

How to Validate Stochastic Finite Element Models from Uncertain Experimental Modal Data

Slide 1ECERTA Workshop > Yves Govers > 13.-15.09.2010

Outline/ Motivation

- Validation of Finite Element Models on basis of modal data(eigenfrequencies and mode shapes) determined from Modal Survey Test or Ground Vibration Test (GVT)
- Use of gradient based Computational Model Updating Procedures
- \triangleright State of the art: deterministic approach (a single experimentally determined set of modal data is used to identify a deterministic Finite Element Model)
- Goal: probabilistic approach

(use multiple experimentally determined test data sets to identify a Finite Element Model with stochastic parameters)

Motivation

Modal Data Uncertainty

- DLR laboratory benchmark structure **AIR**craft **MOD**el (GARTEUR SM-AG19 replica)
- Made of aluminium with 6 beam like components connected by bolted $\overline{}$ joints $300 z_{500 z}$

MotivationA Source of Modal Data Uncertainty

the uncertainty of joint stiffness parameters are generally unknown $\overline{}$

VTP vs. HTP

VTP vs. fuselage

wing vs. fuselage

winglet

Repeated Modal Survey Test on AIRMOD

Motivation

Modal Data Uncertainty – Results of AIRMOD Test Campaign

130 times assembled, disassembled, reassembled and re-tested with $\overline{}$ random excitation and subsequent automated modal parameter estimation

Significant variation on modal parameters!

Introduction Frequency Clouds

- a number of n tests has been performed
- \rightarrow n frequency pairs $(f_{11,1},f_{12,1}), (f_{11,2},f_{12,2}),...$ $(f_{11,n},f_{12,n})$ can be plotted
- a scatter diagram $\overline{}$ makes the correlation between two frequencies visible

Frequency Clouds

- The mean values and the standarddeviation $\,\sigma_{\text{11}}$ and **Introduction**
Frequency Clo
The mean values
and the standard
deviation σ_{11} and The mean values and the standard
deviation $\,\sigma_{11}$ and $\,\sigma$
In case of correlated
- **7** In case of correlated frequency pairs the direction of the frequency cloud is important

Introduction Frequency Clouds

The so calledcovariance ellipse is ^a contour line of equal probability

 $\overline{}$ Here: 1 x σ

Introduction Frequency Clouds

The so calledcovariance ellipse is ^a contour line of equal probability

Here: 2 x σ 7

Introduction Frequency Clouds

The so calledcovariance ellipse is ^a contour line of equal probability

 $\overline{}$ Here: 3 x σ

IntroductionFrequency Clouds

- the orientation of the ellipse can be visualised by the principal axes
- $\overline{}$ It shows if the two frequencies are positively or negatively correlated

Introduction Frequency Clouds - Test Data

- \rightarrow Uncertain experimental modal data by **multiple** tests on nominal identical structures
- \rightarrow Uncertainty and correlation of modal data becomes visible if twofrequencies are plotted against each other

Test Uncertainty

IntroductionFrequency Clouds - Analysis Data **Mode 13**

- \rightarrow Uncertain analysis modal data by **randomising** a number of **design parameters**
- here: **Monte Carlo Simulation** is utilised in combination with **Latin Hypercube Sampling**

in der Helmholtz-Gemeinschaft

ECERTA Workshop > Yves Govers > 13.-15.09.2010

ECERTA Workshop > Yves Govers > 13.-15.09.2010

Stochastic Model Updating Mean Parameter Adjustment

the difference between mean **^a**nalytical and **m**easured values can be assembled in a weighted residual vector

$$
\{\bar{\varepsilon}_w\} = [W_v](\{\bar{v}_m\} - \{\bar{v}_a(p)\})
$$

the vector of analytical values $\{\nu^{}_{a}\}$ can be described by a linearized Taylor series where $\left[G\right]_i$ represents the sensitivity matrix

$$
\{\bar{v}_a(p)\}_{i+1} = \{\bar{v}_a\}_i + [G]_i \{\Delta \bar{p}\}_i
$$

 \triangleright by minimizing following objective function

 $J = {\bar{\varepsilon}}^T[W_{\varepsilon}]{\bar{\varepsilon}} + {\bar{\Delta p}}^T[W_{p,\varepsilon}]{\bar{\Delta p}} \to \min$

a regularization term $[W_n]$ *i* is used in case of ill-conditioning to improve convergence

