CFD for Better Understanding of Wind Tunnel Tests

Ning Qin

Department of Mechanical Engineering

University of Sheffield

A presentation at

"International Symposium on Integrating CFD and Experiments" to celebrate the career of Professor Bryan E. Richards, who taught and introduced me to Computational Aerodynamics

September 8-9, 2003, Glasgow

Outline

- > Introduction
- Where are those windward shocks coming from?
- > Incipient separation criterion
- > CFD for wind tunnel wall interference corrections
- > Extrapolation and summary

Introduction

> CFD solutions requires verification

- Algorithm accuracy
- Grid type/resolution sensitivity
- Convergence

> CFD models require validation

- Unresolved physics: turbulence
- New physical phenomena: micro/nano-fluidics (gas/liquids), chemical reaction rates, etc.

Introduction

- > Demands on wind tunnel investigation
 - To understand basic flow physics (its traditional role)
 - To validate models used in CFD simulations, which is increasingly more and more difficult/expensive as the application of CFD expands to more and more complicated flow regimes
- ➤ Wind tunnels have so far helped tremendously in CFD development, can CFD do more in return for wind tunnels to meet the challenges?
 - A few examples how this may be achieved

A shock on the windward side?

With Prince and Birch

M=1.8, α =14°, Re/D=6.6x10⁵

≻Ogive slender bogy

Wind tunnel tests by Birch

>A weak feature appears on the windward side

- A model imperfection?
- From wind tunnel wall?
- A shock wave? Why?

Cases with different cross flow Mach

Case	Ogive <i>l/D</i>	M_{∞}	Re_{∞} /D	$\alpha_{\rm o}$	$M_{\rm C}$
1	3.0	2.0	1.20×10^6	10.0	0.347
2	3.5	1.4	0.80×10^6	16.2	0.391
3	3.0	1.8	0.66×10^6	14.0	0.435
4	3.5	1.5	1.20×10^6	17.0	0.439
5	3.5	1.5	1.20×10^6	21.2	0.542
6	3.0	2.5	1.23×10^6	14.0	0.605

Solution

- Parabolised Navier-Stokes
- Algebraic turbulence models for vortical flows
 - Degani-Schiff
 - Curvature model
- Riemann solver based discretisation
- Implicit space marching
- Non-adaptive grid: a weakness, which makes the capturing of unknown features difficult
- Relatively fine grid can be used due to the efficiency of PNS approach

Cross flow development

Symmetry plane trace

M=1.8, $\alpha=14^{\circ}$, $Re/D=6.6x10^{\circ}$, $M_c=0.435$

Vortex shock – an interpretation of the windward shock

The windward shock is the trace of a vortex shock, which forms as a result of the deflection of the supersonic flow caused by the double cone-like displacement effect of the primary vortices on the leeside of the body.

Trace on surface pressure

M=1.8, α =14°, Re/D=6.6x10⁵

A case of multi vortex shocks

M=1.5, α =21.2°, Re/D=1.2x10°, M_c=0.542 (Esch)

Note the correspondence of the surface skin friction lines in exp and CFD, traces of double vortex shocks.

A case when the vortex shock does not appear on the windward side

M=2.5, $\alpha=14^{\circ}$, $Re/D=1.23x10^{\circ}$, $M_c=0.605$

The vortex shock is sustained along the whole length of the body, fixing the primary separation.

Summary and Extrapolation

- CFD can be used to enhance our understanding of information obtained from wind tunnel tests
- Some weak features can be physically significant in design
- Flow features unknown beforehand can easily be overshadowed by poor resolution of grid
- Critical eyes are required in both experimental tests and CFD simulation
- Adaptive gridding can help but need good thinking about the threshold so as not to miss those weak but significant flow features

Empirical criteria in aerodynamics

- ➤ Many simple but very useful empirical criteria have been developed based on wind tunnel tests, e.g. for separation onset, transition to turbulence, etc.
- ➤ It is interesting to revisit these criteria and possibly extend their usage to broader ranges
- Validated CFD may be used as numerical wind tunnels to discover new simple "empirical" criteria and rules
- Good understanding of aerodynamics is crucial in extracting/condensing the wind tunnel data or CFD results

Incipient separation criterion: an example

➤ Needlham, Stollery and Holden (1966)'s incipient separation criterion for hypersonic laminar flows:

$$M\beta_i = k\chi^{\frac{1}{2}}$$

 β = flap deflection angle in degrees

 χ = viscous interaction parameter, $M^3Re_L^{-1/2}$

k = 70-80 depending on wall temperature condition

74 according to Hankey.

