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Motivation
I For flutter analysis of a new aircraft many calculations are necessary due to the

large parameter space

• 1-7 Mach numbers
• 5-12 frequencies
• 40-150 mode shapes
• different loading and fueling: 15-20
• flight attitude (elastic, trimmed): 1-3

I more than 1 Mio. cases and 1 URANS simulation lasts about 27h on 32 CPU
(clean wing with fuselage, 5.4 Mio Points)

I Reduction of computational costs
• different CFD Methods for different

flight conditions
• correction of DLM with CFD
• Linear CFD Methods
• POD
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Doublet Lattice Method

I Panel Method for unsteady, subsonic flow

• compressiblity via isentropy
• no profiles and no mean angle of attack
• small perturbations compared to the free-

stream velocity
• no inplane modes

I integral equation

w =
1

8π

∫∫
A

∆cpK(x− ξ, y − η,0) dξ dη

I in discretized form:

w = AIC ∆cp,

where AIC(i, j) decribes the influence of box i
to box j

Sample Doublet Lattice Grird
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I upwind w describes the z velocity of the motion in the frequency domain

w ejωt :=
1

U∞

d

dt
dz

=
1

U∞

d

dt
{h0 + α0(x− xref} ejωt

w =
1

U∞
iω {h0 + α0(x− xref)}+ α0

dx

dt︸︷︷︸
=U∞

= α0 + iω∗
{

h0

cref

+ α0
x− xref

cref

}
I Influence matrix Q: Qi,j = q∞Φi

∑
k ∆cpj

kSk = q∞ΦiAIC−1wj S

with S = diag(Sk), Sk for panel area
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Successive Kernel Expansion Method

I in “Transonic AIC Weighting Method using Successive Kernel Expansion” von Shen,
Silva und Liu following method is outlined:

I terms of w = 1
8π

∫∫
A

∆cpK(x− ξ, y − η,0) dξ dη are expanded as taylor series

I Correction of the quasi-steady, zeroth terms via the difference of two steady CFD-
results at different deformation states, e.g. at mean and maximum deflection

I considering the k-th taylor coefficient:

w(k) = 1
8π

∫∫
A

k∑
j=0

∆c(j)
p K(k−j)(x− ξ, y − η,0) dξ dη, k = 0,1

I with the same steps as in the DLM:

w(k) =
k∑

j=0
AIC(j) ∆c(k−j)

p

I This convolution sum is solved successively for ∆cp(k)



Folie 7 > > Reik Thormann
liverpool˙ws˙sept2010> 12. September 2010

I the zeroth element of the taylor series describes the quasi steady part. which will
be corrected via CFD results:

w(0) = AIC(0) ∆c(0)
p (Doublet Lattice Theorie)

= C AIC(0) ∆c(0), given
p

∆c(0), given
p =

∆cCFD
p (α1)−∆cCFD

p (α2)

α1 − α2

with C as correction matrix
I extension of SKEM for user-defined order of the taylor series and analysis of con-

vergence properties led to

iSKEM - improved SKEM
I difference:

AIC = CAIC(0) +

N−1∑
k=1

(iω∗)k ∗ AIC(k)

w = AIC∆cp
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Numeric Experiments

I geometry: LANN-Wing
I Euler simulations for ω∗ = 0.1, 0.5, 1.0
I RANS simulations with mean angle of attack α0 = 0.6 and 2.6

cp-contour Euler cp-contour RANS DLM-Grid
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Convergence of taylor series

SKEM

iSKEM

Reihenkonvergenz bei ω∗ = 0.5

I SKEM converges only for small reduced frequencies because it expands, in con-
strast to iSKEM, the inverse AIC-matrix

I iSKEM converges for any reduced frequency
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Comparison with inviscid flow (TAU Euler)
cut at 20% span width, 10 elements in taylor series

M∞ = 0.82, α0 = 0.6◦, α̃ = 0.2◦ TAU iSKEM

ω∗ = 0.1 ω∗ = 0.5 ω∗ = 1.0

ω∗ = 0.1 ω∗ = 0.5 ω∗ = 1.0
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Comparison with viscous flow
Ma = 0.82, ω∗ = 0.2, Aoa = 0.6◦/2.6◦ TAU iSKEM DLM EXP

at
ta

ch
ed

re(cp)ct5 20% span im(cp)ct5 20% span re(cp)ct5 65%span im(cp) ct5 65% span

se
p

ar
at

ed

re(cp)ct9 20% span im(cp)ct9 20% span re(cp)ct9 65%span im(cp) ct9 65% span
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Testcase Goland Wing

I in cooperation with Uni Liverpool (Sebastian Timme)
I rectangular wing with a constant cross section defined by a 4% thick

parabolic-arc aerofoil
I comparison of GAFs Q dependent on Ma ∈ [0.4,0.95] and ω∗ ∈ [0,0.5]

I preliminary results

mode 1 mode 2 mode 3 mode 4
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GAFs for ω∗ = 0.05

real Q22 real Q33 real Q44

imag Q22 imag Q33 imag Q44
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GAFs for ω∗ = 0.23

real Q22 real Q33 real Q44

imag Q22 imag Q33 imag Q44
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GAFs for ω∗ = 0.5

real Q22 real Q33 real Q44

imag Q22 imag Q33 imag Q44
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Linear Frequency Domain Solver (LFD TAU)

I development in cooperation with DLR-AS (Markus Widhalm)
I linearization of

dU

dt
+ R(U, x, ẋ) = 0

about the steady point U leads to

dŨ

dt
+

dR

dU
(U, x,0)Ũ +

dR

dx
(U, x,0)x̃ +

dR

dẋ
(U, x,0)˜̇x = 0

I assuming Ũ and x̃ are harmonic:[
jωI +

dR

dU

]
Ũ = −

[
jω

dR

dẋ
+

dR

dx

]
x̃

I the complex linear system is solved as a real, double sized system with GMRes
I the right-hand-side is computed with finite differences and grid deformation
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Local unsteady cp distribution 20% span
LANN Wing, Ma = 0.82, AoA = 0.6◦, rigid pitch, viscous

re(cp) k=0.2 20% span re(cp) k=0.5 20% span re(cp) k=1.0 20% span

im(cp) k=0.2 20% span im(cp) k=0.5 20% span im(cp) k=1.0 20% span
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Local unsteady cp distribution 65% span

re(cp) k=0.2 65% span re(cp) k=0.5 65% span re(cp) k=1.0 65% span

im(cp) k=0.2 65% span im(cp) k=0.5 65% span im(cp) k=1.0 65% span



Folie 19 > > Reik Thormann
liverpool˙ws˙sept2010> 12. September 2010

Conclusion
viscous LFD:

I for small amplitudes and medium shock-strength good agreement with URANS
results

I time saving with a factor of 10-20 compared to nonlinear URANS simulations
I improved convergence with GMRes, also in shock-induced, seperated flows
I but: for stronger shocks and seperated flow wrong results

iSKEM:

I good agreement for torsion modes with small reduced frequencies
I even global trend for seperated flow is good
I because only quasi-steady correction, only real part and not the imag. part is cor-

rected
I additionally only torsion part can be corrected
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Outlook
viscous LFD:

I analysis of the linearisation of turbulence model with respect to strong shocks
I comparison of flutter curves
I scalability for improved parallel behaviour

iSKEM:

I grid study of CFD and DLM for Goland Wing
I comparison of flutter curves for Goland Wing
I extension for unsteady correction factors, e.g. from a LFD simulation
I extension for complex geometries (pylons, nacelles, ...)
I apply iSKEM on a Surface Panel Method


