

Turbulent Wind Flow over a High Speed Train

R K Cooper School of Aeronautical Engineering Queen's University Belfast

Acknowledgement: To Network Rail WCML for permission to Use experimental data obtained by BMT Fluid Mechanics Ltd.

Cross wind effects on trains

Low mass passenger vehicles may be blown over.

- •Wind tunnel tests used to give force and moment data
- Probability of overturning may be evaluated

Wind tunnel data shows large variability

- •Effect of turbulence?
- •Effect of embankment?
- •Effect of train motion?

Moving model experiments

- Expensive and difficult
- May create more problems than they solve

Will CFD give the answer?

Coefficient of side force vs. yaw angle

- •significant variation between wind tunnel tests
- depends on turbulence intensity and scale

Trains with Mark 3 passenger coaches

Class 87 electric loco.

+ Mark3 coaches

Prototype for wind tunnel models

High Speed Train Diesel-electric loco.

+ Mark3 coaches

Prototype for CFD model

BMT Fluid Mechanics Wind tunnel (4.8m *2.4m) Atmospheric Boundary Layer simulation Class 87 + Mark 3 coaches (1/30 scale)

Fluent 6 Hybrid grid

- •Unstructured around nose and tail
- •Relative wind inflow profile specified
- Moving ground simulation possible

CFD

- •Reynolds number 1.5*10^5
- •Turbulence intensity 3%
- •Length scale 3m
- •Yaw angle 60 deg.

Note

- •Lee side vortex
- Separation on ground

QUB wind tunnel experiment

- •1/50 scale Mark 3 coach & loco.
- Flat ground
- •Turbulence intensity <1%
- •Reynolds number 1.6*10^5

BMT ABL wind tunnel experiment

- •1/30 scale Mark 3 coaches & loco.
- •Reynolds number 2.5*10^5
- •Turbulence intensity 22% at 3m (full scale)
- •Turbulence length scale 24m (full scale)

Train on 4m embankment

- •CFD 3% turbulence
- •Flow attached to embankment slope
- •Less sensitive to turbulence?

Conclusions

CFD shows promise for accurate simulation of

- •Flow over train on embankment
- Forces and moments
- Train motion over ground

Problems

- •Turbulence intensity and length scale important
- •Ground roughness should be adjusted for correct wind profile

CFD may extend the range of wind tunnel data

- Train motion over ground
- Unsteady flow, e.g. gust simulation