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Background

e Most common aeroelastic analysis and design tools in the
aeronautical industry are linear.

 Introduction of nonlinear effects is usually based on ad-hoc,
problem-dependent formulation and simulation processes.

* Nonlinear high-fidelity models are often inefficient and are
not naturally integrated in industrial design processes.

* Reduced-order modeling (ROM) approaches that start from the
high-fidelity models may provide adequate solutions but they
might:

 hard to be related to linear results

 hard to be integrated in existing design processes
 not exhibit the required conservatism for certification
 not well accepted by engineers.

Faculty of aerospace Engineering
Technion — Israel Institute of Technology i A
Haifa, Israel 4y



The Increased-Order-Modeling (IOM) Approach

Start with common linear models.

Identify phenomena of potentially important nonlinear effects.

Formulate the problem based on a main linear block and
nonlinear wrapped-around correction feedback loops.

Add corrections that adequately represent the key

nonlinear effects.

Perform simulations in a way that takes advantage of this
formulation.

Verify/update the models by comparisons with selected tests
and/or high-fidelity solutions of rigid and elastic vehicles.
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IOM Framework for nonlinear aeroservoelastic
simulations

* |OM research at Technion resulted in three software packages for
various 10M applications:

e Matlab/Simulink R&D code with
e Time-domain (TD) linear aeroelastic model based on
rational-function approximations.
* Nonlinear feedback elements.

 FORTRAN (industrial application) and Matlab (R&D) codes
with:
* Frequency-domain (FD) linear aeroelastic model
 FFT/IFFT between FD and TD

 Nonlinear TD elements and feedback by convolution —
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Initial Motivation:
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o A400M is a military cargo aircraft
currently in flight tests.

« Dynamic gust, maneuver and ground
loads, calculated by Airbus Military
(formerly EADS-CASA), provide critical
design cases.

« Symmetrically actuated ailerons and
wide-band actuators facilitate maneuver
and gust loads alleviation.

« Control limits, activation zones and
operation logics introduce important Range @ Max. Payload = 2580nm
nonlinear effects.

« The DYNRESP code was designed to
account for these nonlinearities based on g Dimensions
the IOM approach. Length = 42.2 Wetres

Height = 14.7 Metres
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DYNRESP Main Objectives

o Coverage of all aspects of aircraft dynamic loads analysis
« Efficient massive computations in industrial environment
* Robustness

o Advanced analysis capabilities and functionality

» Flexibility is adding new features and non-linear effects

o Use data from commonly used structural, multi-body,
aerodynamic and control software packages.

o Compatibility with typical in-house loads codes.
« Applicability with a variety of computational platforms.
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Dynamic Response and Loads Discipline:

 Modal and control-surface response to:
— deterministic gusts
— pilot commands
— direct forces.
 Response simulations are used in subsequent calculations of

Short-signal loads: Long-signal loads:
— discrete gusts - continuous gust
— maneuvers - actuator oscillatory failure
— store ejection - taxi
— blade/nacelle imbalance - ground structure-control
— landing coupling tests i'f“ﬂ
/
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Sample Model Architecture for Discrete Gust Response
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Basic Formulation of the Main Linear Block

Second-order frequency-domain equations of motion.
FFT/IFFT techniques for FD-TD conversions.

Treatment of zero-frequency singularities by
enforcement of initial conditions.

Segmentation of long excitation signals.
Unified implementation to all loads disciplines.
Most general control system architecture.

Control commands through actuators and by direct
forces.

N \x 7

ospace Engineering o "
I ael Institute fT chnology v W
:L....'I-



DYNRESP General Flow Chart

Data;|  Input parameters Data matrices ~ | Data matrices
as in NASTRAN/ZAERO| | from NASTRAN | ** | from ZAERO
Control parameters

* ¥ ¥
Simulations: |Discrete gusts / Maneuver commands / Direct forces
Control on/off Control on/oft Aiar on/oft
Modal response: Modal and control surface
| displacements, velocities, accelerations.
Time and frequency domain
Loads:

Teduum I_me?lﬁtlle oftedm:lhg.
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Summation of Forces or Mode-Displacement method
Grid-pomt forces, aero pressures, section loads e




Time Simulation with Nonlinear Control

o Stage 1: FD response of the
main linear block to
sinusoidal excitations and
control commands with the

*Lcos”
GUST

Main Linear Block

nonlinear block disconnected. ! [sgnsors

o Stage 2: TD response of the
linear block to gust and to
unit impulses from the
nonlinear block using FFT
techniques.

e Stage 3: Adding nonlinear
effects based on nonlinear
models and convolution with
Impulse responses.
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Case 1: Gust loads on Generic Transport Aircraft
(GTA) model wit linear contr

nl
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with H. Climent and C. Maderuelo and L. Anguita of Airbus Military
 Structural and aerodynamic models

e 11 symmetric model up to 45 Hz.

« Control system: symmetrically activated ailerons based on
accelerometer near CG
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e TF1: basic linear control

law

e NL1: Cluster of nonlinear
elements. Main features: TR
— limit the deflections and -2 " Zmon |

rates

— hold peak deflections

— minimal deflection 1°
o TF2: enforces slow decay
o NLZ2: selection switch
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Modal response

2000

FD-convolution vs.
TD-Simulink

FD signals return to zero at
1T=8.192 sec

Differences in rigid-body
response (Modes 1, 2) do
not affect loads.

