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Considered aeroelastic applications and relevance of NF

: : Modal Model / Wing Typical Section
Wing Panels in h / Finite State # (plunggey%itch flap) in

Supers. Flow Aerodynamics Subs. Unsteady Flow

. 2

_ _ _ 1. Nonlinear pitch
Piston — theory for Nonlinearity stiffness
aerodynamics Sources 2. Free-play in control
surface

5-order Analysis
Knee Bifurcation

3-order Analysis Normal Form
Pitchfork Bifurcation Reduction

Prevision of safe conditions Phenomenon intensity
« flutter speed limits * LCO amplitude
- admissible gust SREDICT « Chaos behaviour
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Some theoretical hightlights on

NORMAL FORM (NF) approach for bifurcation

-A tool for analysis of nonlinear (aeroelastic) systems
with polynomial nonlinearities

Ali H. Nayfeh, Method of Normal Forms, Wiley Series in
Nonlinear Science

IFASD 2007

A Reduced-Order Modeling for the
Stockholm 18-20 June 2007

Aeroelastic Stability of a Launch Vehicle



Control parameter (e.q., flight speed)

Normal Form (I)

* Nonlinear Aeroelastic Problem reduced to : C;_g =g(&, 1
t

« Taking a Taylor expansion of & around an equilibrium point the
dynamical system can be rewritten as:
dx
dt
f nonlinear-term vector of type (generic NL's can be locally
reduced in this form) :

= A(w)x +£(x, p)

= Z Bnpq ()zpzg + Z Crpgr (1) TpTqTr + Z Enpgrst (1) TpTqTrTsTt + .. . .
Psq,r Psgsr

« Assuming Aanalytlcally dependent on 1, One obtains

OA 9%A - - R
A=Al= ot Ht g2 2+- .= Aog+pAst+p®As+. .
=0
Similarily: ii A A A
¢ =¢b —|—[LC —|—pJ2c2—|—...

o
I

e =&Y + pel 4 p2e? + ...
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Normal Form (lI)

« Setting the transformation x = Rz (diagonalize the linear-ized part),
one has ( A diagonal matrix of eigenvalues A1, Az, ... ):

z - [A + #‘AE}Z + E Tnpgr<p<g~<r + E gnpqrsfzpéqzrzszt + #'EAdz
r.q.r P.g.r.s,t

+u Z gnpqrzpzqz-r —+ O(||35||} + O(.Iu'z) + O(ﬂgllzgll} + O(H”ZE”}
where 77
Onpar = Ep,q,r RJ'S SWIURtPR“qua A; =R7'A3R, A; =R'AR 1
Cnpqrst - Zp,q,?“,s,t Rju ?vawyzRvawqurRysttp and Tnpgr = Z R7'cY RtpRuqur

p.q,r "8 stuv

« The ordering parameter € is introduced suchthat Z = “U
Motivation: scaling the contributions of any terms in each equations
on the base of the amplitude of the original state space variable 7z

- Balancing the nonlinear terms with the perturbation on the linear
terms pAsu (condition for a local bifurcation) implies >

p= pioe” + pae’
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Normal Form (1)

« Recasting equations in the new state space variable u

u = Au+te[Arut Z Ynpgr (1) 2pZq2r]
P.a.r

AT X
Psq,7 Psq,1,8,t

A4 = #%Azl + paAo, A:z = L2 Ao

or

i = Au + @ () + A4 (v)

« The normal form method consists of simplifying the differential
problem through the “near identity” coordinate transformation
u=y+w?(y) +0(e)

where w(?)(y) have to be chosen so as to simplify the problem.
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Normal Form (1V)

- Substituting (W := dw(?) /dy):
1 = y+W(y)y+0(eh) = Aly+w) 4213 (y+2w2)+0(h)

« Collecting terms of same order NEW nl term
y = Ay + g (y) + O( DIFFERENCE OLD nlterm
where

g®) = WAy + Aw® (y)+ £ (y)

