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Use of Composites in AerospaceUse of Composites in Aerospace
•Composites replacing metallic structuresp p g
•Main driver is weight savings
•Not using the full benefit of compositesNot using the full benefit of composites

Ironbridge. Metal structure 
derived from wood design

Boeing 787. A350. Composite structure 
derived using metal design philosophyg



Aeroelastic TailoringAeroelastic Tailoring
• Make use of composite 

materials unidirectionalmaterials unidirectional 
properties to influence 
aeroelastic behaviour
– Ply lay-up / thickness / ply 

percentages for each 
orientationorientation

•Possible new configurations
Forward swept wings– Forward swept wings

– Oblique wings
– W shaped wingsW shaped wings

•Virtually no application since 
1980s – lots of studies



ObjectivesObjectives
• Investigate use of Polynomial Chaos Expansion to g y p

provide efficient probabilistic modelling of PDF 
variations in structural parameters for aeroelastic p
tailoring

• Several simple examples 

• Illustrate approach for robust design using uncertain 
modellingmodelling
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Background and Concept of PCEg p

• In simplified form random process can be 
written as
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• β are unknown coefficients that must be 
found
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Polynomial Chaos ExpansionPolynomial Chaos Expansion
PCE with Latin Hypercube Sampling

Input Parameters
X( Samples)

Latin Hypercube Samples are taken

Response at each 
sample
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R i d t t l f fl tt d 3 Order PCE

Residuals

U i tT t REffi i t

Required parameter – e.g natural freq or flutter speed 

( 2-D 3rd Order)
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Use regression to 
find coefficients

Test cases ResponseEfficient response
emulation



Example 1 Simple BeamExample 1.  Simple Beam 
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Variation of Beam FRFVariation of Beam FRF
• Simple beam FE model (Rayleigh damping)Simple beam FE model (Rayleigh damping) 
• Freqs and damps from eigenvalue solution
• Curve-fit with standard FRF model
• Freq• Freq
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PCE ModellingPCE Modelling
• Uncertainty• Uncertainty 

– Young’s modulus
– Young’s modulus and cross-section area

• Perform Latin Hypercube defined testsPerform Latin Hypercube defined tests
• Fit PCE model to FRF fit for each mode

– Frequency
– Dampingp g
– Residues 

Residuals– Residuals
9



FRF PCE ModellingFRF-PCE Modelling

A. Manan, J.E. Cooper Journal of Sound , p
and Vibration, Volume 329, Issue 16, 2010, 
Pages 3348-3358A. Manan, J.E. Cooper Journal of 

Sound and Vibration, Volume 329, 
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Issue 16, 2010, Pages 3348-3358



Fitted and Monte Carlo PDFsFitted and Monte-Carlo PDFs
FFrequency

Dampingp g

Residue amplitude

Residue Phase
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Mode 1 Mode 2 Mode 3



99% FRF Confidence Bounds -
Young’s Modulus Variation
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99% FRF Confidence Bounds -
Young’s Modulus + CSA Variation
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Example 2.  
Simple Rectangular CompositeSimple Rectangular Composite 

Wing - Flutter SpeedWing  Flutter Speed
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Wing ModelWing Model
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Aeroelastic ModellingAeroelastic Modelling
• StructureStructure 

– Assumed modes model
Aerodynamics– Aerodynamics
– Modified strip theory including unsteady terms

– Combine using Lagrange
2Aq + (ρVB + D)q + (ρV C + E)q = 0 Aq + (ρVB + D)q + (ρV C + E)q 0

Overall 
Damping

Overall 
Stiffness 

Mass 
Matrix
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Frequency and Damping TrendsFrequency and Damping Trends
• Aeroelastic Modelling of composite wing
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V-g and V-ωplot for [-30,-40,0]s laminate (xf =0.5c)V-g and V-ω plot for [-45,-45,0]s laminate (xf =0.5c)
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Deterministic Optimization StrategyDeterministic Optimization Strategy
• ObjectiveObjective

– Maximize Speed at which flutter and divergence occur 

V i bl• Variables
– Fibre Angle Orientation

• Studied Example
– Composite Wing is selected
– Aspect Ratio=4
– Number of Layers =6 

Fibre Angle )( – Fibre Angle s),,( 321 
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Composite Wing Orientation Example
Flutter/Divergence Speed (m/s) 3= 50o

