The Increased Increased-Order Modeling Approach to Order to Nonlinear Aeroelasticity

Moti Karpel Technion - Israel Institute of Technology

Presented at the**Nonlinear Aeroelastic Simulation for Certification**

University of Liverpool 13-15 September, 2010

P ti ll t d b Partially supported by: US Air Force EOARDAirbus Military, Spain

Background

- Most common aeroelastic analysis and design tools in the aeronautical industry are linear.
- \bullet Introduction of nonlinear effects is usually based on ad-hoc, problem-dependent formulation and simulation processes.
- Nonlinear high-fidelity models are often inefficient and are not naturally integrated in industrial design processes.
- Reduced-order modeling (ROM) approaches that start from the high-fidelity models may provide adequate solutions but they might:
	- hard to be related to linear results
	- hard to be integrated in existing design processes
	- not exhibit the required conservatism for certification
	- not well accepted by engineers.

The Increased-Order-Modeling (IOM) Approach

- Start with common linear models.
- •Identify phenomena of potentially important nonlinear effects.
- • Formulate the problem based on a main linear block and nonlinear wrapped-around correction feedback loops.
- Add corrections that adequately represent the key nonlinear effects.
- Perform simulations in a way that takes advantage of this formulation.
- Verify/update the models by comparisons with selected tests and/or high-fidelity solutions of rigid and elastic vehicles.

IOM Framework for nonlinear aeroservoelastic simulations

- IOM research at Technion resulted in three software packages for various IOM applications:
	- Matlab/Simulink R&D code with
		- Time-domain (TD) linear aeroelastic model based on rational-function approximations.
		- Nonlinear feedback elements.
	- FORTRAN (industrial application) and Matlab (R&D) codes with:
		- Frequency-domain (FD) linear aeroelastic model
		- FFT/IFFT between FD and TD
		- Nonlinear TD elements and feedback by convolution integrals

Initial Motivation: Dynamic Loads with Nonlinear Control Loads

- • A400M is a military cargo aircraft currently in flight tests.
- • Dynamic gust, maneuver and ground loads, calculated by Airbus Military (formerly EADS-CASA), provide critical design cases.
- Symmetrically actuated ailerons and wide-band actuators facilitate maneuver and gust loads alleviation.
- \bullet • Control limits, activation zones and operation logics introduce important nonlinear effects.
- • The DYNRESP code was designed to account for these nonlinearities based on the IOM approach.

Max. Payload = 32 tonnes @ 2.25g

Range @ Max. Payload = 2580nm

Cruise Speed Range (M = Mach No.) = 0.68 - 0.72 M

Overall Dimensions $Lenath = 42.2$ Metres

Height = 14.7 Metres Span = 42.4 Metres

DYNRESP Main Objectives

- •Coverage of all aspects of aircraft dynamic loads analysis
- •Efficient massive computations in industrial environment
- •Robustness
- \bullet Advanced analysis capabilities and functionality
- •Flexibility is adding new features and non-linear effects
- • Use data from commonly used structural, multi-body, aerodynamic and control software packages.
- •Compatibility with typical in-house loads codes.
- \bullet Applicability with a variety of computational platforms.

Dynamic Response and Loads Disciplines

- • Modal and control-surface response to:
	- deterministic gusts
	- pilot commands
	- direct forces.
- • Response simulations are used in subsequent calculations of Short-signal loads: Long-signal loads:
	-
	-
	- store ejection taxi
	-
	-

- discrete gusts continuous gust
- maneuvers actuator oscillatory failure
	-
- blade/nacelle imbalance ground structure-control landing coupling tests

Sample Model Architecture for Discrete Gust Response

Basic Formulation of the Main Linear Bloc Main Block

- •Second-order frequency-domain equations of motion.
- •FFT/IFFT techniques for FD-TD conversions.
- •Treatment of zero-frequency singularities by enforcement of initial conditions.
- •Segmentation of long excitation signals.
- •Unified implementation to all loads disciplines.
- •Most general control system architecture.
- • Control commands through actuators and by direct forces.

DYNRESP General Flow Chart

Time Simulation with Nonlinear Control

- • Stage 1: FD response of the main linear block to sinusoidal excitations and control commands with the nonlinear block disconnected.
- • Stage 2: TD response of the linear block to gust and to unit impulses from the nonlinear block usin g FFT techniques.
- • Stage 3: Adding nonlinear effects based on nonlinear models and convolution with impulse responses.

Case 1: Gust loads on Generic Transport Aircraft (GTA) model with nonlinear control

with H. Climent and C. Maderuelo and L. Anguita of Airbus Military

•Structural and aerodynamic models

- •11 symmetric model up to 45 Hz.
- • Control system: symmetrically activated ailerons based on accelerometer near CG

Nonlinear control system

 $\overline{\text{2095 Az}}$

- • TF1: basic linear control law
- • NL1: Cluster of nonlinear elements. Main features:
	- limit the deflections and rates
	- hold peak deflections
	- $-$ minimal deflection 1°
- TF2: enforces slow decay
- NL2: selection switch

Modal response

- •• FD-convolution vs. TD-Simulink
- • FD signals return to zero at *T*=8.192 *sec*
- \bullet Differences in rigid-body response (Modes 1 , 2) do not affect loads.
- \bullet Elastic responses practically identical.

