Construction of low–order dynamical for problems invo selfadjoint operators

applied to the salt lake problem

Henk Schuttelaars¹ and Gert-Jan Pieters

1: Delft Institute of Applied Mathematics, Delft University of Technology

Introduction

• Observations in many natural systems suggest that the dynamics is only governed by a few (interacting) patterns.

• Patterns often resulting from strongly nonlinear interactions (i.e., not close to the onset of linear instability)

Can we construct a dynamical model to reproduce, understand and predict the observed dynamical behaviour in an efficient way?

Approach

- Construction of a low-dimensional dynamical model
- Based on a few physically relevant patterns physically interpretable patterns
- Can be analysed with well-known mathematical techniques

Choice of patterns is essential!!

Construction of low-dimensional model (1)

Define: state vector $\Phi = (...),$ i.e. velocity field, saturation, pressure,…

parameter vector $\lambda = (...),$ i.e. evaporation rate, geometry

Dynamics of Φ : •coupled system of nonlinear ordinary and partial differential equations •usually NOT SELF-ADJOINT

$$
\mathcal{M}\frac{\partial\Phi}{\partial t} + \mathcal{L}(\lambda)\ \Phi + \mathcal{N}(\lambda,\Phi) = \mathbf{F}
$$

Where $\bullet \mathcal{M}$: mass matrix, a linear operator.

In many problems *M* is singular

- •*L* : linear operator
- •*N* : nonlinear operator
- **F** : forcing vector

Construction of low-dimensional model (2)

Step 1: identify a steady state solution Φ_{eq} for a certain λ .

$$
\mathcal{L}(\lambda) \, \Phi_{\text{eq}} + \mathcal{N}(\lambda, \Phi_{\text{eq}}) = \mathbf{F}
$$

Step 2: investigate the linear stability of Φ_{eq} .

Write $\Phi = \Phi_{eq} + \phi$ and linearize the eqn's:

$$
\mathcal{M} \frac{\partial \Phi}{\partial t} + \mathcal{J}(\lambda) \Phi = 0
$$

with the total jacobian $\mathcal{I} = \mathcal{L}(\lambda) + \mathcal{N}(\lambda, \phi, \Phi_{eq})$ with *N* linearized around Φ_{eq}

This generalized eigenvalue-problem (usually solved numerically) gives: • Eigenvectors r_k

 \cdot Adjoint eigenvectors I_k

Construction of low-dimensional model (3)

Step 3: model reduction by Galerkin projection on eigenfunctions. \cdot Expand ϕ in a FINITE number of eigenfunctions:

$$
\varphi = \sum_{j=1}^N r_j \; a_j(t)
$$

•Insert $\Phi = \Phi_{eq} + \phi$ in the equations. \cdot Project on the adjoint eigenfunctions \rightarrow evolution equations for the amplitudes a_j(t):

$$
a_{j,t} - \sum_{k=1}^{N} \beta_{jk} a_k \left(+ \sum_{k=1}^{N} \sum_{l=1}^{N} c_{jkl} a_k a_l \right) = 0, \text{ for } j = 1...N
$$

Example of nonlinearity

system of nonlinear PDE's reduced to a system of coupled ODE's.

Critical points and choices

- How 'good' is the low-dimensional model?
- Which eigenfunctions should be used to construct the low-dimensional model?
- How many eigenfunctions should be used in the expansion?
- How to keep the low-dimensional

(i.e., *M* is singular)

possible?

