

Overview

Cranfield

- Jet aerodynamics
- Transonic cavity flows
- Racing car wheel flows

K Knowles, A J Saddington & N J Lawson

High-speed jet research

Glasgow 2003

K Knowles, A J Saddington & N J Lawson

Mach no contours x/D=2.5

Mach no contours x/D=5

Mach no contours x/D=7.5

Mach no contours x/D=10

Transonic cavity flow

Instantaneous PIV image

10mm

Insight softare processed PIV data

Flow Direction

- Time averaged flow field from 70 instantaneous image pairs captured at 15Hz
- Hart algorithm used to correlate particle displacements between images
- Data suffers from poor signal to noise ratio especially near to cavity walls

In-house code processed PIV data

- In house developed correlation algorithm proposed by Meinhart et al [2000]
- Correlation peak averaging technique rather than flow field averaging technique
- Technique offers greatly increased signal to noise ratio

Streamwise velocity profiles

Open-wheeled racing cars

Centreline pressure distribution

Sting vs no-sting (10mm)

Sting vs no-sting (25mm)

Sting vs no-sting (50mm)

Sting vs no-sting (100mm)

Conclusions

- The combined use of CFD and experiment has been shown to give enhanced insight into a wide range of aerodynamic flows, including:
 - high-speed turbulent jet flows
 - transonic cavity flows
 - open-wheeled racing car aerodynamics.
- Traditionally, experiments have been used to inform CFD development.
- Increasingly, CFD can inform experimental set-ups.