Actuator response linear and nonlinear FCS response,

Modal response in the open- and closed-loop cases

Case 2: LCO Simulations with actuator free play with Paul Gold

- \bullet A common strong nonlinearity is free play in the actuator connections to the control surfaces.
- \bullet Aileron in the free-play zone: out of the free-play zone:
Aileron actual position

Free-play IOM Block Diagram

Main Modeling Difficulties and Solutions

- • Efficient models are based on ^a single set of normal modes
	- Problem: How to represen^t large local concentrated force changes during time simulations?
	- Solution: Use local fictitious masses.
- • Free-play causes asymmetric response.
	- Problem: Do we have to use full-aircraft models?
	- Solution: No, we can use symmetric and antisymmetric modes with modal coupling effects.

Demonstration UAV Model

Asymmetric LCO in response to unit aileron command

- • The linear ASE plant, with the nonlinear feedback loop was implemented in DYNRESP.
- \bullet Simulations performed for deviations from the steady level fli ght.
- The right and left aileron elastic rotations $\delta_{\rm s}$ and $\delta_{\rm s}$ were The right and left aileron elastic rotations δ_{s_r} and δ_{s_l}
calculated relative to the initial δ_{t} =-1^o.
- A roll simulation was performed for response to an antisymmetric step actuator command $\delta_c = 3.67$ ° that brings the right aileron to the middle of the free play zone.
- \bullet The right aileron experiences almost harmonic LCO at 5 Hz.

Elastic rotations of right and left ailerons, unit command

LCO during Roll Maneuvers of a Controlled Vehicle

- • The nonlinear ASE model is augmented with a 3rd-order actuator and a classical proportional-integral (PI) roll controller.
- • The PI controller was designed to yield acceptable closed loop stability margins for the no-free-play case.

 \bullet Time histories of system response with no free play case:

Closed loop response, with actuator free play

Actual and commanded aileron Elastic aileron rotations, rotations: roll rate and roll-rate error:

Closed-loop response with actuator free play in typical roll maneuver sequence

Actual and commanded aileron rotations: roll rate and roll-rate error:

Elastic aileron rotations,

Case 3: Solid fin with nonlinear plate elements with Dani Levin

Basic equation of motion

Nonlinear in in-plane strain plane

- Von Karman equations are used.
- • Nonlinear strain $\left| \begin{array}{ccc} \end{array} \right|$ $\left| \begin{array}{cc} \varepsilon_p^{pl} & \end{array} \right|$ part is added due to stretching of the plate in bending.

IOM block diagram

Linear Flutter Analysis

Linear System Time Simulation

Nonlinear Time Simulation

Comparison with wind-tunnel test and other works

Faculty of aerospace I $Technion - Israel Inst$ Haifa, Israel

Cases 4: Gust Response with Nonlinear aerodynamics with Daniella Raveh and Alex Shousterman

 \bullet MSC/NASTRAN structural model, ZAERO aero model and EZNSS Euler surface grid of generic transport aircraft:

CFD Static Lift Coefficent Coefficent at Mach 0.85 0.85

- •Lift coefficient vs. AOA, CFD and linear models.
- \bullet Nonlinear aerodynamic effects may yield reduced gust loads in practical design cases.

Elastic deformations at steady $\alpha\!\!=\!\!0$ to 4 **o**

Distribution of pressure coefficients over the wing

Distribution of X_{cp} over the wing

Faculty of a Technion – Israel Institute of Technology Haifa, Israel

DYNRESP gust response with non-linear feedback

- •Linear C_l and C_m of the nominal model are "sensors"
- •• Non-linear feedback elements are based on look-up tables from CFD
- \bullet • *C_l* and *C_m* corrections are introduced by direct forces and moments at the wing and tail main spars, and forces along the fuselage
- • DYNRESP calculated 2 cases:
	- Linear correction with linear look-up tables
	- Non-linear correction with nonlinear look-up tables

\mathbf{R} igid wing C_L response to sharp-edge gust

^a=1 *deg*:

Rigid wing C_L **response to ''1-cos'' discrete gust, 0 to 4º**

Flexible wing C_L **response to ''1-cos'' discrete gust, 0 to 4º**

Concluding Remarks

- The Increased-Order Modeling approach provides an efficient and robust framework for the introduction of nonlinear aeroelastic effects in research studies and in industrial applications.
- Could form a bridge between high-fidelity models, industrial design practices and certification requirements.
- We will be glad to cooperate with interested parties.

