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The prediction of the dynamic characteristics of turbomachinery blades is
still a challenging problem despite the progress in both experimental techniques
and numerical simulation tools. In this paper, an effort is presented aiming at
understanding the relationship between changes in the incidence of vibrating
blades and the corresponding aerodynamic loads.

Wing tunnel measurements of the pressure on the suction side of an os-
cillating blade (NACA63-006) at an inlet Mach number of 0.5 and Reynolds’
number of 850,000 have been performed[1, 2, 3]. Oscillation frequencies varied
from 60 to 210Hz while the amplitude of oscillation was kept constant. The
mean incidence was also varied between 0° to 10°. The time-dependent pres-
sure measurements show that the aerodynamic loads are not linear for the near
stall region. It was found that an increased mean incidence caused a higher
excitation of the blade from the aerodynamic forces, while the effects of varying
the blade’s amplitudes and frequencies were more difficult to determine. At 6°
mean incidence, and below, increased blade amplitude for a constant frequency
caused the blade suction surface to experience an increased excitation, while for
the 7° incidence, and above, the opposite was shown. The fact that the blade
amplitude dependence changes when the mean incidence increases above the
steady state stall angle is explained by the increased portion of the oscillation
cycle spent at stalled conditions[4, 5]. A shift in phase was seen for the highest
investigated frequency of 210Hz.

The PMB solver of the University of Glasgow was also employed for cal-
culating the flow at the same conditions [6]. Indicative results are presented
in Figure 1 where the pressure signals from three taps are compared against
CFD predictions. As can be seen, the overall agreement is fair predicting the
variation of the loads both near the leading and trailing edges of blades, as
well as, close to the pivot point. This good agreement also indicates that the
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unsteady pressure and the incidence angle are in phase during the oscillation.
This can be seen from the stability diagram of Figure 2 where both experimen-
tal and CFD results are processed via Fast Fourier Transformation. The same
good agreement holds for a frequency of 110Hz while it collapses at the highest
frequency (220 Hz) attempted during experiments. For this case experiments
indicate that the pressure and incidence are out of phase while CFD indicates
the opposite; the phase difference is about 180 degrees as shown in Figure 3.
Further CFD investigations have been undertaken in order to resolve this issue
and detailed results will be presented in the final paper.
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Figure 1: Comparison between experiments and CFD for the pressure history on
the suction side of the blade (f=60Hz, M=0.5, Re = 850 x 103, mean incidence
0°, amplitude of oscillation 0.6 ° RMS) (a) z/c = 0.15, (b) z/c = 0.46, (c)
z/c=0.7.

Figure 2: Comparison between experiments and CFD for the phase difference
between incidence and pressure (f=60Hz, M=0.5, Re = 850 x 103, mean inci-
dence 0 °, amplitude of oscillation 0.6 ° RMS).

Figure 3: Comparison between experiments and CFD for the phase difference
between incidence and pressure (f=210Hz, M=0.5, Re = 850 x 103, mean inci-
dence 0 °, amplitude of oscillation 0.6 ° RMS).