« Choosing for w?(y) the same functional dependence as £ (y)

w'g) (yk) — Z CnpYp =+ Z anqrypyqyr
« The following expressions are obtained for coefficients of w(y)

(Inp .
otherwise
Qnp =4 A (near)-Resonance
O if [Ap—Anl<p < conditions

Ynpgr :
r'n,pqr — { AptAgtAr—An otherwise Aitable small positive parameter

0 if ” )\p _I_ )\q _I_ )\T _ )\n ||< 0 defining the resonance conditions
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Normal Form (V) RELEVANT ISSUE #1.:
opportunity of defining the near-identity transformation

Near-Resonance condition Normal form

y=Ay+g”(y)

\ 4

Given system

/iﬁp

Nonlinear transformation
ﬂ.« :: ljl +...+ﬂ.«jN _ﬂr

Pseudo-diagonal system

N

A

> p

\ 4

z=y+W"(y)

In the complex plane, the i -points can be plotted for every nonlinear term (green for 3rd order terms,
blue for linear terms); by enlarging the circle of radius p more nonlinear terms are taken into account
until a satysfying solution is reached.

The radius is obtained by a trial and error procedure. o _
s T i i i i T exusdUT wad + ) T slsouT uaa -
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Normal Form (V) RELEVANT ISSUE #2:
LCO solution analytically obtained (resonance

COndItIOI’]S) p — O /8R Directly related to the linear part
* Third order system

"YR Directly related to the Inoninear part
- 2
Yn =— )\nyn + € E anpYp npqrYpYqyr

« Consider the pair of coaple conjugate equations given by the

manifold
1 = Ayi+é€ (a1 + ff1121 + Y1211 + ’71112)9%92] Around a complex
Yo = Aoy + Zlasoyy+ (72122 + Y2212 + 72221)9%91] conjugated  stable

. ., Complex eigenvalue
e ANALYTIC SQKUTIONAFOR LCO (yl = aleml Yo = a2e3¢2

1/2
OIS (”1)

a1(t) =
(1)
14 ke2¢°Pr

p1(t) = Ayt + (=g + 4850 15 + 48 45 In(a) + 6
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Normal Form (VI) (the other equations are “slaves”

« Consider the other eigenvalues

(n) 'ng)/'y(l) - o o
Stable Complex 9~ = ( ) e PR HBR YR /Yr")
eigenvalue . N
! pn = imag(\a)t + (=67 + 7 e/vi)) + (0 /AR )in(an) + &,
Stable Real JHREYS ) (1) e
eigenvalue Ym — y% (%) el(=Br /Br ) et(=Br )+Br Yr /TR
1

« Final analytical Solutions

Ne N
x = e(r\VaedP14r(Dg e I914 S r(M) g, e J¥n L 3 r(my, )|
n=3 m=Ng+1
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Normal Form (V) RELEVANT ISSUE #3:
othe stability of LCO can be discussed (Hopf theorem)

Case A: | vg > 0 | (nonlinear stabilizing terms) Case B: | vz < 0 | (nonlinear destabilizing terms)

1. Bp <0 (i.e., p >0, p = +€2, linear desta- 1. B < O (i.e., p > 0O, linear destabilizing
bilizing terms) terms) a1 — oo after infinite time

e aili—0 > |Br/vr|Y/?2 = tends to a limit

cycle from above 2. Br>0 (i.e.,, u <0, p= —e€=, linear stabiliz-

ing terms)
e aili=0 < |Br/vr|}/? = tends to a limit 12
cycle from below e aili=0 > |Br/VRI —ay; — oo after a
finite time

e Hence, there is a stable limit cycle

e aili=o0 < |Br/vr|}/? =a1 — O for t —

(. 9]
2. Br>0 (i.e, p <0, p= —€2, linear stabiliz-
ing terms) e Hence, there is an unstable limit cycle
e Solution always tends to a1 =0 —
SlableI ° . I Stable l‘i. 1 Unstable

[=]
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Aeroelastic applications background: linear case

Flow Speed u System parameter

.

