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Objectives

Objectives

e Study model reduction strategies at marginally stable operating points

e Perform sensitivity analysis of reduced order model as function of
input design

e Evaluation of control quality as function of input design and reduced
order model

e Study robustness and stability analysis towards disturbances

Leyla Ozkan, Siep Weiland, Reinout Roi A comparative study of approximate models for a tubular reactor



Objectives

Objectives

e Study model reduction strategies at marginally stable operating points

e Perform sensitivity analysis of reduced order model as function of
input design

e Evaluation of control quality as function of input design and reduced
order model

e Study robustness and stability analysis towards disturbances

Applied to benchmark example of a tubular reactor ‘
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Tubular reactor model
Non-isothermal tubular reactor

reactant A product B
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C;
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Reactor! with irreversible exothermic reaction A — B described by PDE's:
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1K. Hoo et.al. CHemE Sci. 56, 6683-6710,2000




Tubular reactor model

Adjustments to benchmark reactor

S —
Ti : ° reactor :
c; —
f f f
Th T2 Tjs

Adjustment to allow for

e control at 3 heating/cooling jackets with idealized conditions:

Tw(z,t) =Th 0<2<1/3
Tw(z,t) = Tjo 1/3<2<2/3
Tw(z,t) =Tjs3 2/3<2z2<1

e measurements at 5 temperature sensors inside reactor

Ty, T3, T3, Ty, 15 2 Tule O B
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Tubular reactor model

Relevant signals

Inputs

e Controls: temperature at 3 heating/cooling jackets 7)1, Tj2, Tj3
e Disturbances:
e inlet temperature T;
e inlet concentration C;
Outputs
e Temperature at 5 measurement positions 7171, ...,T5
State variable

o z(t) = col(T(zi,t),C(z,t)) at 100 discrete points in spatial domain.
e Temperature T'(z;,t) at uniform spatial grid
e Concentration C'(z;,t) at uniform spatial grid
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Tubular reactor model

Relevant signals

Inputs

e Controls: temperature at 3 heating/cooling jackets 7)1, Tj2, Tj3
e Disturbances:

e inlet temperature T;

e inlet concentration C;

Outputs

e Temperature at 5 measurement positions 7171, ...,T5

State variable
o z(t) = col(T(zi,t),C(z,t)) at 100 discrete points in spatial domain.

e Temperature T'(z;,t) at uniform spatial grid
e Concentration C'(z;,t) at uniform spatial grid

This brings model in the form:
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Operating conditions

An optimal operating condition

Objectives:
e High production (consumption of reactants)

e |imit maximum temperature inside reactor

Optimization problem:
Optimal steady state problem 2

minimize  Cs4(1)
subject to  Axgs + Bugs + F(xss) + Dd =0
Tss(z) < Thax for all points z

Umin < Uss < Umax

Css(1) is steady state concentration at right reactor end .

Tu/e ) T2

2Smets et. al. Optimal Temp. Control of SS Exothermic plug-Flow Reactor, AICHEJ Vol.148
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Operating conditions

An optimal operating condition

Included temperature constraint in the objective function

1
minimize  Css(1) —1—7/ min(Thax — Tss(2), 0)%dz
0

subject to Ax+Bu+ F(x)+Dd =0

Umin < Ugs < Umax

specifications
e weighting parameter v = 200
e inlet conditions T; =1 and C; =1

® input constraints on jacket temperatures: 0.8 < u < 1.2.

resulting jacket temperatures:

uss = (0.9970,1.0475,1.0353)

= TU/e O &R

1
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Operating conditions

An optimal operating condition

Steady state operating condition

Steady state temperature Steady state concentration

116 T T 1 T T T T

temperature
concentration

L L L 0 L L L
0 02 0.4 06 08 1 0 02 0.4 06 08 1

tube position tube position
Temperature Ty, Concentration Cig
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Operating conditions

An optimal operating condition

However, very sensitive to disturbances in T; and C;
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4% change in inlet temperature T; at time ¢t = 10
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Model reduction
Model reduction through Galerkin projections

Most important steps:
e Model
#(t) = Az + Bu + Dd + F(x)

o TUe O i

1
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Model reduction
Model reduction through Galerkin projections

Most important steps:
e Model
#(t) = Az + Bu + Dd + F(x)

e State variable projection
T
() =z, (t) = Y er(t)én
k=1

with & ‘clever’ orthonormal basis of state space

o TUe O i

1
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Model reduction
Model reduction through Galerkin projections

