�� 0 = � � � e (t)T P B c (34)

which leads to

V 0(e (t) ; � ) = � e (t)T Qe (t) � 0 (35)

which is valid due to the semi de�nite positiveness of matrix Q. The dynamic time varying gains in Eq. (24)
are updated by the adaptive law so that the time derivative of the Lyapunov function decreases along the
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error dynamic trajectories as in Eq. (35). By using Barbalat's lemma this translates in boundness ofthe
error dynamics with respect to the time evolution and as a result satisfaction of the model matching con-
ditions. In general, this control approach is limited to minimum phase systems. Thus, when applied in
unstable nonminimum phase systems unstable zero-pole cancelation may occur and the error between the
two assumed models slowly diverges to in�nity. However, a simple feedback based on the Bass-Gura formula
25 can be applied on the ROM to place any unstable zeros on the left half plane. The implementation of the
computational algorythm can be summarized in the block diagram shown in Fig. 1.

r (t )
_x m (t ) = A m x m (t ) + B m u c (t ) + B g u d (t ) + FNR

y m (t ) = Cx m (t )

e(t) = ( x (t) � x m (t ))

_x (t) = Ax (t) + Bu c (t ) + B gu d (t ) + FNR

y (t) = Cx (t)

K GB

1
s

�� 0(t ) = � � � e (t)T P B c

x m

�

x

u d (t )

u d (t )

e (t) ; x (t)

u c (t )

Figure 1. Adaptive Control Algorythm

V. Results

A three degrees-of-freedom aerofoil model and the Global Hawk-like �exible aircraft are the testcases.
Results in both cases start from validation, reduced order model generation for worst case gust searches and
adaptive gust load alleviation.

A. Three Degrees-of-Freedom Aerofoil

1. Validation

Two sets of parameters are considered (see Table1 ) and are de�ned in the nomenclature. The two testcases
di�er in the ratio of the uncoupled plunging to pitching mode ! 1 and ch which is the non-dimensional
distance from the mid-chord to the �ap hinge.

Case ! 1 ! 2 � a h x � x � r � r � ch

1 0:2 300 100:0 � 0:5 0:25 0:0125 0:5 0:0791 0:5
2 1:2 3:5 100:0 � 0:5 0:25 0:0125 0:5 0:0791 0:6

Table 1. Model parameters for aerofoil test cases

Linear stability analysis provides a convenient way to verify the linear part of the aerofoil model. Trac-
ing of the structural eigenvalues against the system parameter, the reduced velocity in this case, are most
commonly found in available literature. In the following results, the Schur complement form of the eigen-
value problem presented by Badcock and Woodgate26 is used to track the migration of the three structural
eigenvalues with the reduced velocity. The �rst comparison is made with a two degree-of-freedom (DoF)
aerofoil model presented by Alighanbari and Price27 as well as the original two degree-of-freedom model
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reduced velocity

R
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l[
]

0 1 2 3 4 5 6 7
­0.05

­0.04

­0.03

­0.02

­0.01

0

0.01

Alighanbari and Price (1996)
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3 DoF Model (stiff flap)
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(a) mode trace for case 1

reduced velocity

R
ea
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Irani et al. (2011)
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Pitching mode

Plunging mode

Flap mode

(b) mode trace for case 2

Figure 2. Mode traces for validation test cases 1 and 2

by Da Ronch et al.28 Since this speci�c comparison is made between a three degree-of-freedom and a two
degree-of-freedom model, it is necessary to enforce a very high sti�ness in the �ap degree of freedom by
setting a high value of ! 2. This e�ectively limits the dynamics of the three degree-of-freedom model to a two
degree-of-freedom system. The system parameters used are given in Table 1 for Case 1 with ! 2 enforced to
be 300. The nonlinear sti�ness coe�cients are all set to zero. The mode tracing show excellent agreement
with the result presented by Alighanbari and Price27 in Fig. 2 (a). The linear instability point is found to
be U � = 6 :285.