• Composite 
rectangular wing (3 35

g p ( ) 3

rectangular wing (3 
types of layer)
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• Determine best 
composite lay-up Flutter/Divergence Speed (m/s) 3= 50o 10
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Uncertainty of Flutter SpeedUncertainty of Flutter Speed

• Same wing as previous 
optimisation study

• 1D
– Longitudinal Young’s g g

Modulus
• 2D 

– θ1 and θ2

• 3D3D 
– Longitudinal Modulus
– Shear modulus– Shear modulus
– Thickness 20



Probabilistic Aeroelastic ModelProbabilistic Aeroelastic Model
• 1-D Polynomial Chaos

0.6

0.7  
3rd PCE
2nd PCE

– Longitudinal Young’s 
modulus(E1), 
coef of variation 0 2 0 4

0.5

1st PCE
Monte Carlo

Poor PDF plot for 1st
– coef of variation = 0.2 
– 10 samples to get β terms

PDF then generated from 0 2

0.3

0.4

P
D

F Order PCE model

– PDF then generated from 
PCE

• Compared with Monte
0.1

0.2

Compared with Monte 
Carlo =1288 simulations 15 16 17 18 19 20 21 22 23 24 25

0

 Flutter speed (m/sec)

 

Deterministic 2nd Order 3rd Order Monte 2nd Order 3rd Order MonteDeterministic 
Flutter 
Speed m/s

2 Order 
PCE

 m/s

3rd Order 
PCE

 m/s

Monte 
Carlo

 m/s

2 Order 
PCE



3 Order 
PCE



Monte 
Carlo



21 352 21 2697 21 2700 21 2876 0 8306 0 8441 0 8522
21

21.352 21.2697 21.2700 21.2876 0.8306 0.8441 0.8522



Probabilistic Aeroelastic ModelProbabilistic Aeroelastic Model
1.4  

2nd Order PCE
3 d Od PCE

• 2-D Polynomial Chaos

1

1.2
3rd Oder PCE
Monte Carlo– Coefficient of variation of 1 and 

2 is 0.01(~ 2 degree variation)
(-33 75 28 125 90) lay-up

0 4

0.6

0.8

P
D

F

– (-33.75, 28.125, 90)s lay-up
– 30 samples are taken.
– MCS = 2500 simulations
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28 29 30 31 32 33 34 35 36

 Flutter speed (m/sec)

Deterministic 2nd Order 3rd Order Monte 2nd Order 3rd Order Monte 
Flutter 
Speed m/s

PCE
 m/s

PCE
 m/s

Carlo
 m/s

PCE


PCE


Carlo


33 298 33 1708 33 1420 33 1448 0 3746 0 4701 0 4787
22

33.298 33.1708 33.1420 33.1448 0.3746 0.4701 0.4787



Probabilistic Aeroelastic ModelProbabilistic Aeroelastic Model
• 3-D Polynomial Chaos 0.25  

2nd PCE
3rd PCE– Longitudinal Young’s 

modulus, in-plane shear 
modulus and total thickness of 
th l i t t t d

0.2

3rd PCE
Monte Carlo

the laminate are treated as 
random variables

– For moduli cov=0.1 and for 
0 02

0.1

0.15

P
D

F

thickness cov=0.02
– 60 sample solutions
– MCS = 900

0.05
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0
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D t i i ti 2nd O d 3 d O d M t 2nd O d 3rd O d M tDeterministic 
Flutter 

Speed m/s

2nd Order 
PCE

 m/s

3rd Order 
PCE

 m/s

Monte 
Carlo

 m/s

2nd Order 
PCE


3rd Order 
PCE


Monte 
Carlo


33 298 33 2260 33 2277 33 2355 1 7268 1 7487 1 6476
23

33.298 33.2260 33.2277 33.2355 1.7268 1.7487 1.6476



Example 3.  p
Goland Wing - Flutter Speed

24



Goland Wing ExampleGoland Wing Example
• Uncertain variablesUncertain variables
• Upper Wing skin=[0.017825-0.013175] ,Mean= 0.0155
• Lower Wing Skin=[0.017825-0.013175] ,Mean= 0.0155
• Leading Edge Spar =[0.00069-0.00051] ,Mean =0.0006
• Trailing Edge Spar =[0.00069-0.00051] ,Mean =0.0006

