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1. Normal Form (NF) approach for nonlinear (NL) 
(aeroelastic) systems  experiencing bifurcations: 
highlights of theory for (aeroelastic) model reduction

2. NL analysis based on 3rd order NF theory

• Appl.#1: LCO’s control 

• Appl.#2: Chaos control

3. NL analysis based on 5th order NF theory

• Appl.#3: Gust response of a nonlinear aeroelastic system 

• Appl.#4: Freeplay modeling: direct num. integration v.s. 
NF approach

4. Concluding remarks
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Considered aeroelastic applications and relevance of NF

Modal Model /

/ Finite State

Aerodynamics

Nonlinearity

Sources

Normal Form

Reduction

PREDICT

Prevision of safe conditions

• flutter speed limits

• admissible gust CONTROL

Phenomenon intensity

• LCO amplitude

• Chaos behaviour 

Wing Panels in

Supers.  Flow

Wing Typical Section

(plunge, pitch, flap) in

Subs. Unsteady Flow

Piston – theory for

aerodynamics 

1. Nonlinear pitch

stiffness

2. Free-play in control

surface

3-order Analysis

Pitchfork Bifurcation

5-order Analysis

Knee Bifurcation
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Authors‟ papers related to the presentation



Some theoretical hightlights on 

NORMAL FORM (NF) approach for bifurcation  

-A tool for analysis of nonlinear (aeroelastic) systems 

with polynomial nonlinearities

IFASD 2007

Stockholm 18-20 June 2007 
A Reduced-Order Modeling for the 

Aeroelastic Stability of a Launch Vehicle
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Ali H. Nayfeh, Method of Normal Forms, Wiley Series in 

Nonlinear Science
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Normal Form (I)

• Nonlinear Aeroelastic Problem reduced to :

• Taking a Taylor expansion of around an equilibrium point the

dynamical system can be rewritten as:

nonlinear-term vector of type (generic NL’s can be locally

reduced in this form) :

• Assuming      analytically dependent  on , one obtains

Similarily:

Control parameter (e.g., flight speed)
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Normal Form (II)

• Setting the transformation (diagonalize the linear-ized part), 
one has (      diagonal matrix of eigenvalues ):

where

• The ordering parameter is introduced such that           . 

Motivation: scaling the contributions of any terms in each equations 

on the base of the amplitude of the original state space  variable   .

z = ²u

• Balancing the nonlinear terms with the perturbation on the linear 

terms              (condition for a local bifurcation) implies  
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Normal Form (III) 

• Recasting equations in the new state space variable

or

• The normal form method consists of simplifying the differential 

problem through the “near identity” coordinate transformation

where               have to be chosen so as to simplify the problem.



Suitable small positive parameter

defining the resonance conditions
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• Collecting terms of same order

where

Normal Form (IV)

• Substituting (                            ):

• Choosing for               the same functional dependence as

• The following expressions are obtained for coefficients of 

(near)-Resonance

conditions 

NEW nl term

OLD nl termDIFFERENCE
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(2) ( )y Λy g y

(2) ( )z y w y

1

ˆ :
Nj j i

Given system

Pseudo-diagonal system

Near-Resonance condition Normal form

Nonlinear  transformation

ˆ

ˆ

In the complex plane, the        -points can be plotted for every nonlinear term (green for 3rd order terms, 

blue for linear terms); by enlarging the circle of radius       more nonlinear terms are taken into account 

until a satysfying solution is reached.

The radius is obtained by a trial and error procedure.

ˆ

Normal Form (V)  RELEVANT ISSUE #1:  

opportunity of defining the near-identity transformation 
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• Looking for a solution of the type:

Normal Form (V)  RELEVANT ISSUE #2:  

LCO solution analytically obtained (resonance 

conditions) 

• Third order system

• Consider the pair of complex conjugate equations given by the 
“manifold”

• The system becomes:

Around a complex

conjugated stable

Complex eigenvalue
ANALYTIC SOLUTION FOR LCO 

Directly related to the linear part

Directly related to the lnoninear part
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Normal Form (VI) (the other equations are “slaves”

