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Main Points

� Lifting Flows for for an airfoil in the framework of an inviscid

compressible ¤ow.

� How Euler codes based on FVM and FDM deal with the

Kutta-Joukowski condition.

� Weak Implementation and Strong implementation of the

Kutta-Joukowski CONDITION.

� Generation of circulation when time marching Euler calculations

are performed with the Kutta-Joukowski condition imposed at the

sharp trailing edge.

� Discussion of the vorticity production and distribution ion the

computational domain in the limelight of grid re£nement study.
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The Classical Theory of Lift

� A cylinder of radius R, spinning about its axis in an

anti-clockwise direction, in an inviscid incompressible Flow of

free-stream velocity U∞i.

The stream function for the lifting Flow over the cylinder is given by

Ψ = U∞ r sinθ
(
1 − R2

r2

)
+

Γ

2 π
ln

( r

R

)

�Airfoil with a sharp trailing edge.

� Solution is dependent on the value of Γ and is therefore non

unique.

�In£nite number of solutions.

� The relevant one is given by the Kutta-Joukowski hypothesis

The Flow should leave the trailing edge smoothly

� This solution is then termed as the relevant Euler solution

� It is the solution of the Naviers-Stokes Equations in the limit of

viscosity µ → 0 but µ �= 0.
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Euler Codes

a

b c

de

1
2 3

θ

qte · nu = 0 qte · nl = 0

The Boundary Condition at the Kutta point is therefore qte = 0

�Cell-Vertex Finite Volume (CVFVM)and Cell-Centred Finite
Volume (CFVM)
(i) Codes based on First order accurate computations
(ii) Linear reconstruction (to enhance order of accuracy)
The cell-averages at the centroids of the cells are updated
For the cell with centroid b:

flux[1,2] = incident flux(same as that at b)

+ reflectedflux(wall boundary condition)

Linear Reconstruction
The Flow variables are assumed to vary linearly within a cell.
The gradient of the Flow variables at centroid b are computed.

f (x, y) = f (xb, yb) + (x − xb)

(
∂f

∂x

)
b

+ (y − yb)

(
∂f

∂y

)
b
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a

b c

de

1
2 3

θ

�These methods do not take into account the fact that

the solid boundary condition suddenly changes from

qte · nu = 0 to qte · nl = 0 at the Kutta point.

The Flux on the cell face (2,3) is the same in the state

update of centroids c and d.

Thus, the Flow will be prevented from sharply turning

around the Kutta Point thus satisfying the Kutta

Joukowski condition.
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�Finite Difference based Method (FDM)

KP

�The necessity of updating the state variables at the

Kutta point comes into sharper focus

� We obtain the space derivatives at the Kutta point

KP in terms of the neighbouring data.

�Given the Flow variables ρn
kp , un

kp , vn
kp , pn

kp at

time level n at the Kutta point, how to determine

ρn+1
kp , un+1

kp , vn+1
kp , pn+1

kp using the data in the

connectivity of the Kutta point.

�The solution of the partial differential equation of

the Flow, together with the prevailing boundary

condition, is obtained.
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(i)Weak implementation of the boundary condition at

the Kutta point

example : The update of the state variables at the

Kutta point is indirrectly addressed (CCFVM)

(ii)Strong implementation of the boundary condition

at the Kutta point

The Kutta Joukowski condition is imposed and then

pressure and density are updated using data at the

nodes in the connectivity of the Kutta point.
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Vorticity production due to the baroclinic mechanism

�How do Euler codes applied to computations of the compressible

inviscid ¤ows generate vorticity and produce enough circulation?

� Vorticity production in viscous ¤ows

X

Y

Flat  PlateU 8

Boundary  Layer

Figure 1: Viscous Flow over a Flat Plate

�Large velocity gradient ,
∂u

∂y
Velocity changes sharply from its no slip value of zero to non zero

value at the edge of the layer

Vorticity is produced near the ¤at plate and convected.

� Euler codes used for computing lifting ¤ows around the airfoil

� The Kutta-Joukowski condition can be regarded as a one point

no-slip boundary condition qt.e. = 0 (for θ = 0) at the Kutta

point.



Integrating CFD and Experriments 2003 The Kutta-Joukowski Condition 9�

�

�

�

production of vorticity and Boundary Condition

at the Kutta point

The sudden change in boundary condition causes vorticity

production through the baroclinic mechanism .(Balasubramaniam

et al, CFD Centre, IISc., Bangalore )

The momentum equation for an inviscid compressible Flow.

∂ q

∂ t
+ q.∇q = −1

ρ
∇p

∂ ω

∂ t
+ u1

∂ω

∂x
+ u2

∂ω

∂y
= − 1

ρ2

[
∇p ∧ ∇(ρ)

]

� If ∇p is not parallel to ∇ρ, then the term on the rhs produces

vorticity.

�For inviscid Flows with the Kutta-Joukowski condition prevailing

at the trailing edge, there is a sudden discontinuity in the wall

boundary condition.

�Large velocity gradients develop in that region and hence Flow

becomes non-isentropic there
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�the lift experienced by an airfoil in a subsonic Flow

at a given angle of attack is a consequence of the

circulation around the airfoil.

Γ = −
∮

c

q.ds = −
∫ ∫

s

ω . dS

, where ω = ∇ ∧ q
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Numerical Results

�using the q-LSKUM (The Least Squares Kinetic Upwind Method

based on Entropy variables)

�£nite difference based scheme to solve the 2d Euler Equations

Figure 2: Surface Plots of the Baroclinic term, at steady state, a

coarse and a medium grid respectively ( M∞ = 0.63, α = 2◦ )
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Figure 3: Surface Plots of Vorticity, at steady state, for different grids.

( M∞ = 0.63, α = 2◦ )
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(b) Close to the Airfoil

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.06

−0.04

−0.02

0

0.02

0.04

−1

0

1

2

3

4

5

6

(c) The Leading edge
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(d) The Trailing edge

Figure 4: The Baroclinic term for the Flow past NACA 0012 at M∞
= 0.16, α = 2.o on Fine Grid



Integrating CFD and Experriments 2003 The Kutta-Joukowski Condition 14�

�

�

�

−10 −5 0 5 10

−10

−5

0

5

10

−2

−1

0

1

2

3

4

(a) The whole Computational

Domain

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−2

−1

0

1

2

3

4
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(c) The Leading edge
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(d) The Trailing edge

Figure 5: Contours of Divergence for the Flow past NACA 0012 at

M∞ = 0.16, α = 2.o on Fine Grid
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Figure 6: A 3-D Surface plot of the Vorticity distribution close to the

airfoil for the coarse grid and the Fine grid
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Conclusion

� An attempt to understand how circulation for lift is generated

within the framework of inviscid compressible Flow.

� Baroclinic mechanism, activated by Flow tangency and the

Kutta-Joukowski condition are responsible for generating vorticity

and therefore circulation.

� Grid re£nement study :

the baroclinic term is a maximum at the trailing edge

Vorticity is very large at the trailing edge.


