IDENTIFICATION OF STRUCTURAL DAMPING FROM TESTS

Marco Prandina

ECERTA Workshop 13th September 2010

Contents

- Objectives of the research
- Energy balance identification method
- Validation (Numerical simulation / Experiments)
- Future and current work

Objectives of the research

Main sources of energy dissipation in a structure

- Joints (bolts, rivets, welding, supports, bearings, ...)
- Material damping (electronic mechanisms, dislocations, relaxation on grain boundaries, irreversible intercrystal heat flux, thermoelastic damping, thermal hysteresis, eddy currents, ferromagnetic hysteresis, ...)

Issues in damping identification

- Simplified mathematical model needed
- Computational time
- Incompleteness of data (modal and spatial)
- Generally small effect on dynamics, difficult measurement

Modal and spatial identification

Modal identification:

Modal damping ratio ζ_i Loss factor η_i

- Logarithmic decrement
- Half-power bandwidth method

Modal and spatial identification

Spatial identification:

Viscous damping matrix ${f C}$

- Modal parameters λ_n , Ψ_n (Perturbation methods, Lancaster's formula, ...)
- Frequency Response Function (Imaginary part of dynamic stiffness matrix, ...)
- Time history (Energy balance method, ...)

Prandina, M., Mottershead, J.E., and Bonisoli, E., An assessment of damping identification methods, Journal of Sound and Vibration 323(3-5), 2009, pages 662-676.

 $H(\omega)$

Advantages of the energy approach

- Good performance when noise and/or modal incompleteness is present.
- Potential identification of nonlinear damping.
- System model not needed under certain assumptions.

Theory

The new method is based on the energy balance method, starting from the equations of motion of a MDOF system

$$\mathbf{M}\ddot{\mathbf{x}} + \mathbf{D} g(\mathbf{x}, \dot{\mathbf{x}}) + \mathbf{K}\mathbf{x} = \mathbf{f}(t)$$

The energy equation can be derived

$$\int_{t}^{t+T_{1}} \dot{\mathbf{x}}^{\mathrm{T}} (\mathbf{M} \ddot{\mathbf{x}} + \mathbf{D} g(\mathbf{x}, \dot{\mathbf{x}}) + \mathbf{K} \mathbf{x}) dt = \int_{t}^{t+T_{1}} \dot{\mathbf{x}}^{\mathrm{T}} \mathbf{f}(t) dt$$

Theory

In the case of <u>periodic response</u>, the contribution of <u>conservative forces</u> to the total energy over a full cycle of periodic motion is zero. So if $T_1 = T$ (period of the response)

$$\int_{t}^{t+T} \dot{\mathbf{x}}^{\mathrm{T}} (\mathbf{M} \ddot{\mathbf{x}} + \mathbf{K} \mathbf{x}) dt = 0$$
Solve for **D**
And the energy equation can be reduced to
$$\int_{t}^{t+T} \dot{\mathbf{x}}^{\mathrm{T}} \mathbf{D} g(\mathbf{x}, \dot{\mathbf{x}}) dt = \int_{t}^{t+T} \dot{\mathbf{x}}^{\mathrm{T}} \mathbf{f}(t) dt$$
Energy equivalent
$$D_{e}$$
Energy equivalent
$$D_{e}$$
The provesting of the energy equivalent th

Diagonal viscous damping matrix

$$\mathbf{C} = \begin{bmatrix} c_1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & c_2 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 & \cdots & 0 \\ 0 & 0 & 0 & c_p & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & 0 & 0 & c_n \end{bmatrix}$$

Diagonal viscous damping matrix

The simplest case is a system with diagonal viscous damping matrix. In this case the energy equation becomes

$$\int_{t}^{t+T} \dot{\mathbf{x}}^{\mathrm{T}} \mathbf{C} \dot{\mathbf{x}} \, \mathrm{d}t = \int_{t}^{t+T} \dot{\mathbf{x}}^{\mathrm{T}} \mathbf{f}(t) \, \mathrm{d}t$$

$$c_{1} \int_{t}^{t+T} \dot{x}_{1}^{2} dt + c_{2} \int_{t}^{t+T} \dot{x}_{2}^{2} dt + \dots + c_{n} \int_{t}^{t+T} \dot{x}_{n}^{2} dt = \int_{t}^{t+T} \dot{\mathbf{x}}^{T} \mathbf{f}(t) dt$$

Diagonal viscous damping matrix

Validation: numerical example

Prandina, M., Mottershead, J.E., and Bonisoli, E., Location and identification of damping parameters, IMAC XXVII Conference and Exposition on Structural Dynamics, Orlando, Florida, USA, 2009.

Goland wing

Goland wing simulation

Experiment setup

Undamped system

Viscous damping matrix

Energy dissipated (%)

Magnetic damping (DOF 8)

Air dashpot (DOF 8)

20

Coulomb friction (DOF 6)

21

Multiple air dashpots (DOF 6 and 8)

Prandina, M., Mottershead, J.E., and Bonisoli, E., Location and identification of damping parameters, IMAC XXVII Conference and Exposition on Structural Dynamics, Orlando, Florida, USA, 2009.

22

Experiment 2

5-mass system

Experiment 2

5-mass system

Experiment 2

5-mass system

Viscous dashpot (DOF 4-5)

Figure 6.32: Viscous dashpot between DOFs 4 and 5

Figure 6.33: Experiment 2: FRF of the undamped system versus case 2

2 dashpots (DOF 2-3 and 4-5)

Figure 6.32: Viscous dashpot between DOFs 4 and 5

Figure 6.35: Experiment 2: FRF of the undamped system versus case 3

Viscous (DOF 3-4) Coulomb (2-3)

Figure 6.39: Coulomb friction device between DOFs 3 and 4

Figure 6.40: Identified damping matrix for case 4

Future work

- Further investigation on non-linear damping.

- Updating damping amplitudes by combining modal damping established methods.

- Damage or defect detection.

Current work

Receptance method in active vibration control of an aerofoil using piezoelectric actuators

Acknowledgements

- The ECERTA team
- Dr Simon James
- Dr Gareth Vio
- Marie Curie Actions

Thank you

