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Outline of Presentation

e Background and Motivation
» Configuration and Numerical Methods
e Range of Test Cases & Experimental Data
e Results: M=2.0and M =7.73
o Correlations of All Test Cases
e Conclusions
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Background and Motivation

o SBLI study: the effect on surface heating rates;

o Experiment: high heat fluxes in the re-attachment area,
e.g. ramp flow (Smith, 1993);

o 2D CFD modelling: failed to predict the separation
length and the peak heat flux, possibly due to transition.
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Comparison of Peak Reattachment Heating with
Laminar Interference Heating Correlations
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Compression ramp
experiments, M = 6.85
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Schematic of flow configuration
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Numerical methods

o Compressible, unsteady 3-D Navier-Stokes code;
 Grid transformation for complex geometries;

« 3-stage explicit Runge-Kutta for time advancement;
 4th-order central finite difference scheme;

« Entropy splitting for Euler terms and Laplacian form
for viscous terms;

 Stable high-order boundary treatment;

 TVD/ACM for shock capturing.
For details, see Sandham et al., JCP 178, 307-22, 2002

Aerodynamics and Flight Mechanics Research Group of Southampton
Ly, O F E*R¥G. IasN E E' R I N G SO T EAC “E-—5




Range of Test Cases

Case | Symbols | Mach number, My, | Reynolds number, Re, | Overall p. ratio (ps/p1)
1 A 787 1.48 x 10° 5.41
9 v 7.73 0.46 x 10° 1.56: 3.08; 5.56
3 > 6.85 0.78 x 10° 11.00
4 q 6.85 0.25 x 10° 2.68: 4.56:7.33; 11.08
5 0 4.50 0.30 x 10° 1.74:2.91: 4.43
6 0 2.00 0.30 x 10° 1.25:1.40; 1.63; 1.86

Reynolds numbers are based on the length from the leading edge to the
shock impingement point in the absence of boundary-layer, x,
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Simulation of case 6:
Supersonic M = 2.0 inflow

* Previous studies: experiments by Hakinnen et al. (1959);
computations by Katzer (1989), Wasistho (1998)

* py/p,=1.25,1.40, 1.65, 1.86;

« Baseline grid: 151x128;

« Boundary Conditions:
- Inflow: prescribed velocity and temperature b.l. profiles
- Wall: non-slip, adiabatic;
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Grids: 151 x 128 (uniform in X

and stretched in y)
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Simulation of case 2:
Hypersonic M = 7.73 inflow

« Based on experimental studies of Kaufman and Johnson,
NASA TN D-7835 (1974)

* ps/p,=1.56, 3.08, 5.56;
e Computational domain conforms to experiments
« Baseline grid: 128x192;
* Boundary Conditions:
- Inflow: normalised quantities based on freestream

- Wall: non-slip, isothermal;
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Case 2, M =7.73, p =11.08°, p,/p, = 5.56

Schlieren: density gradients
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Computation
First order weak viscous interaction theory
o Experiment
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Correlations: Influence of the
Mach number and Shock Strength
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Correlations: Separation bubble length
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Correlations: Peak heating
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Conclusions and Future Work

o At M =2.0experiment and simulations agree fairly well;

o At M =7.73 agreement between experiment and simulations is
relatively poor;

e 2-D and 3-D laminar SBLI simulations have so far failed to
resolve the discrepancies with experimental data;

|t is possible that the interactions undergo transition;

« 3-D unsteady simulations to investigate boundary-layer
Instability are underway and will be reported later.
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