

Bayesian Sensitivity Analysis of a Simple Flutter Model

K. Worden & W. Becker

Dynamics Research Group Department of Mechanical Engineering The University of Sheffield, UK

Overview

- Uncertainty and sensitivity analysis
- The Bayesian approach
- Simple Flutter
- Sensitivity analysis results
- Conclusions
- Questions and comments

Uncertainty in Modelling

Aleatoric

- Arising from inherent variability
- Machining tolerance, operating conditions
- Cannot be reduced

Epistemic

- "Model Imperfections"
- Simplifications, precise information unavailable
- Can be reduced

Sensitivity Analysis

- "How do individual model inputs contribute to the uncertainty in the output?"
- Why:
 - Increase robustness of model
 - Design optimisation
 - Identify parameters that require further research
 - Model simplification eliminating variables
 - Greater understanding of model and variable interactions

Sensitivity Analysis

Screening (qualitative ranking)

Local SA (Linear models, small perturbations)

Global SA (Often Monte Carlo)

Least Informative

Most Informative

Increasing computational cost

Problems...

- Complex simulations can require a significant time for a single run
- Monte-Carlo techniques require many runs
- SA for several input variables can be unfeasible

A Solution – Bayesian Data Modelling

The Bayesian Approach

- Model treated as unknown function f(x)
- Input parameters represented as probability distributions (uniform or Gaussian for tractability)
- Gaussian process regression (GPR) used to build a metamodel from small number of model runs
- Sensitivity analysis data inferred directly from posterior distribution
- Application of GPR allows SA data to be collected for many fewer model runs, at comparable accuracy

Gaussian Process Regression

Prior assumptions

$$E\{f(\mathbf{x}) \mid \beta\} = \mathbf{h}(\mathbf{x})^T \beta$$

$$cov\{f(\mathbf{x}_i), f(\mathbf{x}_j) | \sigma^2, B\}$$
$$= \sigma^2 \exp\{-(\mathbf{x}_i - \mathbf{x}_j)^T B(\mathbf{x}_i - \mathbf{x}_j)\}$$

Training data

$$\mathbf{X} = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n}$$

 $\mathbf{y} = {y_1, y_2, ..., y_n}$

Posterior

distribution

Hyperparameter estimation, condition on training data

$$[f(\mathbf{x})|B,\mathbf{y}] \sim t_{n-q}\{m^*(\mathbf{x}), \hat{\sigma}^2 c^*(\mathbf{x},\mathbf{x}')\}$$

Posterior distribution

$$[f(\mathbf{x}) \mid B, \mathbf{y}] \sim t_{n-q} \{ m^*(\mathbf{x}), \hat{\sigma}^2 c^*(\mathbf{x}, \mathbf{x}') \}$$

Uncertainty in output

- Mean E*{E(Y)}
- Variance

Posterior distribution

$$[f(\mathbf{x}) | B, \mathbf{y}] \sim t_{n-q} \{ m^*(\mathbf{x}), \hat{\sigma}^2 c^*(\mathbf{x}, \mathbf{x}') \}$$

Main effects & interactions

$$E * \{E(Y \mid \mathbf{x}_p)\} = \int_{\chi_{-p}} m * (\mathbf{x}) dG_{-p|p} (\mathbf{x}_{-p} \mid \mathbf{x}_p)$$

Sensitivity indices

$$E * [var{E(Y | X_p)}]$$

= $E * [E{E(Y | X_p)^2}] - E * {E(Y)^2}$

A Bayesian Approach

Binary Flutter

Basic Equation is (notation: Wright and Cooper).

$$[A]\{\ddot{z}\} + (\rho V[B] + [D])\{\dot{z}\} + (\rho V^{2}[C] + [E])\{z\} = 0$$

[A], [B], [C], [D] and [E] represent: structural inertia, aerodynamic damping, aerodynamic stiffness, structural damping and structural stiffness.

{z} is a 2-vector representing flap and pitch degrees of freedom for a rigid rectangular wing.

Baseline Parameters

Certain		Uncertain
Semi-span s Chord c Flexural axis xf Mass axis xm Mass per unit area	7.5 m 2.0 m 0.48 <i>c</i> 0.5 <i>c</i> 100 kg/m^2	Flap stiffness $I_{\gamma}(5\times2\pi)^2$ Nm/rad Pitch stiffness $I_{\theta}(10\times2\pi)^2$ Nm/rad Lift curve slope aw 2π Nondimensional pitch Damping derivative $Mthetadot$ -1.2 Air density rho 1.225 kg/m^2

The uncertain parameters are allowed to vary by 10% around the nominal values.

Baseline Results

The Sensitivity Analysis

- Maximin latin hypercube sampling
- 200 model runs
- Squared-exponential covariance function (assumes smooth response)
- Inputs assumed uncorrelated
- Gem-SA used for DOE and analysis

Main Effects

Variable	Main Effect	
Kf	5.03	
Kt	78.65	
Α	3.03	
Mdt	2.79	
Rho	10.36	
Total	99.9953	

No significant interactions
Predictive posterior mean = 154.147
Predictive posterior SD = 13.458

Comparison

GEM-SA
Predictive posterior mean = 154.147
Predictive posterior SD = 13.458

MC (200 runs)
Predictive posterior mean = 153.67
Predictive posterior SD = 13.443

MC (20000 runs)
Predictive posterior mean = 154.108
Predictive posterior SD = 13.455

Conclusions

- Bayesian sensitivity analysis allows detailed insight into large, nonlinear uncertain models.
- The model here is trivial; however, a real flutter model would couple in a structural FE model and the benefits would be felt.
- Assumptions used (smoothness of model, input distributions etc), thus uncertainty results uncertain! However, good indicator.