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Introduction

» CFD solutions requires verification

— Algorithm accuracy
— Grid type/resolution sensitivity

— Convergence

» CFD models require validation

— Unresolved physics: turbulence

— New physical phenomena: micro/nano-fluidics (gas/liquids),
chemical reaction rates, etc.




Introduction

» Demands on wind tunnel investigation

— To understand basic flow physics (its traditional role)

— To validate models used in CFD simulations, which is
iIncreasingly more and more difficult/expensive as the

application of CFD expands to more and more complicated
flow regimes

» Wind tunnels have so far helped tremendously in
CFD development, can CFD do more in return for
wind tunnels to meet the challenges?

— A few examples how this may be achieved




A shock on the windward side ?

M=1.8, a=14°, Re/D=6.6x10°

With Prince and Birch

»0Ogive slender bogy

— Wind tunnel tests by Birch

»A weak feature appears on the
windward side

— A model imperfection?
— From wind tunnel wall?

— A shock wave? Why?




Cases with different cross flow Mach

Case Ogive I/D M., Re./D o ° Mc
1 3.0 2.0 1.20x10° 10.0 0.347
2 3.5 1.4 0.80x10° 16.2 0.391
3 3.0 1.8 0.66x10° 14.0 0.435
4 3.5 1.5 1.20x10° 17.0 0.439
5 3.5 1.5 1.20x10° 21.2 0.542
6 3.0 2.5 1.23x10° 14.0 0.605




Solution

» Parabolised Navier-Stokes
» Algebraic turbulence models for vortical flows
— Degani-Schiff

— Curvature model
> Riemann solver based discretisation

» Implicit space marching

» Non-adaptive grid: a weakness, which makes the capturing
of unknown features difficult

» Relatively fine grid can be used due to the efficiency of
PNS approach




Cross flow development

X/D=7.5

x/D=10




Symmetry plane trace

M=1.8, a=14° Re/D=6.6x10° M, =0.435




Vortex shock — an interpretation of the
windward shock

» The windward shock is -
the trace of a vortex
shock, which forms as
a result of the deflection
of the supersonic flow
caused by the double
cone-like displacement
effect of the primary PO Wi
vortices on the leeside | |
of the body.

/> Embedded Body Shock
(Base of Vortex Shock)




Trace on surface

pressure

M=1.8, a=14°, Re/D=6.6x10°
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A case of multl vortex shocks

M=1.5, a=21.2°, Re/D=1.2x1068,
M.=0.542 (Esch)

Note the correspondence of the
surface skin friction lines in exp and
CFD, traces of double vortex shocks.




A case when the vortex shock does not
appear on the windward side

M=2.5, a=14°, Re/D=1.23x10°, M_=0.605

The vortex shock is sustained along the whole
length of the body, fixing the primary separation.




Summary and Extrapolation

» CFD can be used to enhance our understanding of
Information obtained from wind tunnel tests

» Some weak features can be physically significant in
design

» Flow features unknown beforehand can easily be
overshadowed by poor resolution of grid

» Critical eyes are required in both experimental tests
and CFD simulation

» Adaptive gridding can help but need good thinking
about the threshold so as not to miss those weak but
significant flow features




Empirical criteria in aerodynamics

» Many simple but very useful empirical criteria have
been developed based on wind tunnel tests, e.g. for
separation onset, transition to turbulence, etc.

» It is interesting to revisit these criteria and possibly
extend their usage to broader ranges

» Validated CFD may be used as numerical wind
tunnels to discover new simple “empirical” criteria
and rules

» Good understanding of aerodynamics is crucial in
extracting/condensing the wind tunnel data or CFD
results




Incipient separation criterion: an example

» Needlham, Stollery and Holden (1966)’s incipient
separation criterion for hypersonic laminar flows:

1
Mg, =ky?
B = flap deflection angle in degrees
% = viscous interaction parameter, M°Re, /2
K = 70-80 depending on wall temperature condition

74 according to Hankey.




