<u>Construction of low–order dynamical</u> <u>models for problems involving non-</u> <u>selfadjoint operators</u>

applied to the salt lake problem

Henk Schuttelaars¹ and Gert-Jan Pieters

1: Delft Institute of Applied Mathematics, Delft University of Technology

Introduction

 Observations in many natural systems suggest that the dynamics is only governed by a few (interacting) patterns.

 Patterns often resulting from strongly nonlinear interactions (i.e., not close to the onset of linear instability)

Can we construct a dynamical model to <u>reproduce</u>, <u>understand</u> and <u>predict</u> the observed dynamical behaviour in an efficient way?

<u>Approach</u>

- Construction of a low-dimensional dynamical model
- Based on a few physically relevant patterns physically interpretable patterns
- Can be analysed with well-known mathematical techniques

Choice of patterns is essential!!

Construction of low-dimensional model (1)

Define: state vector $\Phi = (...)$, i.e. velocity field, saturation, pressure,...

parameter vector $\lambda = (...)$, i.e. evaporation rate, geometry

Dynamics of Φ: •coupled system of nonlinear ordinary and partial differential equations •usually <u>NOT SELF-ADJOINT</u>

$$\mathcal{M} \frac{\partial \Phi}{\partial t} + \mathcal{L}(\lambda) \Phi + \mathcal{N}(\lambda, \Phi) = \mathbf{F}$$

Where $\bullet \mathcal{M}$: mass matrix, a linear operator.

In many problems \mathcal{M} is singular

- *L* : linear operator
- •: nonlinear operator
- F : forcing vector

Construction of low-dimensional model (2)

<u>Step 1</u>: identify a steady state solution Φ_{eq} for a certain λ .

$$\mathcal{L}(\lambda) \Phi_{eq} + \mathcal{N}(\lambda, \Phi_{eq}) = \mathbf{F}$$

<u>Step 2</u>: investigate the linear stability of Φ_{eq} .

Write $\Phi = \Phi_{eq} + \phi$ and linearize the eqn's:

$$\mathcal{M} \; \frac{\partial \boldsymbol{\phi}}{\partial t} + \mathcal{J}(\boldsymbol{\lambda}) \; \boldsymbol{\phi} = \boldsymbol{0}$$

with the total jacobian $\mathcal{J} = \mathcal{L}(\lambda) + \mathcal{N}(\lambda,\phi,\Phi_{eq})$ with \mathcal{N} linearized around Φ_{eq}

This generalized eigenvalue-problem (usually solved numerically) gives: • Eigenvectors r_k

Adjoint eigenvectors l_k

Construction of low-dimensional model (3)

<u>Step 3</u>: model reduction by Galerkin projection on eigenfunctions.
 •Expand \u03c6 in a FINITE number of eigenfunctions:

$$\boldsymbol{\phi} = \sum_{j=1}^{N} r_j a_j(t)$$

•Insert $\Phi = \Phi_{eq} + \phi$ in the equations. •Project on the adjoint eigenfunctions \implies evolution equations for the amplitudes $a_{ij}(t)$:

$$a_{j,t} - \sum_{k=1}^{N} \beta_{jk} a_k + \sum_{k=1}^{N} \sum_{l=1}^{N} c_{jkl} a_k a_l = 0, \text{ for } j = 1...N$$

Example of nonlinearity

system of nonlinear PDE's reduced to a system of coupled ODE's.

Critical points and choices

- How `good' is the low-dimensional model?
- Which eigenfunctions should be used to construct the low-dimensional model?
- How many eigenfunctions should be used in the expansion?
- How to keep the low-dimensional

How persisten

forcing by noise.

salt lake problem

Salt lake problem

Lab Experiments (Wooding, 1997) (1)

Initially many fingers

When fingers hit the bottom: complex behaviour

Salt lake problem: model equations

Governing Equations (after scaling):

- $\nabla \cdot \mathbf{U} = 0$ (mass conservation)
- $\mathbf{U} = -(\nabla p S \mathbf{e}_z)$ (Darcy's law)
- $S_t + R \nabla (U S) = Pe^{-1}\Delta S$ (salt mass balance)

Boundary conditions:

- •U· $e_z = -1/R$ at z=0,1•S = 1at z=0•S = 0at z=1
- •No-flow b.c. in the vertical plane

Salt lake problem: construction of r.m.(1)

<u>Step 1</u>: Basic state is given by $\Phi_{eq} = (S,U,p)_{eq} = \Phi_{eq}(z,R)$

Uniform upflow

•Control parameters R, Pe

Step 2: Linear Stability of Φ_{eq} :

Write
$$\Phi = \Phi_{eq} + \varphi$$

•Linearize the equations and solve eigenvalue problem

$$\rightarrow$$
 (a_{crit}, R_{crit})

Salt lake problem: construction of r.m.(2)

- Step 3: model reduction by Galerkin projection on eigenfunctions.
- Eigenfunctions calculated at R=R_{crit}, patterns kept fixed
- R_{crit} and most unstable pattern depend on Peclet number

Model results

- Bifurcation Structure (Steady States only)
 - Solve the steady state amplitude equations, varying R:

$$\bigotimes_{j,t} -\sum_{k=1}^{N} \beta_{jk} A_k + \sum_{k=1}^{N} \sum_{l=1}^{N} c_{jkl} A_k A_l = 0, \text{ for } j = 1...N$$

- Dynamics Behaviour:
 - Use the low-order dimensional model to study the dynamic behaviour in time, starting from an arbitrary initial condition. Compare with fullmodel results.

Bifurcation diagram close to critical R (1)

Dependence on 'projection method' Dependence on 'number of patterns'

Landau Coefficient

Bifurcation diagram for moderate R (1)

Bifurcation diagram for moderate R (2)

Most unstable mode

Slaved mode

Bifurcation diagram for large R (1)

Most unstable mode

Bifurcation diagram for large R (2)

- Convergence: increase # of modes
 - z-modes: variedx-modes: 100
- Sensitivity of bifurcation points to number of modes

Time evolution (1)

- Pe = 10, Ra = 20
- Initial condition: one-finger solution (lineaire most unstable mode)

Time evolution (2)

- Pe = 10, Ra = 20
- Initial condition: one-finger solution (lineaire most unstable mode)

Time evolution (3)

- Pe = 10, Ra = 15.35
- Initial condition: close to a Hopf

Mechanism (1)

Why gets the uniform solution unstable?

convection

diffusion

1,-

11.

1 5

Mechanism (2)

Why a periodic solution?

Still stable....

Mechanism (2)

Why a periodic solution?

Now unstable....

Comparison with observations (large Pe)

Pe = 40, Ra varied
n=30, m = 35

Conclusions

- Reduced model approach efficient in finding bifurcation structure in Salt Lake problem.
 - Convergence up to R~70 for Pe < 10, solutions recovered using FE simulations
 - •Linearly most unstable mode does not necessarily predict observed length scales correctly (see Pe=10, Pe=40)
 - •Multiple equilibria
 - Periodic solutions exist
- The low-dimensional dynamical model captures the dynamics of the full system of equations
- For larger Rayleigh numbers the basis obtained for R ~ 15 is not optimal anymore.

Conclusions (2)

Method can be extended to 3 dimensions:

