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Introduction

≻ ECERTA — Enabling Certification by Analysis

≻ Doublet–Lattice Method (DLM)

∙ single most important tool for production flutter analysis

∙ transonic limitations and corrections

≻ Nonlinear aerodynamic modelling

≻ Requirement to deal with high dimensional parameterised problems
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Introduction

≻ MDO wing configuration
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Introduction

≻ ECERTA — Enabling Certification by Analysis

≻ Doublet–Lattice Method (DLM)

∙ single most important tool for production flutter analysis

∙ transonic limitations and corrections

≻ Nonlinear aerodynamic modelling

≻ Requirement to deal with high dimensional parameterised problems

≻ Objectives

∙ general method for model updating using nonlinear modelling and experiments

∙ general method for searching large parameter spaces for instability
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Framework for

Aeroelastic Stability Analysis
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Flow Models

≻ Hierarchy of flow models was needed

∙ Euler and RANS equations

aa ⇒ established research code∗

∘ fully implicit, block-structured, cell-

centred, finite-volume scheme

∘ 2nd order spatial/temporal discretisation

∙ FP equations and viscous correction

aa ⇒ newly developed research code

∘ unstructured, vertex-based, finite-

volume scheme applying Newton’s

method

∘ 2nd order spatial/temporal discretisation x
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∗) Badcock et al, Progr Aero Sci 36, 2000aa

∗∗) Cook et al, AGARD AR 138, 1979aaaaaai
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Schur Complement Formulation

≻ Schur complement formulation∗

(
S(�)− �I

)
ps = 0

with S(�) = Ass −Asf (Aff − �I)−1
Afs

= Ass + S
c(�)

∙ modelling aspects: aerodynamics’ influence stripped free

∙ main tasks of stability analysis: accurate and cheap evaluation of interaction term

∗) Badcock et al, AIAA-2008-1820aaaiw

∗) Badcock et al, AIAAJ, 48 (6), 2010w
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Approximating the Schur Interaction Matrix

≻ Interaction term Sc depends on

∙ frequency/damping

∙ steady state solution (Mach number, incidence, altitude, structural parameters)

≻ Evaluating Sc will become too expensive

≻ Instead: form cheap surrogate model

∙ two main tasks

∘ sample the parameter space of interest

∘ reconstruct elements of Sc by interpolation, e.g. kriging or ANN

∙ any tool for sampling and interpolation is possible

∙ stability analysis becomes very cheap with approximation model

S(�) ≈ Ass + Ŝ
c(!)
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Generating the Schur Interaction Matrix

≻ Frequency domain

∘ n linear solves using Afs = [Af�, Af�̇]

S
c
= −Asf

〈
(Aff − i!I)

−1(
Af� + i!Af�̇

)〉

∘ Implemented in TAU using LFD solver

≻ Time domain

∘ Fourier decompose GAF following forced

motion in �

�
T
f = Q(!)�

∘ it can be shown that Qc(!) ≈ Sc(!)
ω
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Applying the

Approximation Model
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Applying the Approximation Model

≻ Stability analysis of NACA 0012 “heavy case” configuration∗

+
+~
~

Mach number

C
rit

ic
al

flu
tte

r
sp

ee
d

in
de

x

.6 .65 .7 .75 .8
.25

.3

.35

.4

.45

.5
FP
FPv
Euler
RANS

time-accurate

approx - lines
full - symbols

∗) Badcock et al, AIAAJ, 42 (5), 2004aa
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Response Surfaces for Model Hierarchy

≻ Full potential
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Response Surfaces for Model Hierarchy

≻ Euler
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Response Surfaces for Model Hierarchy

≻ Full potential viscous

0.6

0.7

0.8

0.1
0.2

0.3
0.4

0.5
−0.08

−0.06

−0.04

−0.02

 