Incipient separation criterion:
the CFD formulation

» For agiven B, there should be an a for the incipient
separation condition, i.e. the following non-linear
equation is satisfied,

CFmin(a) = min CF(X,a) =0




Incipient separation criterion:
the solution using the bi-section method

» Convergence of incidence and CFmin to the incipient
separation condition
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Cf

Incipient separation criterion:

Skin friction and heat transfer at incipient separation
condition
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Incipient separation criterion: comparison
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Summary and extrapolation

» The example demonstrates how CFD can be used to
revisit an aerodynamic empirical rule

» CFD may be used to extend the criterion for more
general case, e.g. including the wall temperature
conditions, turbulent cases, buffet boundary, flow
bifurcation, self excited shock oscillation, etc.

» If early aerodynamists can derive simple and useful
“rules” from wind tunnel data, there is no reason why
we cannot do the same combining the two.

» Deriving such CFD based “empirical” aerodynamic
rules is not easy but can be very rewarding




CFD for Wind Tunnel Wall
Interference Correction

A series of Cranfield MSc projects with BAE collaboration
Shadbolt, Farnibanda, Putze, Burton and Cross

» Objectives:

— Better use of small tunnels for large models (closer Re to
flight conditions);

— Reliable wall interference correction for transonic range,
especially, when supercritical flow reaches the tunnel wall;

— Use of modern CFD tools to assess and correct the
Interference.




Background

» The RAE semi-empirical corrections (Ashill)
» The MDA approach (Crites and Rueger)

— modelling of wall boundary conditions for porous walls

— correlation based on v,,, C, and & for a range of porous surfaces
» The AEDC approach (Jacocks)

— modelling of wall (1) pre-test prediction (2) measured wall C,

— correlation between de/dO and & for AEDC tunnel
» The NASA LRC approach

— slotted wall boundary conditions for NTF




Use of CFD for WIAC

[Wind tunnel tests + [ ACFD ] = {Free airdata]

A

Y

{ CFD for wind tunnel } [ CFD for free air ]




Correctability

» Conventional correction

— Mach number and incidence correction

— “uncorrectable” cases

» MDA approach using modern CFD

— address “uncorrectable” cases
— fixed Mach number and incidence

Free Air = Wind Tunnel + ACFD




What are required for the correction

» For computation: inviscid boundary conditions at
wall

— tunnel wall pressure distribution

— equivalent normal velocity at wall including the effect of
porous wall conditions

— tunnel wall initial &*

» Extra wind tunnel measurement required

— tunnel wall pressure

— displacement thickness at the entrance of tunnel wall




Wall correction: what to match?

» Conventional correction

— match C,, correct M and a

» MDA approach

— match M and o, correct surface pressure etc.




Shadbold’s Experiments

>
>

Wing 9: 2D wing 14% thick and 12” chord

Porous side walls, solid top/bottom walls, vertical
model

Measurement on the model: surface pressure
measurement with 26 pressure tappings on the upper
surface and 18 on the lower surface

» Measurement on the wall: p on both side of the wall

M=0.695, Re per meter 18.5 million




Fanibanda’s 2D Study

» CFD study of Shadbolt’s experimental cases

— free air case
— solid wall case

— “ideal wall” case with boundary conditions set from the free
air case

> Results

— big difference between free air and solid wall cases

— ideal wall case is much closer to free air case but
discrepancies remain, indicating problem with B.C.

— attempted to model porous wall




Puetz’s 3D Study

» CFD study of TWIG cases: 0.5 <M< 1.4, a=0°, 20°

— free air cases
— solid wall without support structure

— solid wall with support structure
» Results

— significant difference between free air and solid wall without
support cases through the transonic region in HSWT

— free air results are close to porous wall wind tunnel data at
o=0° but significantly different at a=20°

— solid wall with support structure created a blockage effect
for M>0.8



Surface pressure distribution




Solid wall interference

Figure 5.1 A Graph to Show the Wall Interference for the Lift Coefficient
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Solid wall with and without support

A Graph of CL versus M
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Surface pressure distribution
M=0.9, a=0

Free Air Solid Wall Complete




Summary and Extrapolation

» The projects confirmed that the wall interference is
most significant in the transonic range (high
subsonic).

» The model support structure has a strong
Interference at low supersonic range.

» CFD can be used for WIAC improving the accuracy
and the effective range of Reynolds number in wind
tunnel tests (larger models in existing tunnels).

» Require further development of proper CFD boundary
condition for the WIAC study.




Conclusion

The three examples presented here highlight some

potential use of CFD to help wind tunnel experimental
Investigation.

A lot needs to be done to achieve this!
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