Feedback Control of a Circular Cylinder Wake

Integrating CFD and Experiments in Aerodynamics
20-21 June, 2007

Jürgen Seidel
Stefan Siegel
Kelly Cohen
Thomas McLaughlin
What is Feedback Flow Control?

• Flow Control
 ▪ Influence the flow field to achieve a desired effect using *minimal* actuation power
 • Passive
 ▪ Vortex generators
 • Active
 ▪ Synthetic jets
 ▪ Time-dependent (periodic) blowing and suction
 ▪ Piezo-electric micro components

• Feedback
 ▪ Sensors in the wake measure instantaneous flow quantities (velocity, pressure) at given points
 ▪ Actuation based on sensor information
Bluff bodies (e.g. on UAVs) serve vital operational functions, but they are aerodynamically detrimental.

Flow separation results in a wake behind the bluff body, characterized by unsteady vortex shedding.

- results in drag, noise, and vibration
- is detrimental for operation, structural integrity

“Passive” designs are impractical or inhibit functionality.

“Active” methods are point designs.

Feedback flow control is an effective way of suppressing self-excited flow oscillations without modifying the geometry.
How to Feedback Flow Control?

Modeling wake dynamics for controller design

Model Independent Approach
- Simple to implement experimentally
- Little success in past 30 years

Direct Navier Stokes Approach
- Ideal control approach, complete set of equations
- Computationally very intensive
- Cannot be implemented in real time in the near future

Low-Dimensional Approach
- Recent developments in effective low-dimensional models
- Can be implemented with relative ease
- Model building is tough
Cylinder Wake Feedback Control

Goal: Develop a feedback control strategy to suppress the vortex street of a cylinder at Reynolds numbers of 100.

Sensors

Actuator

Controller

Low Pass Filter

$F_c = 4F_n$

PD Controller
(acts on POD Modes)

Mode Estimator
(Least Square)

Collaborative Research

- Experiment
 - Re-St relationship
 - Unforced and Open loop PIV data
 - Sensor locations

- Simulation
 - Full flow field data
 - Control algorithm and parameters

- Controls
 - Control algorithm and parameters

- POD and Low Dimensional Modeling
 - POD Modes and Time coefficients
 - Sensor Locations

PIV Measurement locations

USAFA Department of Aeronautics
Collaborative Research

- Experiment
 - Re-St relationship
 - Unforced and Open loop PIV data
 - Sensor locations
- Simulation
 - Full flow field data
 - Control algorithm and parameters
- Low Dimensional Modeling
 - POD Modes and Time coefficients
 - Sensor Locations
- Controls
 - Control algorithm and parameters

USAFA Department of Aeronautics
Collaborative Research

USAFA Department of Aeronautics
Collaborative Research

- Experiment
 - Re-St relationship
 - Unforced and Open loop PIV data
- Simulation
 - Full flow field data
- Low Dimensional Modeling
 - POD Modes and Time coefficients
- Controls
 - Control algorithm and parameters
- Sensor locations
 - Sensor locations

PIV Measurement locations

USAFA Department of Aeronautics
Collaborative Research

USAFA Department of Aeronautics
Unforced and Open-loop forced

EXPERIMENTS
Unforced
Forced case 1

\[\text{St/}\text{St}_n = 1, \ A/D = 20\% \]
Forced case 2

\[\frac{St}{St_n} = 1.26, \ A/D = 30\% \]
Lock-In with Periodic Forcing

- Conventional wisdom: the low-dimensional model should be valid for arbitrary control actions
 - There is a limited envelope of amplitude/frequency of the disturbance wherein the control is effective.
Experiments: Pros and Cons

• Pros
 ▪ Overview/visualization of flow field
 ▪ Easy scan of frequency/amplitude parameter space
 ▪ Final verification

• Cons
 ▪ Expensive model design and building
 ▪ Limited data available
 • Velocity, pressure
 • Field of view
 • State-of-the-art (e.g. PIV) only 2D
Unforced and open-loop forced