Elastic responses
practically identical.
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Modal response in the open- and closed-loop cases
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Wing Root- Bending Moment
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Case 2: LCO Simulations with actuator free play
with Paul Gold
« A common strong nonlinearity is free play in the actuator
connections to the control surfaces.
 Aileron in the free-play zone: out of the free-play zone:

Aileron actual position

Spring stiftness kﬂ Spring stiffness ;{6

Aileron actual positior

|

Wing

Wing

SERVO

SERVO

v
1
\
"
"
b
"
/

Actuator command output

Actuater command output

\‘-.\
Faculty of aerospace Engineering f

.I!:_
Technion — Israel Institute of Technology ! \
Haifa, Israel ER



Free-play IOM Block Diagram
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Main Modeling Difficulties and Solutions

o Efficient models are based on a single set of normal modes

— Problem: How to represent large local concentrated force
changes during time simulations?

— Solution: Use local fictitious masses.
 Free-play causes asymmetric response.
— Problem: Do we have to use full-aircraft models?

— Solution: No, we can use symmetric and antisymmetric
modes with modal coupling effects.
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Demonstration UAV Model

Aerodynamic panel model

te-element model

INi

Structural f




Asymmetric LCO in response to unit aileron command

e The linear ASE plant, with the nonlinear feedback loop was
Implemented in DYNRESP.

« Simulations performed for deviations from the steady level
flight.

* Therightand left aileron elastic rotations 5 and &, were
calculated relative to the initial 6=- 1°. f

« A roll simulation was performed for response to an
antisymmetric step actuator command &, =3.67° that brings
the right aileron to the middle of the free play zone.

« The right aileron experiences almost harmonic LCO at 5 Hz.
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Elastic rotations of right and left ailerons, unit command

Right: g

Left:




LLCO during Roll Maneuvers of a Controlled Vehicle

* The nonlinear ASE model is augmented with a 3rd-order
actuator and a classical proportional-integral (PI) roll controller.

« The PI controller was designed to yield acceptable closed loop
stability margins for the no-free-play case.

D) O Actuator Dynamics| Non-linear ASE model >
Phi_dot cmd Phi_dot

e Time histories of system response with no free play case:

40

roll rate:
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201

0

roll-rate error:

\‘-.\.
Faculty of aerospace Engineering . f !
Technion — Israel Institute of Technology 05 ¥, Y.
Haifa, Israel ~0 5 10 15 20 ':h vt

s 05
B8

0y, [deg/sec]
° -
“h a
—



Closed loop response, with actuator free play

Actual and commanded aileron

rotations:
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Closed-loop response with actuator free play in
typical roll maneuver sequence

Actual and commanded aileron Elastic aileron rotations,
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Case 3: Solid fin with nonlinear plate elements
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Basic equation of motion

Structural Part
A

r

[m]{uf+[c]iu+

Stiffness matrix changes
due to stress stiffening

~
ul = {Fﬁ(t)}
Unsteady
aerodynamic
forces
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Nonlinear in-plane strain

e \Von Karman
equations are
used.

* Nonlinear strain
part is added due
to stretching of the
plate in bending.

. Ve

Non linear
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|IOM block diagram

Initial
conditions

Main Linear Block L
e—y

I
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Linear Flutter Analysis

400\ I T 1
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Linear System Time Simulation

Deflection vs Time, node 12

w [mm]

Time [sec]
Pitch Angle vs Time, node 12

Node 12 displacement

and rotation at:

q=19.8kPa

50|
0
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Nonlinear Time Simulation

Deflection vs Time, node 12 Deflection vs Time, node 32
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Comparison with wind-tunnel test and other

Works

Results Comparison, Node 12 Deflection
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Cases 4: Gust Response with Nonlinear aerodynamics
1 /A
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« MSC/NASTRAN structural model, ZAERO aero model and
EZNSS Euler surface grid of generic transport aircraft:
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CFD Static Lift Coefficent at Mach 0.85

e Lift coefficient vs. AOA, CFD and linear models.

* Nonlinear aerodynamic effects may yield reduced gust loads in
practical design cases.

1.1

— elastic : : : .
" i i i i W
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Elastic deformations at steady a=0 to 4°
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Distribution of pressure coefficients over the wing

EZNSS ZAERO
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Distribution of X, over the wing
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DYNRESP gust response with non-linear feedback

e Linear C, and C of the nominal model are “sensors”
* Non-linear feedback elements are based on look-up tables from CFD

« C,and C_ corrections are introduced by direct forces and moments at
the wing and tail main spars, and forces along the fuselage

* DYNRESP calculated 2 cases:
— Linear correction with linear look-up tables

— Non-linear correction with nonlinear look-up tables

Eaiu Linear Block

l_ AERODYNAMIC [~ ! Response -
FORCES 1l |
L — |
[ [ AERODYNAMIC || o
| | CORRECTIONS || W,
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Rigid wing

a=1 deg:

Ing C, response to sharp-edge gust

Wing lift coefficient as response to SE gust - AQA=1 [deg], M=0.85
016 T T T S S S —— T T ——]
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4

Rigid wing C, response to “1-cos” discrete gust, O to 4°

Wing lift coefficient as response to 1-cos gust - ADA=4 [deg], W=0.85
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Flexible wing C, response to “1-cos” discrete gust, 0 to 4°
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Concluding Remarks

* The Increased-Order Modeling approach provides an
efficient and robust framework for the introduction of
nonlinear aeroelastic effects in research studies and in
Industrial applications.

e Could form a bridge between high-fidelity models,
Industrial design practices and certification requirements.

« We will be glad to cooperate with interested parties.
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