The �utter speed is also validated against the results presented by Irani et al. 29 The model presented
by Irani et al. 29 is a three degree-of-freedom aerofoil and the aeroelastic parameters are directly taken from
the paper and given in Table1 for Case 2. The �utter speed is calculated to beU � = 4 :663 which matches
the reported value. Figure 2(b) shows the corresponding mode trace comparison. In the aerofoil case the
nonlinearity is a polynomial cubic nonlinearity in either t he pitch or the plunge degree-of-freedom sti�ness
and is fully deterministic. So the most important part of the veri�cation is the linear stability analysis
presented.

2. Nonlinear Reduced Models for Worst Case Gust Search

Two families of atmospheric gusts are used in this paper, discrete and continuous. The discrete model for
the "1-minus-cosine" gust is formulated as

Wg (� ) =
W0

2
cos

�
2�
Hg

(� � � 0)
�

(36)

whereW0 is the gust intensity normalized by the freestream speed andHg is the gust length. For the gener-
ation of continuous models of atmospheric Von Kármán turbulence, the rational approximation documented
in 30 can be used. A cubic hardening nonlinearity is considered for the pitch degree-of-freedomK � 3 = 3 and
in the plunge degree-of-freedomK � 3 = 1 :0. The aeroelastic nondimensional model parameters given are the
same as Case 2 in Table1 with the di�erence that now is ! 1 = 0 :2.

From the bifurcation method and the eigenvalue solution of the linearized system, the instability for this
model selection occurs forU � = 6 :37. Reduced order models are generated by including the three complex
eigenvalues corresponding to the structural degrees-of-freedom and one additional eigenvalue related to the
gust in�uence as shown in Table. 2. The reduced model is used to perform a worst case gust searchfor
the "1-minus-cosine" family. The gust intensity is 14% of the freestream speed atU � = 4 :5 or 70:64% or
the linear predicted �utter speed, and the search is made forgust lengths up to 100 aerofoil semi-chords.
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The parameter space is divided into 1000 design sites. The worst case gust was found to be forHg = 55
semichords corresponding to maximum loads in the pitching angle. Fig. 3 shows the maximum and minimum
aeroelastic amplitude for full nonlinear and reduced modelagainst di�erent gust lengths. NFOM denotes
nonlinear full order model and NROM denotes nonlinear reduced order model dynamic response. As shown,
the nonlinear reduced model can e�ciently predict aeroelastic responses if the three complex eigenvalues
related to the structural degrees-of-freedom together with one real eigenvalue related to the gust are included
in the projection basis. The e�ect of the nonlinearity in the systems dynamics becomes important and is
more evident under larger loads for the worst gust case. The full nonlinear aeroelastic response against the
linear and their reduced models in that worst case gust is given in Fig. 4
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Figure 3. Worst-case gust search at (U � = 4 :5) for 1 minus cosine gust of intensity W0 = 0 :14 for nonlinear full
and reduced model

It is possible to observe that structural nonlinearity causes larger deformations compared to the linear
case. Hence, nonlinearity introduces more criticality.
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3. Adaptive Gust Load Alleviation

The control design for the worst-case gust is done using the model reference adaptive controller. The
eigenvalues of the nonlinear reduced order model and that ofthe reference model are given in Table2. There
is not any speci�c rule to choose a reference model. However,it is desired the reference model to have more
damping and thus being more robust under disturbances. Apart from damping, the �rst bending frequency
is placed far from the �rst torsional mode frequency which also results in an increase of the �utter speed.4

Table 2 shows that aeroelastic modes are more damped while their frequencies have been kept apart. The
model is dimensionalised by choosing a semi-chord ofb = 0 :175 m and ! � = 22:9441rad/s.

Table 2. Nondimensional Reduced and Referece Model eigenva lues

ROM Reference
-0.0407 + 0.2098i -0.1444 + 2.2748i
-0.0407 - 0.2098i -0.1444 - 2.2748i

-0.01826 + 0.8588i -0.0716 + 7.7368i
-0.01826 - 0.8588i -0.0716 - 7.7368i
-0.01324 + 0.0583i -0.0360 + 0.4635i
-0.01324 - 0.0583i -0.0360 - 0.4635i

-0.1393 -0.1393
-0.1393 -0.1393

The model reference control design was based on a particularselection of a positive semi de�nite matrix
Q and additional tuning of the control matrix � . Matrix Q was de�ned as a diagonal matrix with positive
elements(Q11 = 10; Q22 = 10; Q33 = 30; Q44 = 30; Q55 = 30; Q66 = 10; Q77 = 30; Q88 = 30) . The selection
of that matrix will provide a solution to the Lyapunov equati on in Eq. (30) which is a static parameter in the
adaptation of the control law. The design also depends in theselection of the matrix � as in Eq. (34). In this
case for simplicity and in order to demonstrate the e�ect of that selection on the closed-loop performance
the above matrix was scaled by matrixQ and three cases were examined for(� = 0 :1Q; � = 0 :5Q; � = 1 Q).

