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Definition of Robust Flutter Stability

Dynamic aeroelastic problems attach great importance for new aircraft
designs

Consideration of all possible aircraft configuration including failure cases 
for certification

Numerical simplification of aeroelastic models for simulation purposes
caused by methological and economical constraints

Verification of dynamic models by comparison with results from Ground 
Vibration Test GVT � Deviations between model and experimental
results

No available simulation models for small aircrafts, relying on 
experimental vibration data, measurement errors

� Robust flutter analysis propagates the effects of identified 
uncertainties towards aeroelastic stability of the aircraft to cover the 
uncertain-but-bounded parameter space. 

� Robust stability is guaranteed when the uncertainties cannot 
destabilize the aeroelastic system.
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Uncertainty Propagation in Modal Analysis

Uncertain-but-bounded structural parameters cause 

perturbation in physical stiffness and mass matrix of aircraft 

Both are formulated as interval matrices with centrum and 

perturbation (radius)

Interval eigenvalue problem:

For solution several perturbation or interval eigenvalue solver are 

available

Uncertainty leads to centered eigenfrequencies and modeshapes with 

perturbation:

Similiar formulation can be found for experimental GVT-results 
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Uncertainty Propagation in Aerodynamic Loads

Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method:

Differential pressure of each aerodynamic box dependent on the downwash from 

normal modeshapes:  

Aerodynamic influence coefficient matrix AIC only depends on geometry, Mach 

number and reduced frequency

Downwash w is calculated from structural mode shapes by multiplication of 

transformation matrices

Modal aerodynamic loads are integrated pressures weigthed by modal 

deflections 

Propagation of interval mode shapes leads to interval generalized aerodynamic 

loads:  
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Direct Solution of Flutter Equations

Flutter equations are formulated in Laplace domain         

Eigenvector  is one non-unique solution of parameter-dependent flutter 
coefficient matrix 

Determination of unique solution requires additional constraints: 

1. Normalization of complex eigenvector in value and phase 

2. Relationship  eigenvalue - reduced frequency:

System of expanded non-linear equations:

Application of available Numerical Continuation
Methods 

Advantage in comparison to available solutions (e.g. p-k-methods):

eigenvalue + eigenvector are used to find new solutions for increasisng flight 
velocity 

� no commutation of solution branches (important for interval analysis)

[ ] [ ] [ ] ( )

( )

{ } { }2 21
, 0

2

, , , ,

M s C s K V Q M k q

F s V M k

ρ

ρ

∞ ∞ ∞

 
+ + − =   

 

 
 ∞ ∞ ∞ 

�������������������

s iσ ω= +

{ }q

[ ]F

{ }( ){ }

( ) { }

{ } { }

( )

{ }

{ } { }{ }

, , , ,

1 0

Im

, , ,

T

T
T T

F s V M k q

y x q q

V
s k

c

x q s k V

ρ∞ ∞ ∞

∞

∞

 
   
 

= − = 
 
 −
 

=



Folie 7

Interval Flutter Analysis using the Transformation Method > Schwochow

Numerical Continuation Method

Numerical Continuation: Method to find successively solutions along one 

solution branch with predictor-corrector-algorithm 

MATLAB-Toolbox: MATCONT (www.matcont.ugent.be)

Predictor step: 

starting from estimated solution     

extrapolation along normalized tangent               with stepsize h

Corrector step: Newton-iteration finds the nearest point on the solution 

curve using orthogonality between tangent and new solution:
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Determination of Tangent Vector / Jacobian Matrix  

All free parameter are fixed, except flight velocity 

Tangent vector of velocity is determined by Jacobian matrix 
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Same procedure can be applied 

for tangent vector of each 

interval parameter with fixed 

velocity
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Solution of Interval Flutter Problem

Formulation of flutter equations as non-linear system of equations including 

additional interval parameters:

Solution process using predictor-corrector steps :

1. Continuation of one modal dof of the central flutter equations for increasing 

flight speed to find a new nominal solution (all interval parameters are fixed)

2. Application of Transformation Method (Hanss: Applied Fuzzy Arithmetic, 

2005) to evaluate all combinations of lower and upper bounds of interval 

matrix to scan hypercube corners

3. Direct solution of perturbed flutter equations

for fixed velocity with Newton-method 

from corrector step

4. Searching the identified set of eigenvalues 

for minimum and maximum of 

damping and frequency
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Continuation Method: V,g- V,f – Diagrams 

Application to flutter 
analysis of glider 
aircraft  

damping and 
frequency curves for 
30 modal dof

adaptive stepsize 
small steps for 

- strong curvature 

- solutions 
neighboured in 
frequency

coupling of rudder and 

ant. fuselage bending

suspicious for 

„hump mode flutter“

rudder rotation – 0.5Hz fuselage bend. – 3.7Hz
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Interval Flutter Analysis using 

Continuation/Transformation Method  

Uncertainty in rudder mass +/-20% + aerodyn. hinge moment +/-20%

1. Step: continuation of centered flutter equations for velocity

2. Step: continuation of interval flutter equations for interval uncertainties
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Hump-Mode Flutter 

Flutter might occur for heavy rudder + reduced aerodyn. efficiency

Are the interval bounds correct?
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Hump-Mode Flutter 

Flutter might occur for heavy rudder reduced aerodyn. efficiency

Are the interval bounds correct?

Evaluation of all deterministic combinations shows exact 

agreement 
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Summary

Uncertain-but-bounded parameters in structural aircraft model cause 

intervals of eigenfrequencies and modeshapes

These modal structural uncertainties must be propagated through the 

flutter analysis process

The solution with Numerical Continuation Method finds solution branches 

of modal dof for parameter dependent flutter equations

No commutation of solution branches, because both complex eigenvalue 

and vector are used for continuation.

Interval flutter analysis is performed in parallel to central flutter solution 

by application of Transformation Method. 

The lower and upper bounds of complex eigenvalues are evaluated 

exactly (no extrapolation).

� V,g and V,f diagrams may include uncertainty bounds in addition
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