Fluid (linear)

__Unsteady _ |
Load

| Structure | Elastic .
(linear) Displacement
Excitation mechanism T

A

A

S --
cooss (Mp oot

o0e = — . -
—

A Singular Perturbation Approach in Bifurc. and Model Reduction Tech.

Nonlinear Aeroelasticity for LCOs for Large Multi-Disc. Systems
Liverpool 26-27 June 2008



Background: nonlinear case (1)

Unsteady
Load

Flow Speed < Critical speed

. =

< Fluid (linear)

A

A 4

Structure
(NONIlinear)

Elastic
Displacement

Nonlinear structural stiffness arising from large displacement gradients
Freeplay in the control surfaces

Llawnf fitAalfFavl s,

M

~

/ £

vAantiAA

A Singular Perturbation Approach in
Nonlinear Aeroelasticity for LCOs

Hopf (pitchfork) bifurcation
superdritical-benign ftutter

UNStable
Limit Cycles

LCO amplitude

Stable

1 Unstable
|

0

Flow speed

1an
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Physical model

wIAN RIRL INED

v
-—
Unsteady potential Nonlinear structure with
incompressible hypothesis torsional and bending
unbounded 2D flow modes of vibration.
7'}
Uniform and constant flow horizontal velocity Vibrating structure
+ vertical deterministic gust with nonlinear (soft) torsional spring

.

Aerodynamic augmented states

¢ DOFs ™ 8

Heave & Pitch
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Methematical model:

A simple (very used ) aeroelastic model:
Typical Section With Control Surface

&+(r§—|—

2002
Tﬁﬂ

xlgé‘—l- Tf;ﬁ + (’rg + (c—a)zg)d + U22M@(ﬁ) =

A Singular Perturbation Approach in

* Athree degree of
freedom aeroelastic
typical section with a
trailing edge control
surface

h S S
f — Ea xa—%, .’E@—%’
_ Kh 2 KOz 2_Kﬁ
MO’(&:*%ﬁ) wh o m’ wa_ aa wﬁ— ﬂ,
J J m
Ms(€aB) 192 = 2o 2228
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APPLICATION #1 based on NF theory: control the
LCO amplitude and “taming” of explosive flutter
* Nonlinear aeroelastic system with a nonlinear control

X = Kx + 169 + 500
s = 1 be(clx)? Nonlinear feedback

« Then the previous Hopf analysis can be repeated with a new
“closed-loop” nonlinear coefficient:

) = ’Y(()l) + m{l)
with ’ygl) = -3 cglczl bey

« Condition for stable limit cycle in closed loop conditions -
Re(v (V) = Re(r§V) + s Re(r{") > 0

 NB: itis always possible to choose k such as to satisfy previous Eqg.
- it is possibile to control the LCO amplitude by a nonlinear feedback

A Singular Perturbation Approach in Bifurc. and Model Reduction Tech.
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APPLICATION #1: LCO nonlinear control

& ad
Iy, e L1

1.75

/./ Linear system unstable response
e envelope J—

Unstable linear system — ]
nonlinearly controlled: LCO envelope o S, : |

& = 100

N k= 1000 _ !

Unsteable linear system with nonlinear Different LCO amplitude with different values
control Different LCO amplitude with for non-linear gain «
different values for non-linear gain

Ref.: Morino, L., Mastroddi, F., “Limit-cycle oscillation control with
aplication to flutter,” The Aeronautical Journal, Nov. 1996.
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APPLICATION #2 based on NF theory:

periodic, quasi periodic, or chaotic solution by transforming
the original problem with different p

* Periodic orbits )

— Harmonic Limit Cycle Oscillations ,”//i::\

¢

* Quasi Periodic orbits
— Non-periodic Oscillations

» Strange Attractors
— Chaos

A Singular Perturbation Approach in Bifurc. and Moc
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APPLICATION #2 based on NF theory:

periodic, quasi periodic, or chaotic solution by transforming
the original problem with different p

“Classic” nonlinear Panel flutter =

Simply supported panel in a supersonic flow with dynamic pressure A with
a buckling load R, and structural stabilizing nonlinearities

