DELTA WING AERODYNAMICS – Requirements from CFD and experiments

I Gursul (University of Bath), M. Allan and K. Badcock (University of Glasgow)

Integrating CFD and Experiments, Sept 8-9 2003, Glasgow, UK.

Overview

- Brief introduction to delta wing aerodynamics
- Issues and challenges
 - Vortex breakdown
 - Shear layer instabilities
 - Vortex breakdown interaction
 - Non-slender vortices
 - Manoeuvring wing vortices
 - Fluid / structure interaction
 - Multiple vortices
 - Alternative planforms
- Requirements from experiments and CFD

Properties of delta wing leading edge vortices

- Flow separates at low angle of attack
- Stable vortices produce increased lift and induced drag
- Secondary vortices form beneath primaries
- Core velocities reach up to 3.5 U_∞ (jet like velocity profile)

Vortex breakdown

Character of vortex breakdown

- Associated with flow stagnation along vortex axis
- Core kinks and forms spiral of opposite sense to core rotation (**spiral breakdown**) or forms a recirculation region behind stagnation point (**bubble breakdown**)
- Downstream of breakdown flow turns into full scale turbulence
- Dominant frequencies present in breakdown region (associated with spiral breakdown)
- Loss in lift and sharp change in pitching moment
- Reynolds number independent
- Sensitive to external influences

Vortex breakdown (1)

Time averaged PIV results

Magnitude of velocity

showing structure of breakdown

Steady state computation

Velocity contours

showing structure of vortex breakdown

Vortex Breakdown (2)

Spiral vortex breakdown

Bubble vortex breakdown

Breakdown location scatter

Large scatter in breakdown locations – possibly due to geometry or test facilities

Test facility interference (1)

Allan et al. (2002)

Test facility interference (2)

Allan et al. (2003)

FAB 12% $X_{BD} = 81 \% c_r$

FAB 6% $X_{BD} = 73.8 \% c_r$

Shear layer instabilities (1)

Gad-El-Hak and Blackwelder (1985)

Payne et. al. (1988)

Shear layer instabilities (2)

A. Mitchell et al. (2001)

Shear layer instabilities (3)

A. Mitchell et al. (2001)

Shear layer instabilities (4)

M. Visbal (2002)

Instantaneous flow fields showing transition process with increasing Reynolds number

Time averaged flow structure

Vortex breakdown interactions

Gray et al. (2003)

Menke et al. (1999)

Non-slender vortices

Dual vortex system

 $\Lambda = 50^{\circ}$ Taylor *et al.* (2003)

Manoeuvring delta wings (1)

- Dynamic response of vortices and breakdown important
 - UAVs expected to have high manoeuvre rates (up to 30g envisaged)
 - Frequencies of motion may couple with vortex instabilities

Menke et al. (1999)

Manoeuvring delta wings (2)

- Hysteresis effects present (especially with vortex breakdown) for pitch, roll, and yaw motion
 - Hysteresis in loads and moments as well as breakdown locations
 - Not well understood
 - CFD suggests PG delays along vortex axis important
- Hysteresis present for non-manoeuvering wings
 - Static hysteresis
 - Hysteresis due to flap / rudder deflections
 - Indicates motion induced rates are not solely producing hysteresis effects

Manoeuvring delta wings (3)

Free-to-roll cases – including bearing friction effects

Manoeuvring delta wings (4)

Limit Cycle Oscillations (Wing rock) -Slender and non-slender wings

Fluid / structure interaction

Unsteady vortex / structure interactions

Gordnier (2002)

Multiple vortices

- Unsteady vortex interactions
- Complex flow patterns
- Coiling up and merging
- Breakdown

Alternative planforms

Diamond wings / Lambda wings for example

CFD

Summary - Requirements from experiments

- After 4 decades of research many experimentally observed phenomena poorly understood
 - Vortex breakdown, shear layer instabilities, hysteresis effects, multiple vortices, high rate manoeuvres
- Limitations
 - Measurement techniques available and data which can be acquired in a given time
 - Test facility restrictions
 - Cost

Summary - Requirements from CFD (1)

- Static test data
 - Complete data sets
 - Generally only one or two of flow vis / surface pressure / flowfield data / load data
 - Better description of test conditions
 - Tunnel geometries, support geometries, measurement equipment
 - More detailed flowfield data
 - Higher fidelity modelling is requiring more and more detailed flowfield data for validation
 - Validation of tunnel interference effects
 - Improved correction techniques

Summary - Requirements from CFD (2)

- Dynamic testing
 - Complete data sets
 - Force data / Breakdown location data / Surface pressure data / Flow vis / Flowfield data
 - Better understanding of support friction effects
 - Details of test facility interference sources
 - Improved correction techniques
 - Multiple DOF tests