CFD-BASED SIMULATION AND EXPERIMENT IN HELICOPTER AEROMECHANICS

Richard E Brown and Stewart S Houston

Integrating CFD and Experiments in Aerodynamics Glasgow, 8-9 September 2003.

Imperial College London

CC-

Helicopter Aeromechanics:

A difficult simulation problem

multiple rotors (with multiple blades) attached to a manoeuvring fuselage

Aerodynamic environment:

- dominated by the rotor wakes
- highly unsteady

Structural dynamics

- large deflections
- aeroelasticity

'Interdisciplinary' effects

- pilot behaviour
- engine dynamic behaviour
- control systems

A highly simplified schematic of the helicopter wake

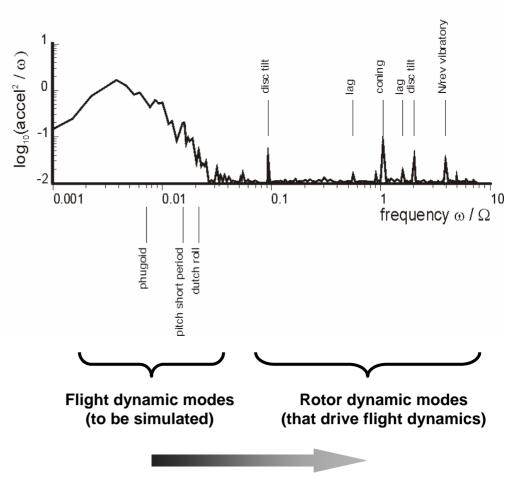
- strong aerodynamic coupling between well-separated components (e.g main rotor and tail rotor)
- strong coupling between dynamics and aerodynamics

Integrating CFD and Experiments in Aerodynamics Glasgow, 8-9 September 2003.

Imperial College London

Wide range of relevant timescales

Fidelity defined in terms of bandwidth over which simulated and real transfer functions agree to within acceptable bounds

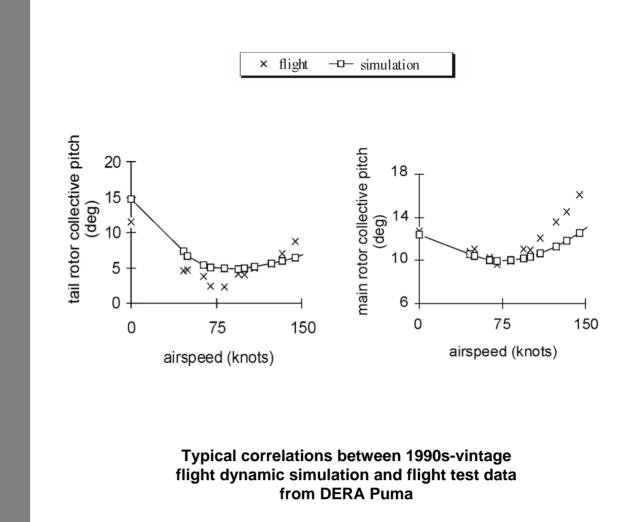

A Rational Approach to Fidelity Enhancement?

Padfield's (1988) hierarchy of models

- Step-by-step approach
- Sequential enhancements to individual constituent physical models

Acceleration Power Spectral Density

(Typical Manoeuvre)


Two orders of magnitude range in timescales

Imperial College London

Integrating CFD and Experiments in Aerodynamics Glasgow, 8-9 September 2003.

Typical Simulation Results

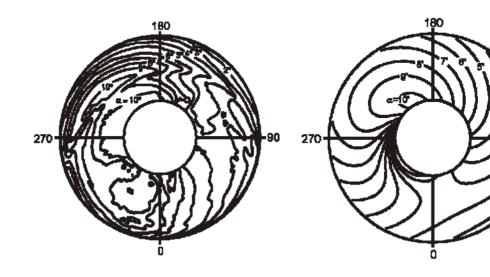
- Poor correlation with flight test
- Why?