• Consider the other eigenvalues

Stable Complex

eigenvalue

Stable  Real 

eigenvalue

• Final analytical Solutions
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Normal Form (V)  RELEVANT ISSUE #3:  

othe stability of LCO can be discussed (Hopf theorem)
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Fluid (linear)

Structure 

(linear)

Elastic

Displacement

Unsteady 

Load

Aeroelastic applications background: linear case

Initial

Values

Gust

Load

Flow Speed

Excitation mechanism

System parameter
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• Hopf (pitchfork) bifurcation: 

subrcritical-detrimental flutter

• Nonlinear structural stiffness arising from large displacement gradients

• Freeplay in the control surfaces

Fluid (linear)

Structure 

(NONlinear)

Elastic

Displacement

Unsteady 

Load

• Hopf (pitchfork) bifurcation: 

supercritical-benign flutter

Flow Speed > Critical speed

Stable 

Limit Cycles

Flow Speed < Critical speed

UNStable 

Limit Cycles

Background: nonlinear case (1)
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Unsteady potential 

incompressible

unbounded 2D flow

Nonlinear structure with

torsional and bending

modes of vibration.

Uniform and constant flow horizontal velocity

+ vertical deterministic gust

Vibrating structure

with nonlinear (soft) torsional spring

hypothesis

Heave & PitchAerodynamic augmented states

DOFs

Physical model



Page 18Bifurc. and Model Reduction Tech. 

for Large Multi-Disc. Systems

Liverpool 26-27 June 2008 

A Singular Perturbation Approach  in 

Nonlinear Aeroelasticity for LCOs

Methematical model: 
A simple (very used ) aeroelastic model:

Typical Section With Control Surface

• A three degree of 

freedom aeroelastic 

typical section with a 

trailing edge control 

surface

NONLINEAR TERMS 



APPLICATION #1 based on NF theory: control the 

LCO amplitude and “taming” of explosive flutter
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• Nonlinear aeroelastic system with a nonlinear control

• Then the previous Hopf analysis can be repeated with a new

“closed-loop”  nonlinear coefficient:

with

Nonlinear feedback

• Condition for stable limit cycle in closed loop conditions 

• NB: it is always possible to choose such as to satisfy previous Eq.

 it is possibile to control the LCO amplitude by a nonlinear feedback
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APPLICATION #1:  LCO nonlinear control

Different LCO amplitude with different values

for non-linear gain

Ref.: Morino, L., Mastroddi, F., “Limit-cycle oscillation control with

aplication to flutter,” The Aeronautical Journal, Nov. 1996.

Linear system  unstable response 

envelope

Unstable linear system 

nonlinearly controlled: LCO envelope

Unsteable linear system with nonlinear

control Different LCO amplitude with

different values for non-linear gain
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• Periodic orbits
– Harmonic Limit Cycle Oscillations

• Quasi Periodic orbits
– Non-periodic Oscillations

• Strange Attractors
– Chaos

APPLICATION #2 based on NF theory: 
periodic, quasi periodic, or chaotic solution by transforming

the original problem with different
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APPLICATION #2 based on NF theory: 
periodic, quasi periodic, or chaotic solution by transforming

the original problem with different

“Classic” nonlinear Panel flutter
Simply supported panel in a supersonic flow with dynamic pressure with

a buckling load R x and structural stabilizing nonlinearities

PDE system solved “a la Galerkin”  assuming

for the solution
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APPLICATION #2 based on NF theory: 
periodic, quasi periodic, or chaotic solution by transformin

the original problem with different

Nonlinear Panel flutter

• The greater is the assumed radius , the less simply harmonic  the solution is 

•  the NF is able to identify the NL terms which are responsible of chaotic 
solution Ref.: Morino, M., Mastroddi, F., Cutroni, M.,``Lie Transformation Method for Dynamical System 

having Chaotic Behavior,“ Nonlinear Dinamics, Vol. 7, No.4, June 1995, pp. 403-428.

=0 =100 =500
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Some theoretical hightlights on 

(fifth order) NORMAL FORM (NF) approach

-A tool for nonlinear analysis of aeroelastic 

system with polynomial nonlinearities

- …. For more complicated bifurcation …. Pre-

critical instabilities ….