The adaptive controller in general is not expected to be optimal under unknown disturbances due to the
fact that the disturbance vector is considered unknown and is not used in the calculation of the controller
compared to other designs such asH 1 . Regardless, in Fig.5 for the angle of attack of the closed-loop
system, there is initial overshooting at larger adaptation rates but the oscillations decay to zero faster. For
the plunge degree-of-freedom the controller provided overall better response. As expected, the �ap angle is
a�ected by the adaptation rate as well. For a larger adaptation rate the �ap angle became larger during the
structure-gust interaction. As a result, a very large adaptation rate may lead to an urealistic �ap actuation
either in frequency or rotation which can result in an initia l overshooting that can cause structural failure.
Thus, should be addressed carefully.

Futhermore, for the plunging degree-of-freedom it is shownthat by increasing the adaptation rate there
is a reduction in the loads. However, for the pitching degree-of-freedom this is the case for� = 0 :5Q but a
further increase causes an overshooting which a�ects the overall performance of the closed-loop system. A
desired choice would be to minimize the loads in both the pitching and the plunging and at the same time
keeping the maximum closed-loop angle of attack smaller than the open loop maximum. Also, it should be
noted that for a smaller selection of the semi de�nite positive matrix Q the range of selection of matrix �
would have been broader and this is attributed to the fact that the overall derivative of the adaptation law
is a�ected by the magnitude of the above selections as shown in Eq. (34).

B. Global Hawk-like Flexible Aircraft

1. Validation

The aeroelastic code used here has been validated for gust responses against the commercial aeroelastic
software NASTRAN. Also, the strip theory assumption for incompressible �ow has been tested for gust
responses up to 0.3 Mach number against the CFD solver developed at the University of Liverpool.31

12 of 21

American Institute of Aeronautics and Astronautics



TIme [s]

P
itc

h 
an

gl
e 

[d
eg

]

0 0.5 1 1.5 2 2.5
­10

­8

­6

­4

­2

0

2

4

6

8

Open Loop
=0.1Q
=0.5
=1Q

(a) Angle of attack in degrees

TIme [s]

P
lu

ng
e 

di
sp

 [m
]

0 0.5 1 1.5 2 2.5
­0.2

­0.16

­0.12

­0.08

­0.04

0

0.04

0.08

0.12

0.16

Open Loop
=0.1Q
=0.5
=1Q

(b) Plunge displacement in meters

TIme [s]

P
itc

h 
ve

l [
de

g/
s]

0 0.5 1 1.5 2 2.5
­1.25

­1

­0.75

­0.5

­0.25

0

0.25

0.5

0.75

1

Open Loop
=0.1Q
=0.5
=1Q

(c) Pitch Velocity in degrees/sec

TIme [s]

P
lu

ng
e 

ve
l [

m
/s

]

0 0.5 1 1.5 2 2.5
­0.01

­0.005

0

0.005

0.01

0.015

Open Loop
=0.1Q
=0.5
=1Q

(d) Plunge Velocity in meters/sec

TIme [s]

F
la

p 
an

gl
e 

[d
eg

]

0 0.5 1 1.5 2 2.5
­25

­20

­15

­10

­5

0

5

10

15

=0.1Q
=0.5
=1Q

(e) Flap angle in degrees

TIme [s]

G
us

t V
el

oc
ity

 [m
/s

]

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

Gust Profile

(f) Worst Case Gust Pro�le

Figure 5. Closed loop response predictions from nonlinear r educed order model for di�erent adaptation rates
at (U � = 4 :5)