Imperial College London

Integrating CFD and Experiments in Aerodynamics Glasgow, 8-9 September 2003.

An explanation?

- Poor modelling of the wake?
- Simplified dynamic models used to represent delays in development of the inflow through the rotors.


Was 'accepted' within the field that a more realistic representation would be

- 'computationally expensive'

and that

 'small-scale (high frequency) effects not relevant to flight dynamics'

Azimuthal variation of angle of attack experienced by a single rotor blade:

Test data from DERA Puma main rotor Typical 1990s flight dynamic simulation of Puma main rotor

Simulation misses 'real world' flow features such as

- blade-vortex interactions
- tail-rotor interference

Imperial College London

Integrating CFD and Experiments in Aerodynamics Glasgow, 8-9 September 2003.

An Examination

Hypothesis: (Houston)

Poor representation of the wake (in terms of its structure and its dynamics) is the reason for poor simulation fidelity.

Approach:

Examine impact of wake fidelity:

- construct a version of Glasgow's RASCAL flight dynamic simulation in which fidelity of wake modelling could be varied:
 - simplified model based on dynamic inflow theory (glorified momentum theory)
 - CFD based model (would be required to incorporate 'real' effects (Brown))
- validate simulations (against flight measured data from DERA Puma.)

Imperial College London

Integrating CFD and Experiments in Aerodynamics Glasgow, 8-9 September 2003.

RASCAL Model: Wake Evolution

Simplified model

- represents the delay in the development of the inflow through the rotor.
- dynamically too simple to represent 'real world' effects
- no convection so
- no blade-vortex interactions
- poor representation of manoeuvre-induced effects (e.g. from wake distortion)
- no rotor/rotor interactions

Pitt-Peters Dynamic Inflow Model:

inflow:

 $v(t) = \mathbf{a}(t) \cdot \mathbf{V}$

dynamic equation:

$$[\tau(\mathbf{a}, \dot{\mathbf{x}}_{rotor})]\dot{\mathbf{a}} + \mathbf{a} = [\mathbf{L}(\mathbf{a}, \dot{\mathbf{x}}_{rotor})]\mathbf{F}$$

Typically

 $\mathbf{a} = (a_0, a_{1s}, a_{1c})$

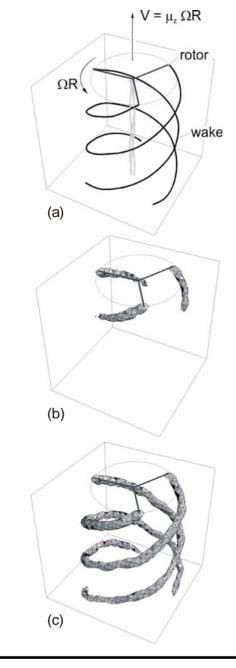
$$v(t) = a_0(t) + a_{1s}(t)\frac{r}{R}\sin\Psi + a_{1c}(t)\frac{r}{R}\cos\Psi$$

representing uniform component as well as longitudinal and lateral gradients of inflow across the rotor disc.

Integrating CFD and Experiments in Aerodynamics Glasgow, 8-9 September 2003.

RASCAL Model: Wake Evolution

CFD-based model


Structured-grid solution of the incompressible, inviscid Vorticity Transport Equation

$$\frac{\partial}{\partial t}\omega + v \cdot \nabla \omega - \omega \cdot \nabla v = S$$
$$\nabla^2 v = -\nabla \times \omega$$

using a variant of the Weighted-Average Flux TVD scheme

together with a lifting-line model for the blade aerodynamics:

$$S = -\frac{\partial}{\partial t}\omega_b + (v_b - v) \cdot \nabla \omega_b$$

Example Physical System:

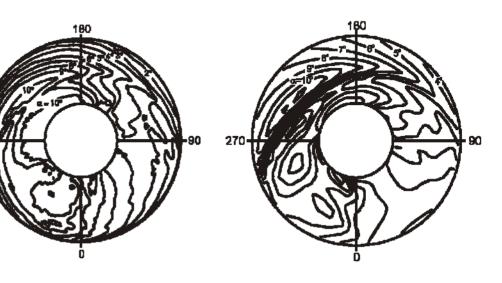
Rotor in vertical ascent

Highly diffusive behaviour of most conventional CFD-based approaches

Non-diffusive behaviour of vorticity transport approach.