How persistent and are the equilibria to forcing by noise.

salt lake problem

Salt lake problem

Lab Experiments (Wooding, 1997) (1)

Initially many fingers

When fingers hit the bottom: complex behaviour

Salt lake problem: model equations

Governing Equations (after scaling):

- $\cdot \nabla \cdot U = 0$ (mass conservation)
- $U = -(\nabla p S e_z)$ (Darcy's law)
- S_t + \overline{R} $\nabla \cdot (\overline{U} S)$ = $\overline{Pe^{-1} \Delta S}$ (salt mass balance)

Boundary conditions:

- $\cdot \mathbf{U} \cdot \mathbf{e}_z = -1/R$ at $z=0,1$ $\bullet S = 1$ at $z=0$ $\bullet S = 0$ at $z=1$
- •No-flow b.c. in the vertical plane

Salt lake problem: construction of r.m.(1)

Step 1: Basic state is given by $\Phi_{eq} = (S, U, p)_{eq} = \Phi_{eq}(z, R)$

•Uniform upflow

•Control parameters R, Pe

Linear Stability of **Φ**eq : **Step 2:**

• Write
$$
\Phi = \Phi_{eq} + \varphi
$$

•Linearize the equations and solve eigenvalue problem

$$
\Rightarrow \quad (a_{\rm crit}, R_{\rm crit}) =
$$

Salt lake problem: construction of r.m.(2)

- **Step 3:** model reduction by Galerkin projection on eigenfunctions.
- Eigenfunctions calculated at $R=R_{\text{crit}}$, patterns kept fixed
- R_{crit} and most unstable pattern depend on Peclet number

Model results

- Bifurcation Structure (Steady States only)
	- \blacktriangleright Solve the steady state amplitude equations, varying R:

$$
\displaystyle \bigotimes_{i,t} \; -\sum_{k=1}^N \beta_{jk} \, A_k + \sum_{k=1}^N \sum_{l=1}^N \, c_{jkl} \, A_k \, A_l = 0, \quad \text{for } j=1...N
$$

- Dynamics Behaviour:
	- Use the low-order dimensional model to study the dynamic behaviour in time, starting from an arbitrary initial condition. Compare with fullmodel results.

Bifurcation diagram close to critical R (1)

Dependence on 'projection method' Dependence on 'number of patterns'

Landau Coefficient

Bifurcation diagram for moderate R (1)

Bifurcation diagram for moderate R (2)

Most unstable mode
Slaved mode

 $\overline{\mathbf{s}}$

P^Q

S $H₃$

S

 16

Ra

 $\overline{18}$

u

u

 $\overline{2}0$

Bifurcation diagram for large R (1)

Most unstable mode

Bifurcation diagram for large R (2)

- Convergence: increase # of modes
	- z-modes: varied x-modes: 100
- Sensitivity of bifurcation points to number of modes

Time evolution (1)

- Pe = 10, Ra = 20
- Initial condition: one-finger solution (lineaire most unstable mode)

Time evolution (2)

- Pe = 10, Ra = 20
- Initial condition: one-finger solution (lineaire most unstable mode)

Time evolution (3)

• Pe = 10, Ra = 15.35

• Initial condition: close to a Hopf

Mechanism (1)

Why gets the uniform solution unstable?

convection

14.2 14.4 14.6 14.8

Ra

 \mathscr{T}^X_d

15 15.2

1.05

1.025

 11

 e t t

 $\mathbf{r} = \mathbf{r}$.

 $\mathbf{r} = \mathbf{r} - \mathbf{r} - \mathbf{r} - \mathbf{v} - \mathbf{v}$

diffusion

 $\frac{1}{2}$

 $11.$

 $1 - 1$

 $k = 1$

Mechanism (2)

Why a periodic solution? Still stable....

Mechanism (2)

Why a periodic solution? Now unstable....

Comparison with observations (large Pe)

• Pe $=$ 40, Ra varied • $n=30$, $m = 35$

Conclusions

- Reduced model approach efficient in finding bifurcation structure in Salt Lake problem.
	- •Convergence up to $R \sim 70$ for $Pe < 10$, solutions recovered using FE simulations
	- •Linearly most unstable mode does not necessarily predict observed length scales correctly (see Pe=10, Pe=40)
	- •Multiple equilibria
	- •Periodic solutions exist
- The low-dimensional dynamical model captures the dynamics of the full system of equations
- For larger Rayleigh numbers the basis obtained for $R \sim 15$ is not optimal anymore.

Conclusions (2)

• Method can be extended to 3 dimensions:

