

Use of Polynomial Chaos Expansions for Robust Design of Composite Wings for Flutter and Gusts

Jonathan Cooper School of Engineering University of Liverpool

Use of Composites in Aerospace

- •Composites replacing metallic structures
- •Main driver is weight savings
- •Not using the full benefit of composites

Ironbridge. Metal structure derived from wood design

Boeing 787. A350. Composite structure derived using metal design philosophy

Aeroelastic Tailoring

- Make use of composite materials unidirectional properties to influence aeroelastic behaviour
 - Ply lay-up / thickness / ply percentages for each orientation
- Possible new configurations
 - Forward swept wings
 - Oblique wings
 - W shaped wings
- •Virtually no application since 1980s – lots of studies

Objectives

- Investigate use of Polynomial Chaos Expansion to provide efficient probabilistic modelling of PDF variations in structural parameters for aeroelastic tailoring
- Several simple examples
- Illustrate approach for robust design using uncertain modelling

Background and Concept of PCE

In simplified form random process can be written as

$$u(\theta) = \sum_{0}^{p} \beta_{i} \psi_{i}(\xi(\theta))$$

• For example 1-D chaos can be expressed

$$u = \beta_0 + \beta_1 \xi + \beta_2 (\xi^2 - 1) + \beta_3 (\xi^3 - 3\xi) + \beta_4 (\xi^4 - 6\xi^2 + 3) + \dots$$

β are unknown coefficients that must be found

Polynomial Chaos Expansion

PCE with Latin Hypercube Sampling

Example 1. Simple Beam

Variation of Beam FRF

- Simple beam FE model (Rayleigh damping)
- Freqs and damps from eigenvalue solution
- Curve-fit with standard FRF model

PCE Modelling

- Uncertainty
 - Young's modulus
 - Young's modulus and cross-section area
- Perform Latin Hypercube defined tests
- Fit PCE model to FRF fit for each mode
 - Frequency
 - Damping
 - Residues
 - Residuals

FRF-PCE Modelling

A. Manan, J.E. Cooper *Journal of Sound and Vibration*, *Volume 329*, *Issue 16*, 2010, *Pages 3348-3358*

Fitted and Monte-Carlo PDFs

Frequency

Damping

Residue amplitude

Residue Phase

99% FRF Confidence Bounds -Young's Modulus Variation

12

99% FRF Confidence Bounds -Young's Modulus + CSA Variation

Example 2. Simple Rectangular Composite Wing - Flutter Speed

Wing Model

Composite Layers

Aeroelastic Modelling

Structure

Assumed modes model

- -Aerodynamics
 - Modified strip theory including unsteady terms
- -Combine using Lagrange

 $A\ddot{q} + (\rho VB + D)\dot{q} + (\rho V^2C + E)q = \underline{0}$

Mass Matrix Overall Damping Matrix ♦
 Overall
 Stiffness
 Matrix

Frequency and Damping Trends

• Aeroelastic Modelling of composite wing

V-g and V- ω plot for [-45,-45,0]s laminate (*xf* =0.5*c*)

V-g and V- ω plot for [-30,-40,0]s laminate (*xf* =0.5*c*)

Deterministic Optimization Strategy

- Objective
 - Maximize Speed at which flutter and divergence occur
- Variables
 - Fibre Angle Orientation
- Studied Example
 - Composite Wing is selected
 - Aspect Ratio=4
 - Number of Layers =6
 - Fibre Angle $\longrightarrow (\theta_1, \theta_2, \theta_3)_s$

Composite Wing Orientation Example

Flutter/Divergence Speed (m/s) $\theta_3 = 50^{\circ}$

- Composite rectangular wing (3 types of layer)
- Determine best
 composite lay-up

Manan A, Vio GA, Harmin YF & Cooper JE "Optimization of Aeroelastic Composite Structures using Evolutionary Algorithms" <u>Engineering Optimisation</u>.v42 n2 2010 pp 171 – 184.