Imperial College London

Integrating CFD and Experiments in Aerodynamics Glasgow, 8-9 September 2003.



RASCAL Model :

Initial Results:

- Representation of wake effects using the vorticity transport approach looked promising
- What would the impact be on flight dynamic predictions?

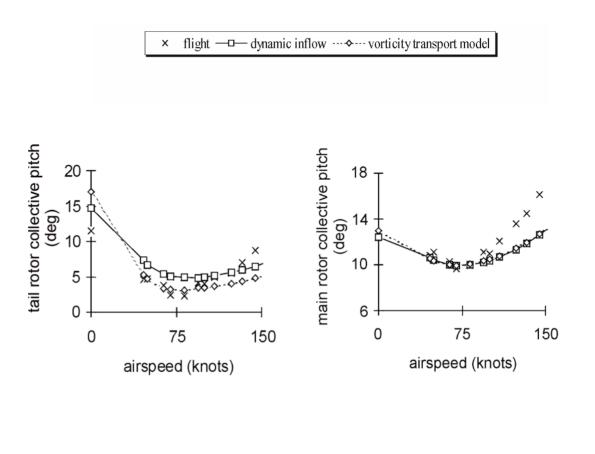
Azimuthal variation of angle of attack experienced by a single rotor blade:

Test data from DERA Puma main rotor RASCAL simulation with Vorticity Transport representation of wake

Simulation captures 'real world' flow features such as

- blade-vortex interactions

- tail-rotor interference


Imperial College London

Integrating CFD and Experiments in Aerodynamics Glasgow, 8-9 September 2003.

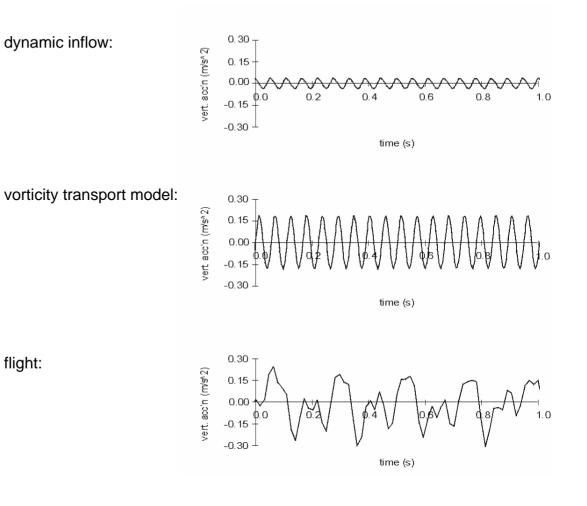
RASCAL Model :

Flight Dynamic Simulations:

- Disappointing correlation with DERA Puma flight test data.
 - Some improvement where interactions known to dominate (e.g. tail-rotor collective)
 - Many cases where wake model had no effect at all
 - Inconsistent (non-uniform) correlation across speed range
- Explanation?
 - Fuselage drag model?
 - Other physical deficiency?

Typical correlations between RASCAL flight dynamic simulation and flight test data from DERA Puma

Imperial College London


Integrating CFD and Experiments in Aerodynamics Glasgow, 8-9 September 2003.