13 of 21

American Institute of Aeronautics and Astronautics



2. Nonlinear Model Reduction

The test case under investigation is an unmanned aerial vehicle (UAV), as shown in Fig. 6. Originally it
was a model produced by DSTL for reasearch purposes. The structural model consists of high-aspect ratio
wings, a fuselage and a V-tail. For control purposes, trailing-edge control surfaces are placed across the
wings and tail. The structural mass of the aircraft is 4732.5Kg, with the centre of gravity placed at 6.382
m from the nose of the aircraft. The fuel loads in the wing box were modelled with non-structural masses.
The front and rear spars are located at 15 and 77% of the local chord of the wing, and at 15 and 80% of the
local chord of the V-tail. Additional geometric characteri stics are shown in Table3

Table 3. Unmmaned aerial vehicle geometrical characterist ics

Parameter Wing [m] Tail [m]

Span 17.71 3.23
Root chord 1.66 1.393
Tip chord 0.733 0.678

A fairly large aeroelastic model is built for the full order model consisting of 540 degrees of freedom
that follows the formulation described in section 2. Only half model con�guration is considered due to the
symmetry of the problem. Control surfaces are mounted on both main wing and canted tail to provide
longitudinal control and trim characteristics. Furthermo re, they are placed between the37%� 77% of the
wing span and tail, having a 32%of the average chord length. The beam model used here was derived from

Figure 6. Geometry of a UAV con�guration

a detailed structural model. Then it was veri�ed against ground vibration tests and was found adequate to
represent the frequencies and shapes of the natural modes ofinterest. A more detailed description of the
above problem was presented in.3 The reduced models are able to capture nonlinear �exiblity e�ects for
wings exhibiting large structural deformations during a �u id�structure and gust interaction. A 1-cos gust
was assumed at the �ow conditions given in Table4. The rational approximation documented in 30 can be
used for the generation of continuous models of atmosphericVon Kármán turbulence.

For the �ow conditions given in Table 4, the nonlinear static deformation brought the wing tip vert ical
de�ection at 2:2m. With a wing semi�span of 17:71m, the static aeroleastic deformations are relatively
large (e.g. 12:5% of the wing span). Two reduced models were generated at this �ight condition. One
model represents the linearized aeroelastic system, and the other one includes the nonlinear terms up to
second order. Both models were build using 11 modes for the projection. Since for a slender wing the
coupling between �exural and torsional modes is low, the twolowest bending and the �rst torsional modes
were included. Aerodynamics�dominated modes (related to gust disturbance) were then included until
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Table 4. Flow conditions and gust properties

Altitude 20.000 m
Freestream speedU1 0.2� 295.0 m/s

Density � 1 0.0785kg=m3

Angle of attack AoA 2.0 degrees

convergence as in Table5. The convergence of the reduced model predictions to a "1-minus-cosine" gust for

Table 5. Reduced order model basis

Type Real Imaginary

Structural -15.7545 14.9556i
Structural -7.9321 31.7767i
Structural -0.1313 32.9253i

Aerodynamic -1.1724 0
Aerodynamic -5.5824 0
Aerodynamic -5.7598 0
Aerodynamic -5.8980 0
Aerodynamic -6.0111 0
Aerodynamic -6.3911 0
Aerodynamic -6.6017 0
Aerodynamic -6.8199 0

increasing number of eigenvectors is shown in Fig.7. The �rst bending and torsional modes together with a
few dominant aerodynamic modes corresponding to the Küssner gust term are su�cient to obtain identical
to the full model response. In this case a reduction from 540 degrees of freedom to 11 was achieved.

Figure 8 illustrates the time response of the UAV wing tip vertical di splacement for two sets of results
for a shorter gust length with the same reduced models. The �rst set of data represents the system response
when nonlinear �exibility e�ects are neglected. The linear reduced model is identical to the linearized full
order model. The second set of results includes the nonlinear �exibility e�ects in both reduced and full
models. Whereas deformations are very large (10m for a 17:75m wing span), the nonlinear reduced model is
virtually identical to the reference solution.

In Fig. 9 the ability of the reduced models to predict aeroelastic responses under stochastic turbulence
by Von Kármán is demonstrated showing that one ROM can be usedsystematically for parametric search
being independent of the gust.