Incipient separation criterion: the CFD formulation

For a given β , there should be an α for the incipient separation condition, i.e. the following non-linear equation is satisfied,

$$CFmin(\alpha) = \min_{x} CF(x, \alpha) = 0$$

Incipient separation criterion: the solution using the bi-section method

Convergence of incidence and CFmin to the incipient separation condition

Incipient separation criterion:

Skin friction and heat transfer at incipient separation condition

Incipient separation criterion: comparison

Summary and extrapolation

- ➤ The example demonstrates how CFD can be used to revisit an aerodynamic empirical rule
- ➤ CFD may be used to extend the criterion for more general case, e.g. including the wall temperature conditions, turbulent cases, buffet boundary, flow bifurcation, self excited shock oscillation, etc.
- ➤ If early aerodynamists can derive simple and useful "rules" from wind tunnel data, there is no reason why we cannot do the same combining the two.
- Deriving such CFD based "empirical" aerodynamic rules is not easy but can be very rewarding

CFD for Wind Tunnel Wall Interference Correction

A series of Cranfield MSc projects with BAE collaboration Shadbolt, Farnibanda, Putze, Burton and Cross

Objectives:

- Better use of small tunnels for large models (closer Re to flight conditions);
- Reliable wall interference correction for transonic range, especially, when supercritical flow reaches the tunnel wall;
- Use of modern CFD tools to assess and correct the interference.

Background

- > The RAE semi-empirical corrections (Ashill)
- > The MDA approach (Crites and Rueger)
 - modelling of wall boundary conditions for porous walls
 - correlation based on v_w , C_p and δ^* for a range of porous surfaces
- The AEDC approach (Jacocks)
 - modelling of wall (1) pre-test prediction (2) measured wall C_p
 - correlation between $d\text{C}_{\text{\tiny D}}\!/d\theta$ and δ^* for AEDC tunnel
- > The NASA LRC approach
 - slotted wall boundary conditions for NTF

Use of CFD for WIAC

Correctability

- Conventional correction
 - Mach number and incidence correction
 - "uncorrectable" cases

- > MDA approach using modern CFD
 - address "uncorrectable" cases
 - fixed Mach number and incidence

Free Air = Wind Tunnel + Δ CFD

What are required for the correction

- For computation: inviscid boundary conditions at wall
 - tunnel wall pressure distribution
 - equivalent normal velocity at wall including the effect of porous wall conditions
 - tunnel wall initial δ^*

- Extra wind tunnel measurement required
 - tunnel wall pressure
 - displacement thickness at the entrance of tunnel wall

Wall correction: what to match?

Conventional correction

- match C_{l} , correct M and α

> MDA approach

- match M and α , correct surface pressure etc.

Shadbold's Experiments

- Wing 9: 2D wing 14% thick and 12" chord
- Porous side walls, solid top/bottom walls, vertical model
- ➤ Measurement on the model: surface pressure measurement with 26 pressure tappings on the upper surface and 18 on the lower surface
- Measurement on the wall: p on both side of the wall
- ➤ M=0.695, Re per meter 18.5 million

Fanibanda's 2D Study

> CFD study of Shadbolt's experimental cases

- free air case
- solid wall case
- "ideal wall" case with boundary conditions set from the free air case

> Results

- big difference between free air and solid wall cases
- ideal wall case is much closer to free air case but discrepancies remain, indicating problem with B.C.
- attempted to model porous wall

Puetz's 3D Study

- \triangleright CFD study of TWIG cases: 0.5 < M < 1.4, α =0°, 20°
 - free air cases
 - solid wall without support structure
 - solid wall with support structure

> Results

- significant difference between free air and solid wall without support cases through the transonic region in HSWT
- free air results are close to porous wall wind tunnel data at α =0° but significantly different at α =20°
- solid wall with support structure created a blockage effect for M>0.8

Surface pressure distribution

Solid wall interference

Figure 5.1 A Graph to Show the Wall Interference for the Lift Coefficient

Additional support interference

A Graph of dCL for Support Interference

Solid wall with and without support

A Graph of CL versus M

Surface pressure distribution $M=0.9, \ \alpha=0$

Summary and Extrapolation

- ➤ The projects confirmed that the wall interference is most significant in the transonic range (high subsonic).
- > The model support structure has a strong interference at low supersonic range.
- > CFD can be used for WIAC improving the accuracy and the effective range of Reynolds number in wind tunnel tests (larger models in existing tunnels).
- Require further development of proper CFD boundary condition for the WIAC study.

Conclusion

The three examples presented here highlight some potential use of CFD to help wind tunnel experimental investigation.

A lot needs to be done to achieve this!