Ali H. Nayfeh, Method of Normal Forms, Wiley Series in 

Nonlinear Science

Ref: Dessi, D., Morino, L., Mastroddi, F., ``A Fifth-Order  Multiple-Scale 

Solution for Hopf Bifurcations," Computers and Structures,  Vol. 82, 2004, 

pp. 2723-2731.
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Fifth-order NF Normal Form  (very brief details)

• Considering the fourth order terms the following equations need to 
be simplified by the NF procedure:

• Again the NF-method consists of searching for a new state space 
coordinates through the “near-identity” transformation

• The transformed dynamical system will be in the form

• By using the coordinate transformation 
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Loss of Stability for Nonlinear Aeroelastic Systems

• Eigenvalue crossing of the imaginary axis (linear analysis)

• Pitchfork/Hopf bifurcation: supercritical (benign flutter) and 
subcritical (explosive flutter)

• Beyond the Hopf bifurcation: 

“knee” bifurcation 

(precritical LCO’s)
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Fluid (linear)

Structure 

(NONlinear)

Elastic

Displacement

Unsteady 

Load

• Wind tunnel model with free-play

• Wind tunnel model with transonic effects
• Hopf (knee) bifurcation: 

“subrcritical to supercritical”

Turning point < Flow Speed < Flutter speed

UNStable & Stable 

Limit Cycles

Flow Speed > Flutter speed

Stable 

Limit Cycles

Aeroelastic 

interpretation
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Physical Sources of Structural Nonlinearities in the Fixed 

Wing Model

• Approximation  with 
Polinomial Nonlinearities

• 8 states variables (aerodynamic ones included)

• Nonlinear structural stiffness arising from large

displacement gradients (Lee, B.H.K., et al., 

1989)

• Freeplay in the control surfaces - bilinear stiffness 

due to loosely connected structural components 

(Conner et al., 1997)
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Nonlinear Analysis: 3 order v.s. 5 order NF

using =0
3

3)( cM

The NF-method has to be extended to fifth-

order to capture at least the qualitative

behavior of the aeroelastic LCO in the case of

„knee‟ bifurcations.

No 3 order NF analysis is not able to describe 

the special kind of bifurcation
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3

3)( cM

• To improve the accuracy, more equations and terms have to be added. 

Including the near-resonant terms, an extended (in the sense of Center-Manifold) 

NF-method is implemented

Nonlinear Analysis: 5° order NL using >0
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A detail on this analysis:

3

3( )M c

• Third order and fifth order 
normal form (CM) provide a 
satisfactory approximation
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As sub-product of this analysis:
identified a parameter moving the system from  

Hopf to knee-Bifurcation

Plunge Bifurcation Diagrams

for different elastic axis

positions

3

3)( cM

ha

Fisically: the elastic axis position

evealed to havea clear influence on the type

of bifurcation, subcritical knee-like bif. or supercritical pitchfork bif.
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Dessi, D., Mastroddi, F. , “A nonlinear analysis of stability and gust response of

aeroelastic systems, Journal of Fluids and Structures, 24 (3), p.436-445, Apr 2008

NF   METHODOLOGY/APPROACH

- The nonlinear analysis for gust-excited problem
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CASE A: 

• Initial conditions

• no gust excitation
0

U;U

xx

gxfxAx

(0)

)()()(

THIS IS THE CASE PRESENTED BEFORE!
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CASE B: APPLICATION #3 

• No initial conditions

• “discrete” 

(=time impulsive)  gust excitation

0(0)

)()()(

x

gxfxAx U;U
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In the case of the gust problem, the system dynamics is excited only by the “discrete” gust

profile with zero initial conditions

00

U;U

)(

)()()(

x

gxfxAx

0 200 400 600 800 1000 1200

-0.01

0

0.01

0.02

0.03

0.04

0.05

v

w
0

CASE B: Gust excitation with no IC

It is  assumed a discrete gust of the wave form

where:

• Gust intensity

• Gust gradient

G

0
G Cos1

2

w
w )(

0 100 200 300

-0.01

-0.005

0
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• Fix the gust gradient  G  to a value