SIMULATIONS
Simulations

- Cobalt
 - Hybrid-Unstructured, Compressible Solver
 - Point Implicit with Subiteration
 - 2nd-Order Temporal and Spatial Accuracy
 - Turbulence Models
 - RANS: SA, SARC, SST, and others
 - Hybrid RANS/LES: SA-DES, SARC-DES, SST-DES
 - Domain decomposition using ParMETIS (Dr. Karypis, UMN)
 - MPI parallelization
 - Over 98% efficient on 1024 processors
 - Arbitrary Lagrangian Eulerian (ALE) for rigid body motion
 - Variety of motion types: 1DOF, 6DOF

- Matlab
 - Controller development
 - Data analysis
 - Post-processing

- Cobalt-Matlab interface for feedback flow control
 - Developed under current AFOSR STTR Phase I/II
 - HDF5 output
Transient Startup Data Set

Re = 300

[Graph showing drag and lift for Re = 300]
3D cylinder: grid

- Body fitted “O” grid extruded along cylinder axis
- $163 \times 198 \times 31$ (r, q, z) points
Simulation, Re=100

- L/D=96
- Grid:
 - 2M nodes
 - 31 spanwise planes
- Time:
 - 50 periods
 - 5.6CPUh/period
Simulations, $Re=20,000$

- $L/D=4$
- Grid:
 - 1M nodes
 - unstructured
- Time:
 - 180CPUh/period
Simulations: Pros and Cons

• Pros
 ▪ Detailed flow field information
 • Time
 • Space
 ▪ Range of possible flow conditions
 • Reynolds number transients

• Cons
 ▪ Time consuming model/grid design and building
 ▪ Time consuming data generation
 ▪ Limited number of conditions possible
 • Parameter space
MODELING AND CONTROLS
Control of a Ginzburg-Landau cylinder wake model

- The complex Ginzburg-Landau (GL) equation model
 - vortex dynamics in bluff-body (such as a circular cylinder) wakes
 \[
 \frac{\partial A}{\partial t} + U \frac{\partial A}{\partial x} = \mu(x) A + (1 + jc_d) \frac{\partial^2 A}{\partial x^2} - (1 + jc_n)|A|^2 A + F(x, t)
 \]

- Wake stability of the GL model is defined by the growth parameter \(\mu(x) = \mu_o + \mu'x \)
 - \(\mu_o \) is similar to a Reynolds based on the cylinder diameter.
 - For \(\mu' < 0 \), the stability features similar to 2D cylinder wake.

<table>
<thead>
<tr>
<th>Condition Studied</th>
<th>(C_{11})</th>
<th>(C_{12})</th>
<th>(C_{21})</th>
<th>(C_{22})</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5% Above Critical</td>
<td>1.4524</td>
<td>4.1250</td>
<td>5.1486</td>
<td>4.1643</td>
</tr>
<tr>
<td>20.0% Above Critical</td>
<td>4.2744</td>
<td>6.9612</td>
<td>4.7633</td>
<td>0.1911</td>
</tr>
</tbody>
</table>

Look-up table for Coefficients \(C_{ij} \) of the modal estimator

Wake Signal at 20% above Critical
Proper Orthogonal Decomposition

Flow field from experiment or simulation

N Snapshots of Flow Field
U(x,y,t)
V(x,y,t)

POD
(Proper Orthogonal Decomposition)

K Spatial Modes
U_1(x,y)
V_1(x,y)
...
U_K(x,y)
V_K(x,y)

K Temporal Mode Amplitudes
A_1(t)
A_2(t)
...
A_K(t)

N Snapshots of Flow Field
U(x,y,t)
V(x,y,t)
POD and Low Dimensional Modeling

• POD spatial modes
 • Flow characteristics
 • Sensor placement studies

• POD mode amplitudes
 • Low Dimensional Model Development
 • Develop real time nonlinear mapping based on neural networks between measurable quantities (pressure, velocity) and low dimensional states
 • Linear and nonlinear system identification tools
 • Develop control strategies