L di Ed S C [0 04784 0 03536] M 0 0416• Leading Edge Spar Caps=[0.04784-0.03536], Mean =0.0416
• Trailing Edge Spar Caps=[0.17204-0.12716], Mean =0.1496
• Centre Spar Cap=[0 04784-0 03536] Mean =0 0416Centre Spar Cap [0.04784 0.03536], Mean 0.0416
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Goland Wing 7D PCE ModelGoland Wing 7D PCE Model
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Robust Aeroelastic Design g
using PCE Models

27



Robust DesignRobust Design

• Deterministic approach
– Maximise some function 

• Robust approach
C id iti f PDF d t– Consider position of PDF compared to some 
design objective 

Manan.A & Cooper J.E. “Design of Composite Wings 

28

p g p g
Including Uncertanties – A Probabilistic Approach”  
J.Aircraft.  v46n2 2009 pp601-607 



Robust Design for FlutterRobust Design for Flutter
design flutter speed

robust optimum

In practice, want to have 
flutter speed above some 
design speed, rather than 

i i i th fl tt
Although the mean of the robust optimummaximising the flutter 

speed
deterministic solution is 
higher than the robust 
optimum, the robust 

ti i b tt

deterministic optimum

optimum is a better 
robust design

deterministic optimum
Want to minimise 
the PDF area 
below the design 
flutter speed

29flutter speed



Robust Optimisation using PSORobust Optimisation using PSO
• Same wing but E1,G12 and total thickness are 

random variablesrandom variables
• 8 particles in swarm are selected
• For each particle a PDF is generated from which area below 

D i Fl tt S d i l l t dDesign Flutter Speed is calculated
• This means in each loop 8 PDFs are assessed
• 0.00 probability value is flutter free and 1.00 is total failure.

0.8

0.9

1

0.5

0.6

0.7

os
t f
un

ct
io
n

0 1

0.2

0.3

0.4co
s

300 5 10 15
0

0.1

Iteration number( best swarm)



Robustness of Composite WingRobustness of Composite Wing
0.25  

Deterministic Optimisation 32.90

0.2
Robust Design

Flutter Speed m/sec

Mean of Monte Carlo
Simulations Applied to

31.15
m/sec

0.1

0.15

P
D

F

Deterministic Optimum

Mean of PCE Applied to
Deterministic Optimum

31.17
m/sec

0.05

Deterministic Design

Monte Carlo

Mean of PCE Applied to Robust
Optimum

32.10
m/sec

Deterministic Robust 32.24

20 25 30 35 40 45 50
0

 Flutter speed (m/sec)

 

Optimisation Flutter Speed m/sec

Design Flutter
Speed

Deterministic
Optimum

Robust
Optimum

28 m/sec 0.0292 0.0133

Note skewed behaviour of 
deterministic design

31
32 m/sec 0.6533 0.4845

Table for Probability of Failure



1-Cosine Gust Modelling and g
Design

• “1-cosine” gust excitation applied to composite wing1 cosine  gust excitation applied to composite wing
• 20 Particles, 100 runs conducted to minimise root 

bending momentg
• Optimum layup [14.858,14.858,-74.543]s.
• Passive design using wash-out at tipPassive design using wash out at tip

32Input Gust Signal Wing tip LE deflection



1 D Chaos Model for Gust Design1-D Chaos Model for Gust Design
•The longitudinal Young’s modulus with coefficient of variation of g g
0.2 was taken. A 2nd Order PCE model was derived and PDF plot 
was generated.

•10,000 Monte Carlo simulations are conducted and excellent 
agreement was observed.
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Robust Gust Design

20 particles with 100 runs
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Multi Objective DesignMulti-Objective Design
Designs for gust alleviation and improved flutter speeds oppose each 

V R
d min

Deterministic

d minΩ min(w * w * )gfdet V R
max d

 

Ω =min(w *α+w *β)

Probabilistic

Ω =min(w α+w β)gfrobust

Probability  of 
flutter failure

Probability  of 
gust failure

35
A Manan & J E Cooper, “ Multi-Objective 
Aeroelastic Tailoring including Uncertainty” to 
appear in the Aeronautical Journal



Deterministic Pareto FrontDeterministic Pareto Front
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Robust Pareto FrontRobust Pareto Front
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ConclusionsConclusions
• Several successful applications of 

Polynomial Chaos have been shown forPolynomial Chaos have been shown for.
– FRF calculations

fl tt d t– flutter and gust response
• Application to robust design for flutter and 

gusts 
• Development of robust Pareto Frontiers for p

multi-objective problems

• Further work required on 
– application to multi-parameter systems

38

application to multi parameter systems
– More realistic structures


