Comparison of Numerical Predictions and Wind Tunnel Results for a Pitching Uninhabited Combat Air Vehicle

Department of Aeronautics
United States Air Force Academy
USAF Academy, CO

Outline

- Introduction
- Dynamic Stall/Lift
- UCAV Configuration
- Experimental Results
- Numerical Method
- Static Results
- Pitching Results
- Conclusions

Introduction

- NASA Dryden Flight Research Center Photo Collection http://www.dfrc.nasa.gov/galleryiphoto/index.html NASA Photo: EC01-0292-9 Date: October 24, 2001 Photo by: Tony Landis
 - DARPA, U.S. Air Force, Boeing X-45A UCAV at NASA Dryden

- UCAV's are playing an important role in current military tactics
- Predator and Global Hawk are becoming essential elements of current operations
- X-45A represents future configurations

Introduction

- Some issues to explore in order to take advantage of a UCAV's uninhabited state:
 - High g maneuvering
 - Compact configurations
 - Novel control actuation
 - Morphing wings
 - MEMS-based control systems
 - Semi-autonomous flight
 - Increased use of composites
 - Novel propulsion systems
 - Dynamic stall/lift

Dynamic Stall/Lift

a—separation begins

b—leading-edge vortex forms

c-full stall

d—reattachment and return to static state

From http://hodgson.pi.tu-berlin.de/~schatz/PIZIALI/osc.html

- Utilizes rapid pitch-up and hysteresis to produce increased lift
- A great deal of work has been done on airfoils and simple wings
- Very little work has been done on UCAVs

UCAV Configuration

- Straight, swept leading edge with 50° sweep
- Aspect ratio of 3.1
- Round leading edges
- Blended wing & body
- Top/front engine inlet
- B-2-like wing planform
- Low observable shaping

Boeing 1301 UCAV

Experimental Results

- 1:46.2 scale model
- Academy 3 ft × 3 ft open return low-speed wind tunnel
- Less than 0.05% freestream turbulence levels at all speeds
- Freestream velocity of 20 m/s (65.4 ft/s)
- Chord-based Reynolds number of 1.42 × 10⁵

Static Testing

- Linear lift characteristics up to 10° to 12°
- Stall occurring at about 20°
- Lift re-established up to 32°, where an abrupt loss of lift takes place
- Effect of leading-edge vortices and vortex breakdown?

Dynamic Testing

- The configuration was pitched at 0.5, 1.0, and 2.0 Hz (k = 0.01, 0.02, and 0.04)
- Center of rotation at the nose, 35% MAC, and the tail
- The pitch cycles were completed for three ranges of angle of attack:

$$-0^{\circ} < \alpha < 20^{\circ}$$

$$-16^{\circ} < \alpha < 35^{\circ}$$

$$-25^{\circ} < \alpha < 45^{\circ}$$

$$\alpha(t) = \alpha_{\circ} + m(1 - \cos(\omega t))$$

Pitching About 35% MAC @ 2 Hz

- Dynamic lift is greater than static lift during pitchup
- Pitchup lift is also greater post stall
- Dynamic lift is less than static lift during pitchdown
- Little impact on drag

Pitching About Nose @ 2 Hz

- Similar results to pitching about 35% MAC
- Slightly less effective at producing lift during pitchup
- Essentially identical results in post-stall region

Pitching About Tail @ 2 Hz

- Drastically different than previous results
- Much more lift at higher angles of attack in pitching cycle
- Reduced lift at lower angles
- Significant impact on drag

Numerical Method

- Cobalt Navier-Stokes solver
 - Unstructured mesh
 - Finite volume formulation
 - Implicit
 - Parallelized
 - Second-order spatial accuracy
 - Second-order time accuracy with Newton sub-iterations
- Run on Academy 64 processor Beowulf cluster, Origin 2000, and USAF HPC computers
- Laminar flow with freestream conditions set to match Reynolds number of wind tunnel experiment

Mesh and Boundary Conditions

- Three unstructured meshes:
 - Coarse (1.3 million cells)
 - Medium (2 million cells)
 - Fine (4 million cells)
- Half-plane model
- No-slip on surface
- Symmetry plane
- Freestream inflow
- Inlet covered to match model
- No sting modeled

Mesh Convergence

- Steady results from all three meshes yield identical forces
- High angle of attack flowfields will be unsteady
- Use 2 million cell mesh for following calculations
- Detailed time step study to follow for unsteady flow

Steady-State Static Results

- Good results in linear angle of attack range
- Qualitatively similar results in post-stall region
- Lift and drag are significantly overpredicted in post-stall region

Steady-State Static Results

- Wide shallow vortices
- Vortex breakdown fairly far back on configuration
- Vortical structures behind breakdown maintain lift on aft of vehicle
- Rounded leading edge creates weaker vortices that breakdown sooner

Time-Accurate Static Results

- Flowfields in post-stall region are unsteady
- Time-accurate results match experiment much more closely
- Fairly good modeling of flowfield, including drag, up to α=45°
- Differences in lift from α=20° to α=30° (sting, surface roughness, transition?)

Time-Accurate Static Results

Time-Accurate Static Results

Dynamic Pitching Results

- Pitchup doesn't capture full lift increase at low α
- Overprediction of lift also seen in pitchup case
- Drag is fairly well modeled during pitchup
- More cycles required

Dynamic Pitching Results

Static Pressure

Pitching Pressure

Conclusions

- A generic UCAV configuration has been wind tunnel tested both statically and pitching
- The configuration generates increased dynamic lift during pitchup maneuver
- Numerical simulation helps to understand causes of wind tunnel results
 - Stronger leading-edge vortex during pitchup
 - Leading-edge vortex persists to very high angles of attack
 - Vortex breakdown causes the non-linearities in lift
- Collaboration between experimentalists and computationalists leads to greater understanding of aerodynamics

Questions?