3. Adaptive Gust Load Alleviation

The nonlinear reduced model was implemented to simplify andspeed up the calculation of an adaptive model
reference control framework. The resulted control surfacede�ection was applied on the nonlinear full order
model which is under external disturbances. The selection of the reference model is of critical importance
as a bad choice could potentially lead the �ap to experience unrealistic rotations. In this case the reference
was selected in the same way as it was described in section3. Damping is added to the �rst bending mode
while the torsional frequencies are kept apart from the bending frequency. The eigenvalues of the linearised
reference model are given in Table6. A direct comparison for the wing tip response of the reference against
the nonlinear full order model for the two cases of gusts usedin this study is shown in Fig. 10.

The selection of the semi de�nite positive matrix Q which provides a solution to the Lyapunov equation
given a stable Hurwitz matrix of a reference modelA m is also critical. In this case, Q was chosen to be
a diagonal matrix with elements Qii = 10 � 4. As shown in Eq. (34) the selection of the reference model
will a�ect how e (t) will evolve during the time integration which is part of the a daptation parameter.

15 of 21

American Institute of Aeronautics and Astronautics



Time [s]

W
in

g 
T

ip
 d

is
pl

ac
em

en
t i

n 
m

et
re

s

0 1 2 3 4 5
0

1.5

3

4.5

6

7.5

9

FOM
ROM, 3 Modes
ROM, 5 Modes
ROM, 11 Modes

Gust Profile

Figure 7. Wing Tip Deformation in metres for a 1 minus cosine g ust of intensity 1% of the freestream speed
for increasing number of modes for the �ow conditions given i n Table. 4

Time [s]

W
in

g 
T

ip
 d

is
pl

ac
em

en
t i

n 
m

et
re

s

0 1 2 3 4 5
0

1.5

3

4.5

6

7.5

9

FOM
ROM
NFOM
NROM

Gust Profile

Figure 8. Wing Tip Deformation in metres for 1 minus cosine gu st of intensity 1% of the freestream speed for
full and reduced models for the �ow conditions give in Table. 4

16 of 21

American Institute of Aeronautics and Astronautics



Time [s]

W
in

g 
T

ip
 d

is
pl

ac
em

en
t i

n 
m

et
re

s

0 2 4 6

1

1.5

2

2.5

3

3.5

FOM
ROM
NFOM
NROM

Gust Profile

Figure 9. Wing Tip Deformation in metres for stochastic turb ulence for full and reduced models for the �ow
conditions given in Table 4

Time [s]

W
in

g 
T

ip
 d

is
pl

ac
em

en
t i

n 
m

et
re

s

0 0.5 1 1.5 2
0

1.5

3

4.5

6

7.5

9

NFOM
Reference Model

Gust Profile

(a) Wing Tip Deformation in metres

Time [s]

W
in

g 
T

ip
 d

is
pl

ac
em

en
t i

n 
m

et
re

s

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

NFOM
Reference Model

Gust Profile

(b) Wing Tip Deformation in metres

Figure 10. Wing Tip Deformation for 1 minus cosine and a conti nuous gust for full open loop against the
reference model selection

17 of 21

American Institute of Aeronautics and Astronautics



Table 6. Eigenvalues of the reference model

Real Imaginary

-35.7545 7.9556i
-7.9321 40.7767i
-5.1313 50.9253i
-3.1724 0
-7.5824 0
-10.7598 0
-10.8980 0
-12.0111 0
-12.3911 0
-12.6017 0
-12.8199 0

The reference model in that case needs to be stable so that theerror decreases asymptotically. Also, the
adaptation parameter is furthermore a�ected by P and as a result by matrix Q and � .

The e�ect of the adaptation matrix � is therefore investigated for the performance of the closed-loop
system. The discrete selection of the semi de�nite positivematrix � is shown in table 7 for both discrete
and continuous gust loads allevation. The derived controller based on the nonlinear reduced model is di-

Table 7. Adaptation matrix selection as a function of Q

Discrete Gust case Continuous Gust case
� 0.01Q 0.01Q
� 0.03Q 0.1Q
� 1Q 1Q

rectly applied on the full order nonlinear aeroelastic system. The wing tip vertical deformation for di�erent
adaptation rates for a deterministic 1 minus cosine gust is shown if Fig. 11.