Mach numberfrequency
 

re
al

(S
ijc )

samples
instability points

13 September 2010



Response Surfaces for Model Hierarchy

≻ RANS
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Applying the Approximation Model

≻ Stability analysis of symmetric Goland wing configurations

(e) f=1.69 Hz (f) f=3.05 Hz

(g) f=9.17 Hz (h) f=10.8 Hz
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Applying the Approximation Model

≻ Stability analysis of symmetric Goland wing configurations
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Applying the Approximation Model

≻ Stability analysis of MDO wing configuration – aerostatic effects

(a) flexible wing 15 km

(b) flexible wing 9 km
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Applying the Approximation Model

≻ Stability analysis of MDO wing configuration – aerostatic effects
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Applying the Approximation Model

≻ Stability analysis of MDO wing configuration – aerostatic effects
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Coordinated Sampling
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Motivation

How to place samples smartly?
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(g) Brute force grid sampling
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Coordinated Sampling

≻ Risk–based sampling for blind search: NACA 0012 aerofoil
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∙ Span initial search space

∙ Iterate on 3 steps

∙ Advantage of sample selection

∘ prediction supported

∘ kriging model improved

fully automated searchaaaaaaaaaaaaa
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Coordinated Sampling

≻ Risk–based sampling for blind search: NACA 0012 aerofoil

∙ No globally accurate interaction matrix

aa ⇒ good enough approximation

S(�) ≈ Ass + Ŝ
c(!)
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Coordinated Sampling

≻ Risk–based sampling for blind search: NACA 0012 aerofoil

∙ Issue of cost

aa Euler simulation with 60k DOF

∘ kriging:

a12 samples: cost of 6 steady state solves

∘ full model: (using series expansion)

a1 Mach number: cost of 4 steady state solves

∘ time domain:

a1 cycle of motion per (M,V ) takes

a> 20 steady state solves
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Coordinated Sampling

≻ Expected improvement sampling to locate most critical condition

∙ Run stability analysis based on mean prediction

∙ Expand interaction term about mean

aaaaaa S(�) ≈ Ass + Ŝc(!)

with

Ŝc(!) = N
(
Ŝc(!0), '

2(!0)
)
+

∂Ŝc

∂!0

(! − !0)

∙ Run Monte Carlo simulation

∙ Place new sample according to expected improve-

ment function∗ for critical flutter speed index
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∗) Jones et al, J Gobal Optim, 13, 1998 aa
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Coordinated Sampling

≻ 2D risk–based sampling for blind search: MDO wing
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Coordinated Sampling

≻ 3D risk–based sampling for blind search: MDO wing
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Coordinated Sampling

≻ 3D risk–based sampling for blind search: MDO wing
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Exploiting the

Model Hierarchy
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Exploiting the Model Hierarchy

≻ Place expensive RANS samples according to cheap FPv prediction
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Exploiting the Model Hierarchy

≻ 3 steps taken

∙ Use kriging model based on RANS samples
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Exploiting the Model Hierarchy

≻ 3 steps taken

∙ Use kriging model based on RANS samples

∙ Augment RANS samples by FPv corner samples
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Exploiting the Model Hierarchy

≻ 3 steps taken

∙ Use kriging model based on RANS samples

∙ Augment RANS samples by FPv corner samples

∙ Expand RANS input parameter space by FPv re-

sponse
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Exploiting the Model Hierarchy

≻ Co-kriging: FPv samples provide trend information for RANS
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Exploiting the Model Hierarchy

≻ Co-kriging: FPv samples provide trend information for RANS
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(y) Augmented co-kriging
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Summary & Outlook

≻ Approach presented for blind search aeroelastic stability analysis

∙ based on modified structural eigenvalue problem

∙ sampling & reconstruction of fluid interaction term

∙ very competitive results at lower cost

≻ Risk–based sampling and models of variable fidelity

≻ Address how aerodynamic modelling uncertainty enters problem

≻ Address model updating/correction with experimental data
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