Integrating CFD and Experiments September 8 - 9, 2003 University of Glasgow

Experimentalist's requirements for a safe methodology in CFD code validation

> Jean Délery ONERA - Centre de Meudon

> > Jean.Delery@onera.fr

The parts of the paper

The four steps of the verification/validation methodology

A Methodology for a thorough experimental flow qualification

★ Data bank constitution and management

9.5

The four steps of the verification/validation methodology

1. First step: assessment of the code numerical accuracy and reliability is a prerequisite to any further validation step

how do do it?

• comparison with exact analytical solutions (such solutions are scarce)

• confrontation with other codes or cross-validation (are the other codes better?)

comparison with good experimental results

basic rule \implies avoid the mixing of numerical techniques, meshing difficulties and modelling uncertainties

2. Second step: validation of the physics implemented in the code on simplified configurations emphasising hard points

For this step building block experiments must be used (if available)

- the flat plate boundary layer
- typical separated flows
- vortex formation and development
- shock interference patterns
- shock wave/boundary layer interactions

•

The four steps of the verification/validation methodology

3. Third step: validation on sub - systems

4. Fourth step: validation on a complete object

aircraft
space launchers
helicopter
any vehicle ...
.....

Requirements for sound and useful

experimental results

The geometry of the configuration must be precisely defined and well known and, if possible, simple to avoid too hard meshing difficulties

Laminar high - Mach number test cases from the R5Ch wind-tunnel

The boundary conditions must be clean and well identified

transonic channel for unsteady shock /boundary layer interaction

Side effects or perturbations must be avoided if they cannot be accounted for in the calculation

side effects in a 2D planar transonic channel

For 2D calculations choose an axisymmetric configuration

hollow cylinder for shock/boundary layer interaction

All the uspstream flow conditions must be precisely known

The flow description must be as complete as possible

develop and use an adequate instrumentation

flow qualification

Methodology for a thorough experimental flow qualification

Flow overall organisation and topology surface flow definition (skin friction line pattern), flow field visualisation (localisation of vortices, main features)

laser sheet visualisation of vortices

Da

EBF picture of a Mach 10 flow past a double-cone model

Methodology for a thorough experimental flow qualification

Methodology for a thorough experimental flow qualification

Requirement for useful experimental results

measurements must be reliable and safe: comparison with calculation can validate a new measurement technique !

flow in a supersonic air intake bleed system

is more expensive that a useless experiment !

The database constitution and management

the database must contain all the information necessary to perform a calculation: geometry, flow general conditions, boundary conditions....

results must be stored in a convenient format on an appropriate and safe electronic support

define a precise protocol for data transmission

establish well defined dissemination rules: experiments are expensive, good experimentalists tend to be rare!

To-day deposit in the Onera - DAFE database!

the ERCOFTAC database stored at the University of Surrey

the FLOWNET database stored at INRIA/Sophia Antipolis

This concludes a short presentation on some of the complex and numerous problems raised by the

Experimentalist's requirements for a safe methodology in CFD code validation

Thank you for your attention