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Abstract

The solutions of the Euler equations are the approximate solutions of the
Naviers-Stokes equations in the limit of vanishing viscosity ( viscosity p — 0
but u # 0). These solution are used to predict the lift experienced by airfoils
and wings within the framework of inviscid flow, at a certain angle of attack.
The classical Kutta-Joukowski hypothesis enables us to determine these so-
lutions by imposing the Kutta-Joukowski condition at the sharp trailing edge
of the airfoil.

In this work, we study the question of how the circulation required for lift is
produced when time marching Euler calculations are performed for an air-
foil. We discuss the vorticity production, within the framework of inviscid

calculation, and its role in the generation of the lift within the framework of
Euler codes used in CFD.

Theory
The curl of the momentum equation gives,
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The left hand side of Eq.(1) has the time rate of change of w and the term giv-
ing vorticity advection. The right hand side of Eq.(1) vanishes when p and p
are isentropically related. If Vp is not parallel to V p, then this term produces
vorticity. Such a production of vorticity takes place through what is termed
as the baroclinic mechanism. For inviscid flows with the Kutta-Joukowski
condition prevailing at the trailing edge, there is a sudden discontinuity in
the wall boundary condition. As a result, sharp velocity gradients are de-
veloped and a non-isentropic change thereby takes place in the flow field in
that location. Thus, strong gradients in pressure and density are set up and
they in turn produce vorticity.

Results

In order to study the vorticity distribution at steady state, we have chosen a
subsonic flow around NACA 0012 airfoil with M, = 0.63,a = 2°. The two
dimensional distributions of vorticity at steady state, for relatively coarse
(120x60), medium (160x90) and fine (320x60) grid respectively, are shown
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in Fig.(1). Also, we computed the flow field for a fine grid of 28800 nodes
(240x120) at low Mach number that is, My, = 0.16, o = 2°.

For low Mach number computations, that is, in the incompressible limit,
our numerical investigations show that the baroclinic mechanism is present
(Fig.(2) and Fig(3)). In other words, the flow is always compressible in the
neighbourhood of the trailing edge.

Our results suggest that as the grid is progressively refined, the vorticity will
tend to a Dirac function, that is, it will be very large at the sharp trailing
edge and comparatively zero everywhere in the domain.

Figure 1: Surface Plots of Vorticity, at steady state, for different grids. (
My =0.63,a=2°)
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Figure 2: The Baroclinic term for the whole computational domain and close
to the airfoil respectively on fine grid . ( My =0.16,a = 2°)
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Figure 3: The Baroclinic term at the leading and trailing edge respectively
on fine grid. ( My = 0.16,0 = 2°)




