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Aleatoric

 Arising from inherent variability

e Machining tolerance, operating
conditions

e Cannot be reduced

Epistemic

* “Model Imperfections”

« Simplifications, precise information
unavailable

» Can be reduced




Sensitivity Analysis

 “How do individual model inputs contribute to the
uncertainty in the output?”
 Why:
Increase robustness of model
Design optimisation
|ldentify parameters that require further research
Model simplification — eliminating variables

Greater understanding of model and variable
Interactions
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Problems...

 Complex simulations can require a significant
time for a single run

 Monte-Carlo techniqgues require many runs
o SA for several input variables can be unfeasible

A Solution — Bayesian Data Modelling




The Bayesian Approach

<" Model treated as unknown function f(x)

= Input parameters represented as probability
distributions (uniform or Gaussian for tractability)

= Gaussian process regression (GPR) used to
build a metamodel from small number of model
runs

= Sensitivity analysis data inferred directly from
posterior distribution

< Application of GPR allows SA data to be
collected for many fewer model runs, at
comparable accuracy
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assumptions

E{f(x)| B}=h(x)' B

cov{f (x;), f(x;)| o’,B}
= o’ exp{-(x;, —x;)" B(x, —x,)}

Training data

X={X;,X,,...., X, }
Y ={Yi Yar-r Yo}

Posterior
distribution

Hyperparameter estimation,

condition on training data

[f0)1B,yl~t, {m*(x),6°c*(x,x)}




Posterior distribution

[f(X)[B,yl~t, {m*(x),6°c*(x,x)}

Uncertainty in output
« Mean EX{E(Y)}

e Variance




Posterior distribution

[f(X)[B,yl~t, {m*(x),6°c*(x,x)}

.

: : : Sensitivity indices
Main effects & interactions
E *[var{E(Y | X ,)}]

E*{E(Y [x,)}=] m*(dG_,, (¢, |x,) = E*[E{E(Y | X,)"H-E*{E(Y)’}




A Bayesian Approach

Sampling .Il=

strategy (LHS, Monte Carlo SEE Prior beliefs

simulation —__, inputs and about model;
outputs expert opinion

Probability
distributions of l

input variables _
Prior

distribution
over
functions

\4
Probability distributions of Posterior distribution cy/
output parameters (UA) functions

Sensitivity of outputs to
individual inputs (SA)
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Binary Flutter

Basic Equation is (notation: Wright and Cooper).

[A], [B], [C], [D] and [E] represent: structural inertia,
aerodynamic damping, aerodynamic stiffness, structural
damping and structural stiffness.

{z} Is a 2-vector representing flap and pitch degrees of
freedom for a rigid rectangular wing.
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Baseline Parameters

Certain

Semi-span s 7.5m

Chord c 2.0m
Flexural axis xf 0.48 c

Mass axis xm 05c

Mass per unit area 100 kg/m”2

Uncertain

Flap stiffness | ,(5x27)* Nm/rad
Pitch stiffness 1,(10x2z)° Nm/rad
Lift curve slope aw 2n
Nondimensional pitch

Damping derivative Mthetadot -1.2
Air density rho 1.225 kg/m”"2

The uncertain parameters are allowed to vary by 10%

around the nominal values.
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The Sensitivity Analysis

 Maximin latin hypercube sampling
e 200 model runs

o Squared-exponential covariance function
(assumes smooth response)

* Inputs assumed uncorrelated
« Gem-SA used for DOE and analysis




Main Effects

Variable Main Effect

Kf 5.03
Kt 78.65
A 3.03
2.79
10.36

99.9953

No significant interactions
Predictive posterior mean = 154.147
Predictive posterior SD = 13.458



Comparison

GEM-SA
Predictive posterior mean = 154.147
Predictive posterior SD = 13.458

MC (200 runs)
Predictive posterior mean = 153.67
Predictive posterior SD = 13.443

MC (20000 runs)
Predictive posterior mean = 154.108
Predictive posterior SD = 13.455
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Project Inputs Outputs Info
Rt A

Sensiivty Anslysis  Main Effects | output Summery |

g

Main effect
Main effect

Main effect
Main effect

Main effect

lopened flutter_inputs_rbd for prediction, with 200 poirts and 5 inputs

(Working with standardised output {mean 0, variance 1 for code outputs)

Estimating emulator parsmeters by maximising probability distribution...

imaximised posterior for emulator parameters: sigma-squared = 0.00120081. roughness = 255553 2.99995 233
Estimate of mean output is 154.147, with variance 3.05752¢-005

Estimate of total output variance = 181.121

flutter_rprj No inputs No outputs




Conclusions

e Bayesian sensitivity analysis allows detailed insight into
large, nonlinear uncertain models.

e The model here is trivial; however, a real flutter model
would couple in a structural FE model and the benefits
would be felt.

o Assumptions used (smoothness of model, input

distributions etc), thus uncertainty results uncertain!
However, good indicator.