Validation Issues:

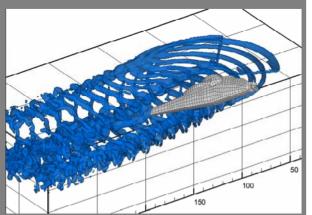
Flight Dynamic Simulations:

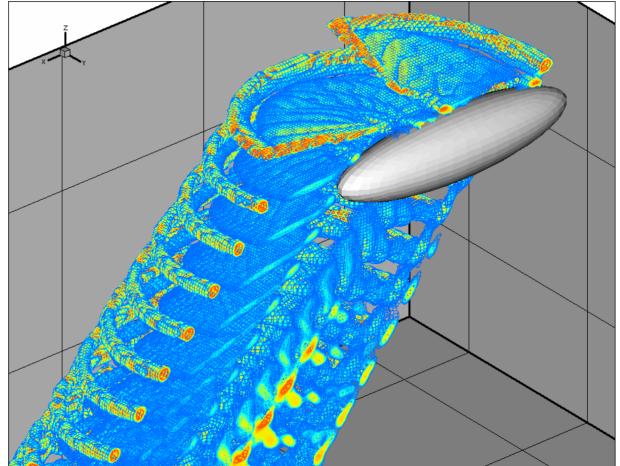
- Flight test data too opaque to provide proper environment for validation.
 - Physics too complicated to allow discrimination between possible causes for poor correlation.
 - Unmodelled physical effects? (simulations driven towards maximum complexity)
 - Undocumented defects in system?
 (possible example at right)

Scientifically we are on shaky ground, but there are *engineering* needs.

Correlations between RASCAL flight dynamic simulation of fuselage vibration levels and flight test data from DERA Puma

Imperial College London


Integrating CFD and Experiments in Aerodynamics Glasgow, 8-9 September 2003.



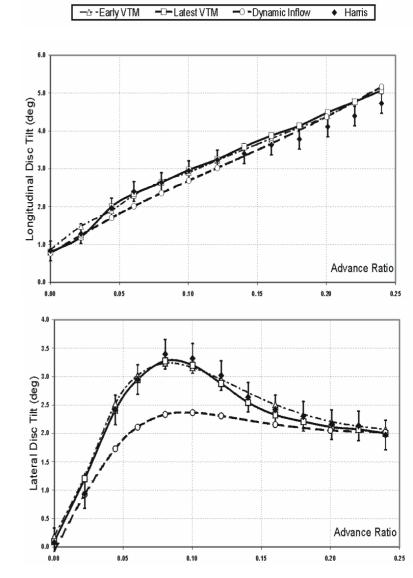
VTM Model :

Essentially the RASCAL model without the flight dynamics

- What happens if we validate this model in a simplified environment?
- laboratory-type experiments on isolated rotors
- physical effects well isolated compared to flight test

Typical VTM simulation: Interaction between a rotor and a simplified fuselage in ascending flight

Imperial College London


Integrating CFD and Experiments in Aerodynamics Glasgow, 8-9 September 2003.

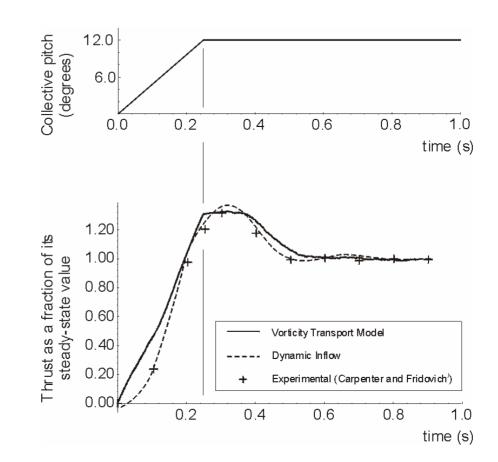
VTM Model :

Isolated Rotor Performance:

- Harris' 1972 data for rotor flapping as a function of forward speed
- VTM captures distortion of wake downstream of rotor and hence lateral flapping variation.
- Deficiency in blade aero model leads to systematic error in longitudinal flapping variation.
- More subtle contamination by boundary conditions eliminated in latest 'boundary free' VTM.