Stochastic Model Updating Mean Parameter Adjustment

- \rightarrow the parameter changes are derived using the pseudoinverse of $[G]$ *i* $\{\Delta \bar{p}\}_i = [T_{\varepsilon}]_i \{\bar{r}\}_i$ with
- \triangleright where [T] is the transformation matrix $[T_{\varepsilon}]_i = ([G]^T_i[W_{\varepsilon}][G]_i + [W_{p,\varepsilon}]_i)^{-1}[G]^T_i[W_{\varepsilon}]$

Stochastic Model Updating Covariance Matrix Adjustment

the difference of the covariance matrix of the measured samples and the corresponding analytical covariance matrix can be summarized in a residual matrix

 $[S_{\Delta}]_i = [S_{v_m}] - [S_{v_a(p)}]_i$

 \triangleright the analytical covariance matrix can derived from the Taylor series expansion of the analytical vector under the $\texttt{assumption}$ of $\{v_a\}$ and $\{\Delta p\}$ to be uncorrelated at iteration step i

$$
[S_{v_a(p)}]_{i+1} = \left[\mathbf{Cov} \left(\{v_a\}_i + [G]_i \{\Delta p\}_i, \{v_a\}_i + [G]_i \{\Delta p\}_i \right) \right]
$$

=
$$
[S_{v_a}]_i + [G]_i [S_{\Delta p}]_i [G]_i^T
$$

Stochastic Model Updating Covariance Matrix Adjustment

by minimizing following objective function with the Frobenius Norm of the residual matrix $\ [S_{\Delta}]$

$$
J_S = \frac{1}{2} ||[W_S][S_\Delta][W_S]^T||_F^2 \to \min
$$

- \triangleright the parameter covariance matrix changes (increments) are derived from with
- and the transformation matrix [$T^{}_{\Sigma}$]

 $[T_{\Sigma}]_i = ([G]^T_i[W_{\Sigma}][G]_i + [W_{p,\Sigma}]_i)^{-1} [G]^T_i[W_{\Sigma}]$

Test Case – AIRMOD Rigid Body Modes

Test Case – AIRMOD Rigid Body Modes

Test Case – AIRMOD rigid body modes

Initial Frequency Deviations

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

ECERTA Workshop > Yves Govers > 13.-15.09.2010 Slide 22

Test Case – AIRMOD rigid body modes Updated Frequency Deviations iteration step 12 analysis experiment $0,2$ 0.3 $[0,6]$ <u>0.</u>7 0.8 $\mathbf{0.9}$ **Deutsches Zentrum**

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

ECERTA Workshop > Yves Govers > 13.-15.09.2010 Slide 23

Test Case – AIRMOD rigid body modes

Convergence

in der Helmholtz-Gemeinschaft

ECERTA Workshop > Yves Govers > 13.-15.09.2010

Conclusions and Outlook

- Conventional model updating procedure has been extended by an equation adjusting the model parameter covariances
- \triangleright Developed algorithm was applied to the rigid body modes of an aircraft like laboratory structure AIRMOD
- \triangleright Test case shows a good convergence
- \triangleright Frequency clouds match well: adjusted parameters represent the uncertainty of the measurement data
- \triangleright In a second step the elastic modes will be updated

Thank you for your attention!

Yves Govers, German Aerospace Center (DLR)

Slide 26ECERTA Workshop > Yves Govers > 13.-15.09.2010