Fixing Poor Control Surface Performance on a Transonic Missile – A Case Study of Combining Cost-effective Wind Tunnel Testing and CFD Analysis

CP Crosby and SG Gobey

Aerodynamics Department Kentron South Africa

Methods for Aerodynamic Design

Discrete methods with clearly defined boundaries?

- "Classical" exact analytical
- Semi-empirical database methods
- Computational Fluid Dynamics
- Wind-tunnel testing

Combining CFD and Experiments

- "Conventional" view: use wind-tunnel to validate CFD, then use calibrated CFD to perform further studies
- Very slow, very expensive, very narrow view
- Why do CFD when good tunnel results already exist?

What Is "Quality"?

- CFD good practice stipulates measures to be taken to ensure good quality CFD
- Good quality CFD is very expensive. Is it always necessary?
- Does good quality CFD necessarily ensure good quality design?
- Quality vs. quantity trade-off, which will give better final design?
- Performance and quality of design is a more meaningful metric than quality of CFD analyses

A Real Life Design Problem

- Transonic (mostly subsonic) missile with canard control
- User requirements:
 - Very high manoeuvrability
 - Strict packaging dimensions
 - Low hinge moments

Problem: Insufficient Elevator Power

- WT test in concept phase, 1:13 scale model in blow-down wind-tunnel, insufficient elevator effectiveness
- No CFD capability available, revise design empirically
- Performance improved, but still unsatisfactory
- Probable cause:
 - Low Reynolds number
 - Poor profile accuracy

Problem: Design Flaw, Not Testing Artifact

Highly detailed test of 30% model in transonic tunnel

Understanding The Flow

Relatively "crude" simplified CFD-Fastran model, only 190 000 cells

Baseline CFD Confirms Problem

Even much simplified CFD captures poor performance

CFD Aids Understanding of Flow Problems

- Premature flow separation due to incidence and deflection
- Nose upwash aggravates separation
- Interference due to close spacing

Fixing the Problem

- Thanks to improved understanding, mostly from qualitative inspection of CFD flow fields, design is easy to improve
- Design tweaked to get better looking picture
- Increase control surface leading edge sweep angle
- LE sweep reduces adverse interference on fixed canard
- Increased gap also reduces interference
- Boundary layer fence on fixed canard helps

Much Prettier CFD Pictures After Mods

Much Prettier CFD Pictures After Mods

But Pretty Picture Also Gives Better Forces

Confirm With "Crude" Low-speed WT Test

- Big chances taken with simplified CFD
- Need to confirm independently
- CFD suggests non-subtle flow, try cheap WT test
- WT approximations suggested by CFD:
 - Low Mach-number (cheaper tunnel)
 - Simplified aerofoils
 - "Coke tin & aluminium tape" model modifications
- Simplified CFD and WT test only practical because of:
 - Cross-confirmation
 - Confirmation from later detailed test, which acts as a "Safety Net"
- Simplified test indicates BL fence was a bad idea, CFD confirms this

Low Mach Number Can Be OK

Check validity with CFD before WT testing

Simplified Aerofoils OK at Low AR

Check validity with CFD before WT testing

Low Speed Test Confirms Improvement

Detailed Transonic WT Test Gives Further Confirmation of Improvement

Conclusions

- Rough WT testing can mislead, use CFD to check
- Rough CFD can capture most important characteristics of a complex flow field – this may be sufficient
- Qualitative CFD is very valuable for understanding complex flows, very good for improving designs
- Characterisation WT test makes a good quality "safety net", allows earlier CFD and WT testing to take short-cuts
- Increased quality risk may be more acceptable if CFD and experimental work is integrated
- Aerodynamic designer, WT test engineer and CFD practitioner need to work ver closely together
- CFD can lead down blind alleys, even rough WT testing can rectify this
- Only quality of the final design matters