Good correlation in isolated instance may not imply wider validity of model

Imperial College London


Integrating CFD and Experiments in Aerodynamics Glasgow, 8-9 September 2003.

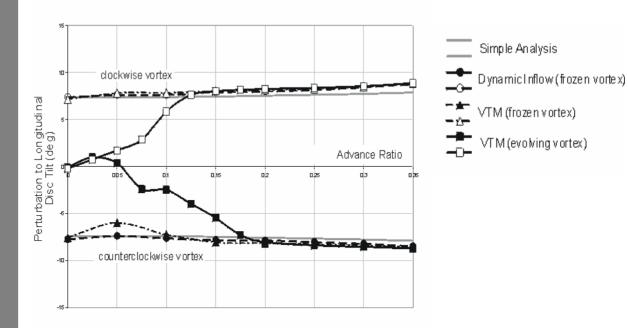
VTM Model :

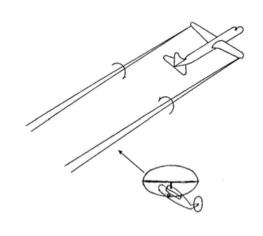
Rotor Dynamic Response:

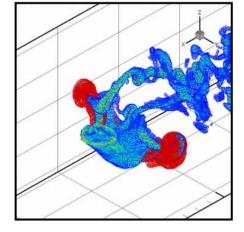
- Carpenter and Fridovich's 1953 data for rotor flapping in response to control input
- Dynamic Inflow model 'designed' around this data
- 'Odd' qualitative features of VTM seen in other models too!
- Curious phenomenon of 'accepted' explanation
 - blade torsion
 - no explicit data to support this
- Example where experimental data has been taken out of context

Experiments must be designed specifically to disprove theory (or simulation)

Imperial College London


Integrating CFD and Experiments in Aerodynamics Glasgow, 8-9 September 2003.

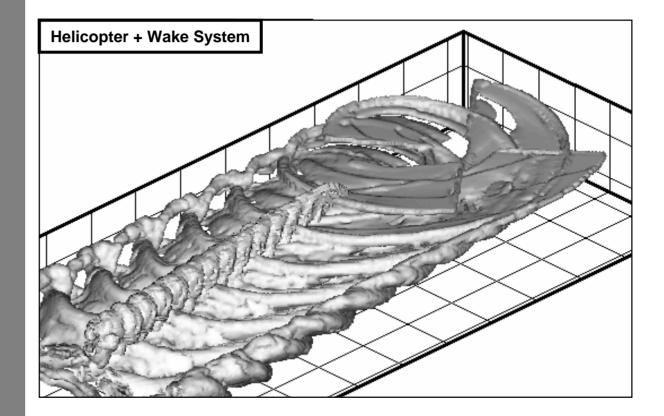

Validation Issues:


Extrapolation of Validity:

- Good correlation on simplified systems does not translate automatically to valid simulation of more complex systems (e.g. flight test)
- Example at right shows that validity does not even translate between systems with similar complexity if physics is missing
- elimination of 'frozen vortex' assumption changes character of predictions

Can observations be condensed into a global understanding of the validation process?

Imperial College London


Integrating CFD and Experiments in Aerodynamics Glasgow, 8-9 September 2003.

Conclusions:

Is the behaviour of the wake a paradigm for the behaviour of the whole system?

- Interactions become more important as system complexity is increased
- Interactions introduce couplings that cannot be handled by separable physical models

(hence little hope of incremental fidelity enhancement when simulating a system that is initially too complex)

The challenge for modellers and experimentalists will be to cooperate in designing a range of test cases that bridge the gap between laboratory and flight test, allowing the interactions within the system to be exposed sequentially, then to be captured within simulations.

Imperial College London

Integrating CFD and Experiments in Aerodynamics Glasgow, 8-9 September 2003.