Aerodynamic Ground Effect: a case-study of the integration of CFD and experiments

Tracie Barber & Stephen Hall University of New South Wales, Sydney, Australia

Introduction

- Ground Effect
- Issues causing discrepancies in results
- Boundary Conditions
 - Deformable surface
- Viscous Effects
- Moving Ground design and analysis
- Continuing work

Ground effect - applications

WIG

Previous Research

- Inviscid (ie panel methods) used extensively
- Analytical methods also used (many assumptions, limitations)
- Limited viscous CFD results
- Inappropriate boundary conditions often used
- Experimental results scarce / unreliable

Current Work

- Reynolds-Averaged Navier Stokes Equations (CFX & Fluent)
- Higher order discretising schemes
- RNG or Realizable k-ε turbulence model, standard wall functions

Test-cases

Testcases: (2D)

- NACA 4412 wing
- Angles of attack:
 - $-1.2^{\circ}, 4^{\circ}, 6.4^{\circ}, 10^{\circ}, 12^{\circ}$
- Reynolds Number:
 - -8,200,000
- Clearances (h/c):
 - -0.05, 0.10, 0.50, 1.00, free air

Boundary conditions

SLIP

Results - velocity vectors

Results - velocity contours

Ground Stationary

Ground Moving

PIV Analysis

- Particle Image Velocimetry
 - Pairs of images allow particle movement to be determined
- Nd-Yag laser, 532 nm, 100mJ/pulse
- Particles of spherical latex (5μm)
- Initial investigation considered effect of moving ground

Stationary Ground

Free Surface Effects

- Most WIG craft operate over water
- Lifting bodies produce a high pressure on their lower surface
- "Does this pressure change the surface shape, and does this affect the aerodynamic characteristics of the body?"

Free Surface Effects

Froude number

$$Fr = \frac{U}{\sqrt{gL}}$$

Reynolds number:

$$Re = \frac{\rho Uc}{\mu}$$

CFD model (VOF) overcomes this issue

Max Surface Deformation Beneath Airfoil vs Froude Number

Importance of Viscous Effects

- Panel methods (inviscid) frequently used for ground effect
- Real flow situations will viscous effects greatly affect results?

Results: Three-Dimensional

- NACA 4412 wing, AR=6
- Angles of attack:
 - $-1.2^{\circ}, 4^{\circ}, 6.4^{\circ}, 10^{\circ}$
- Reynolds Number:
 - -8,200,000
- Clearances (h/c):
 - -0.05, 0.10, 0.50, 1.00, free air

Effect of Ground on Separation

Wingtip Plane

Mid-Semispan Plane

Symmetry Plane

Wingtip Plane

Mid-Semispan Plane

Symmetry Plane

h/c=free air

Effect of Ground on Wake

Moving Ground - wing

PIV Results – Flow separation

PIV tke CFD tke NACA 4412 wing at 12°, h/c=0.45, trailing edge region PIV tke CFD tke NACA 4412 wing at 12°, h/c=0.05, trailing edge region

- Implementation of moving ground into 3ft x 4ft wind tunnel
 - Belt speed of 60m/s
 - Extensive CFD analysis to determine best configuration
 - Uniform velocity profile
 - Uniform turbulence profile

Moving Ground - suspended

Velocity Contours

Moving Ground - suspended, leadup

Velocity Contours

Moving Ground, in line

Velocity Contours

Moving Ground, offset, leadup, suction

Moving Ground – design & construction

Supersonic Ground Effect

Integration of CFD & Experiments