Most important steps:
e Model
#(t) = Az + Bu + Dd + F(x)

e State variable projection
T
() =z, (t) = Y er(t)én
k=1

with & ‘clever’ orthonormal basis of state space
e Vector field projection

0:<§k,A9€+Bu+Dd+}"(x)—a‘c>, k=1,...,r




Model reduction
Model reduction through Galerkin projections

Most important steps:
e Model
#(t) = Az + Bu + Dd + F(x)

e State variable projection
T
() =z, (t) = Y er(t)én
k=1

with & ‘clever’ orthonormal basis of state space
e Vector field projection
0= <§k,Ax+Bu+Dd—|—}"(x) —a‘c>, k=1,....r
e Reduced order model

0= <£/€)A$r + Bu + Dd + F(x;) —i7r>, k




Model reduction
Different spectral decompositions

Distinguish:

e Scalar valued decompositions:

N N
T(t) =Y art)pr,  Ct) =Y br(t)n
k=1

k=1

where {¢1.} and {¢} are orthonormal (POD) bases of RV

e [Lumped decompositions:
2N
0= (o) = 2 e

where {£;} is orthonormal (POD) bases of R?V A
2 TUe O @
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Model reduction
Computation POD bases

Either case computable by means of SVD of snapshot matrices
:L'(Zl,tl) m(zl,tM)
Xsnap = : . :
a:(zN,tl) {IZ(ZN,tM)
where N is number of mesh points and M is number of time samples.

e scalar valued basis {¢x} and {¢}:

Tsnap = (801 T SON) Ve, Csnap = (Q,Z)l T Q/)N) %

e lumped basis {&}:

Xsnap = (51 te EQN) %

2 TUe O &
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Experiments and results

POD and Galerkin projection

Experimental set up:
e Apply PRBS signal on T}1,T}2, Tj3, Tin, Cip around steady state
operating condition
e Perform model reduction (POD method)
e Validate model for the critical value for C;

e Validate model for the critical value of T;

Main question:

? Do reduced order models capture oscillatory behavior ?
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Experiments and results

Experiments

Experiment 1

Outputs Inputs
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Experiments and results

(lumped basis) + Galerkin Projection

Results of T" and C' at z = 0.5 (middle of reactor), order r = 4.

Lumped POD basis functions Lumped POD basis functions
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Experiments and results

Experiments

Experiment 2
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Experiments and results

(scalar basis)+ Galerkin Projection

Results of T" and C' at z = 0.5 (middle of reactor), order r = 3 + 3.

Scalar POD basis functions Scalar POD basis functions
16 T T T T T T 12 T T T T T T
finite element finite element
14k =+ = 3th order approximation| | =+ = 3th order approximation
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Experiments and results

POD (lumped basis) + Galerkin Projection

T and C at z = 0.5 (middle of reactor), order r = 4.

Lumped POD basis functions Lumped POD basis functions
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finite element finite element
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Experiments and results

POD (scalar basis) + Galerkin Projection

T and C at z = 0.5 (middle of reactor), order r = 3 + 3 with T; = 1.04

Scalar POD basis functions Scalar POD basis functions
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Experiments and results

POD (lumped basis) + Galerkin Projection

T and C at

z = 0.5 (middle of reactor), order r = 4 with T; = 1.04

Lumped POD basis functions
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Experiments and results

POD (lumped basis) + Galerkin Projection

T and C at z = 0.5 (middle of reactor), order r = 3 with T; = 1.04

Lumped POD basis functions Lumped POD basis functions
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Experiments and results

POD (lumped basis) + Galerkin Projection

T and C at z = 0.5 (middle of reactor), order r = 7 with T; = 1.04

Lumped POD basis functions Lumped POD basis functions
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Experiments and results

Conclusions

e This study proved that POD model reduction for this distributed
system is able to capture dynamics around marginally stable operating
conditions

o Method allows for substantial reductions of complexity

e Multivariable (lumped) POD outperforms single variable (scalar) POD
technique

e Currently investigating controller synthesis on basis of these low order
models.

e Methods have been implemented in INCA environment of IPCOS

Tu/e ) T2
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Experiments and results

INCA environment

INCA

(Advanced Process Control)

Full Scale Model

Reduced Model
Linear model
Nonlinear model
Grey-box model

- B
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