• Define a region in the plane of the 

parameters and consider a matrix of 

numerical simulations for each value of 

the grid nodes

• Introduce the logarthmic damping 

coefficient between consecutive peaks in 

the amplitude modulated periodic solution


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• For each run, consider the logarithmic damping      for            , and obtain the 

response surface

• The level curve             can be determined by interpolation between the grid nodes

• It represents the set of parameters (gust intensity for a given flight speed) that 

leads the state-vector to be very close to a stable or unstable periodic solution 

(LCO)

Speed
4.925

4.93

4.935

Gust intensity

0
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0

XY

Z

Undamped oscillations

Damped oscillations

Line of critical gust intensity

N

0N

G0NN ;w,U
Nn

Gust analysis

The level curve

does not depend 

on the final time step

0N

Primary critical speed

Secondary critical speed
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• The branch of the curve                                for which                        across it, 

represents the critical gust intensity                          characterized by the property that

Speed

G
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s
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n
s
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0
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0.04
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Lower basin of attraction of stable LCO

Upper basin of attraction of stable LCO

Basin of attraction of fixed point solution

• Thus, a basin of attraction for the solution has been identified in the space of 

physical parameters. 

•This analysis has to be repeated for several gust gradients G

G0NN ;w,U 0w/ 0N

)U(ww )c(

0

)c(

0

dampedissolutiontheww

undampedissolutiontheww
)c(

00

)c(

00

Basin of attraction: critical gust intensity



… and what happens if the nonlinearities 

are not polynomials?....

For example: How is important to correctly model 

the discontinuity of a freeplay? (i.e., avoiding 

polynomials) 
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APPLICATION #5: physically more realistic modeling 

for Freeplay/Hysteresis Nonlinearity
• DOMAIN SUB-DIVISION: Zone 1 &

Zone 3

• Zone 2 & Zone 4
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Freeplay Results: direct numerical integration
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• Amplitude of LCOs increases 

with flow speed and activated 

between the two linear stability 

limit

• Second Frequency 

characteristic 3 
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How to apply Normal Form in this case?  (1)
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• Freeplay must be approximated by

a polinomial nonlinearity in order to

perform the NF analysis

• The cubic approximations give

satisfactory results for the amplitude

and the frequency of LCOs. However

the transitory is quite different

• All the polynomial modeling for the

freeplay discontinuity works locally

well for LCO (around bifurcation point)
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Approximation via Normal Form

freeplay

cubic approximation

Normal Form 5th order

•  all the equations must be used ( <4) to obtain a

correct approximation for LCO

How to apply Normal Form in this case?  (2)



Bifurc. and Model Reduction Tech. 

for Large Multi-Disc. Systems

Liverpool 26-27 June 2008 

A Singular Perturbation Approach  in 

Nonlinear Aeroelasticity for LCOs
Page 45

CONCLUDING REMARKS 1/2 (from ourown experience 

in nonlinear aeroelasticity)
• Once a system can be mathematically modeled by 

nonlinear first order differential equation with polynmial

nonlinearities (many aeroelastic systems can be modelled

so), NF approach may represent a local powerfull tool 

o To obtain the analytic solution around a Hopf bif.

o To reduce the system size to a restricted set equations 

(Center Manifold theorem)

o To study the LCO stability in  precritical condition (with a 

higher order analysis (basin of attraction defined with I.C. 

or with suitable input) 

o To find a  nonlinear feedback to “tame” linear and 

nonlinear oscillations

o To identify the nonlinear contributions responsible of 

chaotic behavior 
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• If system nonlinearities are not in a polynomial form (it is 

the case of the freeplay modeling)

o A polynomial approximation of the nonlinearity could 

be used and the NF approach can efficiently capture the 

nonlinear behavior of the system if near-resonace terms 

are included 

o An extension of the NF theory should be developed 

(something is existing like Lie Transformation) in this 

case

CONCLUDING REMARKS 2/2

Comment

The freeplays nonlinearities can be trivially identified but not so easily

analyzable by NF approach

Polynomial nonlinearity are (not so-trivially) analyzable by NF 

approach but are not identifieable by actual measurements at all


