

How to Validate Stochastic Finite Element Models from Uncertain Experimental Modal Data

Slide 1 ECERTA Workshop > Yves Govers > 13.-15.09.2010

Outline/ Motivation

- Validation of Finite Element Models on basis of modal data (eigenfrequencies and mode shapes) determined from Modal Survey Test or Ground Vibration Test (GVT)
- Use of gradient based Computational Model Updating Procedures
- State of the art: deterministic approach (a single experimentally determined set of modal data is used to identify a deterministic Finite Element Model)
- Goal: probabilistic approach

(use multiple experimentally determined test data sets to identify a Finite Element Model with stochastic parameters)

Motivation

Modal Data Uncertainty

- DLR laboratory benchmark structure AIRcraft MODel (GARTEUR SM-AG19 replica)
- Made of aluminium with 6 beam like components connected by bolted joints

Motivation A Source of Modal Data Uncertainty

✓ the uncertainty of joint stiffness parameters are generally unknown

VTP vs. HTP

VTP vs. fuselage

wing vs. fuselage

winglet

Repeated Modal Survey Test on AIRMOD

Motivation Modal Data Uncertainty – Results of AIRMOD Test Campaign

→ 130 times assembled, disassembled, reassembled and re-tested with random excitation and subsequent automated modal parameter estimation

Significant variation on modal parameters!

Introduction Frequency Clouds

- a number of n tests has been performed
- → n frequency pairs ($f_{11,1}, f_{12,1}$), ($f_{11,2}, f_{12,2}$),... ($f_{11,n}, f_{12,n}$) can be plotted
- a scatter diagram makes the correlation between two frequencies visible

Introduction Frequency Clouds

- ✓ The mean values($\bar{f}_{11}, \bar{f}_{12}$) and the standard deviation σ_{11} and σ_{12}
- In case of correlated frequency pairs the direction of the frequency cloud is important

Introduction Frequency Clouds

The so called covariance ellipse is a contour line of equal probability

7 Here: 1 x σ

Introduction Frequency Clouds

The so called covariance ellipse is a contour line of equal probability

7 Here: 2 x σ

Introduction Frequency Clouds

The so called covariance ellipse is a contour line of equal probability

7 Here: 3 x σ

Introduction Frequency Clouds

- the orientation of the ellipse can be visualised by the principal axes
- It shows if the two frequencies are positively or negatively correlated

Introduction Frequency Clouds - Test Data

- Uncertain experimental modal data by multiple tests on nominal identical structures
- Uncertainty and correlation of modal data becomes visible if two frequencies are plotted against each other

Test Uncertainty

Introduction Frequency Clouds - Analysis Data

- Uncertain analysis modal data by randomising a number of design parameters
- here: Monte Carlo Simulation is utilised in combination with Latin Hypercube Sampling

ECERTA Workshop > Yves Govers > 13.-15.09.2010

ECERTA Workshop > Yves Govers > 13.-15.09.2010

Stochastic Model Updating Mean Parameter Adjustment

the difference between mean analytical and measured values can be assembled in a weighted residual vector

 $\{\bar{\varepsilon}_w\} = [W_v](\{\bar{v}_m\} - \{\bar{v}_a(p)\})$

✓ the vector of analytical values { v_a } can be described by a linearized Taylor series where [G]_i represents the sensitivity matrix

 $J = \{\bar{\varepsilon}\}^T [W_{\varepsilon}] \{\bar{\varepsilon}\} + \{\Delta \bar{p}\}^T [W_{p,\varepsilon}] \{\Delta \bar{p}\} \to \min$

$$\{\bar{v}_a(p)\}_{i+1} = \{\bar{v}_a\}_i + [G]_i \{\Delta \bar{p}\}_i$$

✓ by minimizing following objective function

a regularization term $[W_p]_i$ is used in case of ill-conditioning to improve convergence

Motivation

 Introduction

 Stochastic Model Updating
 Test Case
 Conclusions and Outlook

Stochastic Model Updating Mean Parameter Adjustment

- → the parameter changes are derived using the pseudoinverse of $[G]_i$ $\{\Delta \bar{p}\}_i = [T_{\varepsilon}]_i \{\bar{r}\}_i$ with $\{\bar{r}\}_i = \{\bar{v}_m\} - \{\bar{v}_a\}_i$
- ✓ where [T] is the transformation matrix $[T_{\varepsilon}]_i = ([G]_i^T [W_{\varepsilon}] [G]_i + [W_{p,\varepsilon}]_i)^{-1} [G]_i^T [W_{\varepsilon}]$

Stochastic Model Updating Covariance Matrix Adjustment

the difference of the covariance matrix of the measured samples and the corresponding analytical covariance matrix can be summarized in a residual matrix

 $[S_{\Delta}]_i = [S_{v_m}] - [S_{v_a(p)}]_i$

→ the analytical covariance matrix can derived from the Taylor series expansion of the analytical vector under the assumption of $\{v_a\}$ and $\{\Delta p\}$ to be uncorrelated at iteration step i

$$[S_{v_a(p)}]_{i+1} = \left[\mathbf{Cov} \left(\{v_a\}_i + [G]_i \{\Delta p\}_i, \{v_a\}_i + [G]_i \{\Delta p\}_i \right) \right] \\ = [S_{v_a}]_i + [G]_i [S_{\Delta p}]_i [G]_i^T$$

Stochastic Model Updating Covariance Matrix Adjustment

→ by minimizing following objective function with the Frobenius Norm of the residual matrix $[S_{\Delta}]$

$$J_S = \frac{1}{2} \left\| [W_S] [S_\Delta] [W_S]^T \right\|_F^2 \to \min$$

- → the parameter covariance matrix changes (increments) are derived from $[S_{\Delta p}]_i = [T_{\Sigma}]_i \ [R]_i \ [T_{\Sigma}]_i^T$ with $[R]_i = [S_{v_m}] - [S_{v_a}]_i$
- → and the transformation matrix $[T_{\Sigma}]$

 $[T_{\Sigma}]_{i} = \left([G]_{i}^{T} [W_{\Sigma}] [G]_{i} + [W_{p,\Sigma}]_{i} \right)^{-1} [G]_{i}^{T} [W_{\Sigma}]$

Test Case – AIRMOD Rigid Body Modes

Test Case – AIRMOD Rigid Body Modes

Motivation

 Introduction

 Stochastic Model Updating

 Test Case
 Conclusions and Outlook

Test Case – AIRMOD rigid body modes

Initial Frequency Deviations

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 22 ECERTA Workshop > Yves Govers > 13.-15.09.2010

Test Case – AIRMOD rigid body modes Updated Frequency Deviations iteration step 12 analysis experiment 0.2 0.3 0.6 0.7 0.8 0.9 **Deutsches Zentrum**

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 23 ECERTA Workshop > Yves Govers > 13.-15.09.2010 Motivation

 Introduction

 Stochastic Model Updating

 Test Case

 Conclusions and Outlool

Test Case – AIRMOD rigid body modes

Convergence

ECERTA Workshop > Yves Govers > 13.-15.09.2010

Conclusions and Outlook

- Conventional model updating procedure has been extended by an equation adjusting the model parameter covariances
- Developed algorithm was applied to the rigid body modes of an aircraft like laboratory structure AIRMOD
- ✓ Test case shows a good convergence
- Frequency clouds match well: adjusted parameters represent the uncertainty of the measurement data
- ✓ In a second step the elastic modes will be updated

Thank you for your attention!

Yves Govers, German Aerospace Center (DLR)