In that case the e�ect of the control adaptation rate on the �a p rotation is shown in Fig. 11. Note that
for a large adaptation rate � = 1 Q, a non-realistic �ap rotation occurs with a �ap angle of over 20 degrees
which is the most common constraint of the �ap's maximum rotation. As a result, it is dangerous to choose
very large adaptation rates because the �ap might overshootduring the aeroelastic/gust interaction. The
model reference adaptive controller can also be applied in the presence of stochastic atmospheric turbulence.
In Fig. 12 the wing tip displacement together with the closed-loop �ap rotation are given for a Von Kármán
stochastic gust.

Results show signi�cant reduction of the wing tip deformation for the closed-loop system in both linear
and nonlinear case and could be achieved under realistic �apde�ections. Also, results are in agreement with
the 3 degrees-of-freedom aerofoil model as it can be seen that for the particular selection of the semi-de�nite
positive matrix Q a larger adaptation gain � is required during the �uid-structure and gust interaction to
alleviate the disturbances. A further increase though of the adaptation gain may lead in additional numerical
problems due to the fact that the system becomes sti� and it may produce numerical inconsistencies together
with the need for a smaller timestep integration but as well as unrealistic �ap rotation.

VI. Conclusions

This investigation presents a detailed aeroelastic model of a three degrees-of-freedom aerofoil and couples a
nonlinear structural beam code with linear potential aerodynamics su�cient to describe low speed aeroelastic
responses. It focuses on the generation of nonlinear reduced models able to be used for a cheaper computation

18 of 21

American Institute of Aeronautics and Astronautics



Time [s]

W
in

g 
T

ip
 d

is
pl

ac
em

en
t i

n 
m

et
re

s

0 1 2 3 4 5
0

1.5

3

4.5

6

7.5

9

NFOM
=0.01Q
=0.03Q
=1Q

(a) Wing Tip Deformation in metres

Time [s]
W

in
g 

T
ip

 R
ol

lin
g 

in
 d

eg
re

es
0 1 2 3 4 5

0

8

16

24

32

40

NFOM
=0.01Q
=0.03Q
=1Q

(b) Wing Tip Rolling in degrees

Time [s]

F
la

p 
an

gl
e 

[d
eg

]

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
­30

­25

­20

­15

­10

­5

0

5

10

=0.01Q
=0.03Q
=1Q

(c) Flap Rotation under di�erent adaptation rates in degree s
for a deterministic 1 minus cosine gust

Figure 11. Wing tip deformation and wing tip rolling for 1 min us cosine gust of intensity 1% of the freestream
speed for full open loop against closed-loop for di�erent ad aptation rates

19 of 21

American Institute of Aeronautics and Astronautics



Time [s]

W
in

g 
T

ip
 d

is
pl

ac
em

en
t i

n 
m

et
re

s

0 1.5 3 4.5 6

1.5

2

2.5

3

NFOM
=0.01Q
=0.1Q
=1Q

(a) Wing Tip Deformation in meters

Time [s]
W

in
g 

T
ip

 R
ol

lin
g 

in
 d

eg
re

es
0 1.5 3 4.5 6

9

10

11

12

13

14

15

NFOM
=0.01Q
=0.1Q
=1Q

(b) Wing Tip Rolling in degrees

Time [s]

F
la

p 
an

gl
e 

[d
eg

]

0 1 2 3 4 5
­4

­2

0

2

4

6

8

10

=0.01Q
=0.1Q
=1Q

(c) Flap de�ection under di�erent adaptation rates in de-
grees for a stochastic gust

Figure 12. Wing tip deformation and wing tip rolling in for st ochastic turbulence for full open loop against
closed-loop for di�erent adaptation rates

20 of 21

American Institute of Aeronautics and Astronautics



of an adaptive controller based on the model reference adaptive control scheme and also for a cheaper solution
of open loop gust predictions for nonlinear aeroelastic systems. It presents the synthesis, design, and testing
of the control strategy developed around the nonlinear reduced order model for gust loads alleviation and
this is shown to be systematic because it is independent of the original equations. As expected in both
cases, the selection of the adaptation law is critical when dealing with �exible aircraft �ight systems. A
su�cient enough adaptation rate is needed during the disturbance interaction to regulate the system under
deterministic and stochastic disturbances.
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