• Reconstruction of the flow field possible

• Massive reduction of CFD simulation data

USAFA Department of Aeronautics
SPOD Segmentation

![Graph showing simulation time vs lift force with bins labeled Bin 4 and Bin 18.](image-url)
DPOD Basis Construction

- **POD:** \[u(x, y, t) = \sum_{j=1}^{J} a_j(t) \varphi_j(x, y) \]

- **SPOD:** \[u^{(i)}(x, y, t) = \sum_{j=1}^{J} a^{(i)}_j(t) \varphi^{(i)}_j(x, y). \]

- **DPOD:** \[u^{(i)}(x, y, t) = \sum_{j=1}^{J} \sum_{k=1}^{K} \alpha^{(i)}_{jk}(t) \Phi_{jk}(x, y). \]

k bins

n snapshots

f(x,y,t)

POD (Sirovich)

Truncation to m Phys. Modes

m spatial SPOD modes

POD (Sirovich)

Truncation to n Shift Modes

Orthonormalization

m x n DPOD Modes f(x,y)
Modeling: Pros and Cons

• Pros
 ▪ Rapid exploration of controller parameter space
 ▪ Implementable in real-time with relative ease
 ▪ Effectively targets the large coherent structures in the flow

• Cons
 ▪ Model building is tough
 ▪ Quality/validity of model depends on underlying data
 • Parameter space
Feedback controlled

EXPERIMENTS
Experimental setup

- Flow Vis Camera
- Cylinder Actuation System
- Test Section
- Cylinder Model
- PIV Camera
- Strobe Light
- PIV Laser
Sensor and Flow Vis Setup

Dye Ports for Flow Vis
(@ far end of model)

Laser Light Sheet
and Feedback
Measurement Plane
(@center of model)

Flow Direction

Cylinder Model

PIV Laser
Phase 115° Flow Vis

Time 10s: Flow is 2D, Locked-In

Time 20s: Flow develops spanwise phase variation, vortices shedding delayed in phase at laser light sheet
Time 30s: Stronger Spanwise phase variation

Time 33.3s: Spanwise phase becomes chaotic, incoherent
Experiments: Pros and Cons

• Pros
 ▪ Verification of entire feedback flow control concept
 ▪ Visualization of flow field
 ▪ Easy scan of controller parameter space

• Cons
 ▪ Expensive feedback control implementation
 ▪ Limited data available
 • Sensors for real time feedback are limited to 2D
 ▪ Wake
 ▪ Surface
 • 3D information only available through flow visualization (offline)
 ▪ Debugging of feedback controller difficult
Feedback flow control

SIMULATIONS
3D cylinder: wake sensors

35 Sensor Locations

USAFA Department of Aeronautics
Feedback controlled

Isocontours of Vorticity colored by U Velocity

USAFA Department of Aeronautics
Feedback controlled

Centerline

¼ span
Summary

• Develop feedback flow control strategy based on low dimensional model
 ▪ Global flow state estimation using POD
 ▪ State based feedback controller

• Otherwise, this flow is not controllable
Best use for feedback flow control

• Experiments
 ▪ Initial qualitative flow physics understanding
 ▪ Open-loop parameter scans
 ▪ Final testing of controllers

• Computations
 ▪ Detailed data production of key cases (determined by experiments)
 ▪ Debugging of feedback flow control
 • Data availability, no measurement errors

• Modeling
 ▪ Crucial for controller development
 ▪ Initial controller testing
 ▪ Model provides global flow state estimation for real time implementation
Conclusions

• Integration of theory, experiments and simulations
 ▪ more than the sum of all three
 ▪ evaluate best possible use of each at beginning of project

• Need experts in all involved fields
 ▪ But: each expert needs working knowledge of all other fields involved

• Communication is paramount

• State based feedback flow control impossible without IFD
Outlook

• Application of developed feedback flow control methodology
 ▪ Higher Reynolds numbers
 ▪ Turbulent flows

• New applications
 ▪ Aero Servo Optics
 ▪ Unsteady aerodynamics (MAV, flapping flight)