Uncertainty of Flutter Speed

- Same wing as previous optimisation study
- 1D
 - Longitudinal Young's Modulus
- 2D
 - θ_1 and θ_2
- 3D
 - Longitudinal Modulus
 - Shear modulus
 - Thickness

θ,

Composite Layers

Probabilistic Aeroelastic Model

- 1-D Polynomial Chaos
 - Longitudinal Young's modulus(E₁),
 - coef of variation = 0.2
 - 10 samples to get β terms
 - PDF then generated from PCE
- Compared with Monte Carlo =1288 simulations

Deterministic Flutter	2 nd Order PCE	3rd Order PCE	Monte Carlo	2 nd Order PCE	3 rd Order PCE	Monte Carlo
Speed m/s	μm/s	μm/s	μm/s	σ	σ	σ
21.352	21.2697	21.2700	21.2876	0.8306	0.8441	0.8522
						21

Probabilistic Aeroelastic Model

Deterministic	2 nd Order	3rd Order	Monte	2 nd Order	3 rd Order	Monte
Flutter	PCE	PCE	Carlo	PCE	PCE	Carlo
Speed m/s	μ m/s	μ m/s	µ m/s	σ	σ	σ
33.298	33.1708	33.1420	33.1448	0.3746	0.4701	0.4787

Probabilistic Aeroelastic Model

Flutter	2 nd Order PCE	Sra Order PCE	Carlo	2 nd Order PCE	PCE	Carlo
Speed m/s	μm/s	μm/s	μm/s	σ	σ	σ
33.298	33.2260	33.2277	33.2355	1.7268	1.7487	1.6476

Example 3. Goland Wing - Flutter Speed

Goland Wing Example

Uncertain variables

- Upper Wing skin=[0.017825-0.013175] ,Mean= 0.0155
- Lower Wing Skin=[0.017825-0.013175] ,Mean= 0.0155
- Leading Edge Spar =[0.00069-0.00051] ,Mean =0.0006
- Trailing Edge Spar =[0.00069-0.00051] ,Mean =0.0006
- Leading Edge Spar Caps=[0.04784-0.03536], Mean =0.0416
- Trailing Edge Spar Caps=[0.17204-0.12716], Mean =0.1496
- Centre Spar Cap=[0.04784-0.03536], Mean =0.0416

Goland Wing 7D PCE Model

Robust Aeroelastic Design using PCE Models

Robust Design

- Deterministic approach
 - Maximise some function
- Robust approach
 - Consider position of PDF compared to some design objective

Manan.A & Cooper J.E. "Design of Composite Wings Including Uncertanties – A Probabilistic Approach" <u>J.Aircraft</u>. v46n2 2009 pp601-607

Robust Design for Flutter

flutter speed

Robust Optimisation using PSO

- Same wing but E₁,G₁₂ and total thickness are random variables
 - 8 particles in swarm are selected
 - For each particle a PDF is generated from which area below Design Flutter Speed is calculated
 - This means in each loop 8 PDFs are assessed
 - 0.00 probability value is flutter free and 1.00 is total failure.

Robustness of Composite Wing

Deterministic Optimisation Flutter Speed	32.90 m/sec	0.25	
MeanofMonteCarloSimulationsAppliedtoDeterministic Optimum	31.15 m/sec	0.2 -	Robust Design
Mean of PCE Applied to Deterministic Optimum	31.17 m/sec		
Mean of PCE Applied to Robust Optimum	32.10 m/sec		Deterministic Design Monte Carlo
DeterministicRobustOptimisation Flutter Speed	32.24 m/sec	0.05 -	
		0	25 30 35 40 45 50

Note skewed behaviour of deterministic design

Design Speed	Flutter	Deterministic Optimum	Robust Optimum	
28 m/sec		0.0292	0.0133	
32 m/sec		0.6533	0.4845	31

Flutter speed (m/sec)

Table for Probability of Failure

- "1-cosine" gust excitation applied to composite wing
- 20 Particles, 100 runs conducted to minimise root bending moment
- Optimum layup [14.858,14.858,-74.543]s.
- Passive design using wash-out at tip

1-D Chaos Model for Gust Design

•The longitudinal Young's modulus with coefficient of variation of 0.2 was taken. A 2nd Order PCE model was derived and PDF plot was generated.

•10,000 Monte Carlo simulations are conducted and excellent agreement was observed.

Robust Gust Design

Multi-Objective Design

Designs for gust alleviation and improved flutter speeds oppose each

Deterministic

$$\Omega_{det} = \min(w_{f} * \frac{V_{d}}{V_{max}} + w_{g} * \frac{R_{min}}{R_{d}})$$

Probabilistic

$$\Omega_{\text{robust}} = \min(w_{f} * \alpha + w_{g} * \beta)$$

Probability of flutter failure

Probability of gust failure

A Manan & J E Cooper, "Multi-Objective Aeroelastic Tailoring including Uncertainty" to appear in the Aeronautical Journal

Deterministic Pareto Front

Conclusions

- Several successful applications of Polynomial Chaos have been shown for.
 - -FRF calculations
 - -flutter and gust response
- Application to robust design for flutter and gusts
- Development of robust Pareto Frontiers for multi-objective problems
- Further work required on
 - application to multi-parameter systems
 - More realistic structures