—= A\
@ T . ‘ ¢ .
PDE system solved “ala Galerkin” assuming [, ok | Ry
: Ny (mmx }\éééééé;ééééééé Y
for the solution w(z,t) = mglwm(t) sin (T) %Z
Ny N,
tn + gntin + [7*(n* — n?Re)]wn + A Er Enpip + f CnpgritpWay = 0 n=1,2,.. Ny
r=1 p.q.r=1
AT ' ' | T

700 \“\,\‘_ Unstable oscillatory
- P

500 |-

400 | e 4
300 | PRI .
Stable solutions

200 |-

100 |-

Unstable steady (buckled)

- 4 e e O e i)
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APPLICATION #2 based on NF theory:

periodic, quasi periodic, or chaotic solution by transformin
the original problem with different p

Nonlinear Panel flutter

! - ‘7777 ] A 1 A

TN m o ol Ifft'ﬂ | fﬂp Mﬂ | f\ﬂ il oﬂu;\’ﬂ

O T B A

“ i ; \M’J M " W M l‘v":v;" \NM VW \V\[W : W

I I q‘f e ¥
L o= e = 23 E @ g 2 J

o - i S
) ‘ p=0 . p=100 b p=500

i 1l By

1 j\J A - - B LY o

| |

| | | J |

| ) b g PRSP (S IR P o beoco—solescosco o codoss om0l s ——doo
‘oLoteoce- 00000 —0—c0-dhe- 00— —e0e0oL— 4000 doo— o | M) b o 00 366 200 =00 500 ) 10¢ 200

o S 5 . o o 00

ﬁg
s
1

8

§

« The greater is the assumed radius p, the less simply harmonic the solution is

« > the NF is able to identify the NL terms which are responsible of chaotic
solution

Ref.: Morino, M., Mastroddi, F., Cutroni, M., "Lie Transformation Method for Dynamical System
having Chaotic Behavior,“ Nonlinear Dinamics, Vol. 7, No.4, June 1995, pp. 403-428.
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Some theoretical hightlights on
(fifth order) NORMAL FORM (NF) approach

-A tool for nonlinear analysis of aeroelastic
system with polynomial nonlinearities

- .... For more complicated bifurcation .... Pre-
critical instabilities ....

Ali H. Nayfeh, Method of Normal Forms, Wiley Series in
Nonlinear Science

Ref: Dessi, D., Morino, L., Mastroddi, F., A Fifth-Order Multiple-Scale
Solution for Hopf Bifurcations," Computers and Structures, Vol. 82, 2004,
pp. 2723-2731.
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Fifth-order NF Normal Form (very brief details)

« Considering the fourth order terms the following equations need to
be simplified by the NF procedure:

y = Ay + 2g?@ (y) + ¢*h® (y) + O(%)

« Again the NF-method consists of searching for a new state space
coordinates through the “near-identity” transformation

y = v +e's@(v) + O(9)

* The transformed dynamical system will be in the form
v =Av + g (v) + etg® (v) + O(e%)

* By using the coordinate transformation u=y =v

Un — ZPEIE anpup-l_zquEngr an(I‘I”‘upUqur+qu7,st€]:gqrst EnpqrstuPUquTusulﬁ
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Loss of Stability for Nonlinear Aeroelastic Systems

« Eigenvalue crossing of the imaginary axis (linear analysis)

« Pitchfork/Hopf bifurcation: supercritical (benign flutter) and
subcritical (explosive flutter)

LCO amplitude
; [=
A g
&
(1 TS
LCO amplitud
(7]
=N

\

0 J e ; f o U sl
« Beyond the Hopf bifurcation: %
“knee” bifurcation : - %
(precritical LCO’s) T

Flow speed
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==

Aeroelastic Turr Flow Speed > Flutter speed
Interpretation 4

__ Unsteady
Load

A

< Fluid (linear)

Structure Elastic UNStable & Stable

(NONlinear)  Displacement Stable s
" Limit Cycles

\ 4

(%I1 with free-play

ind tunnel mo
) Hopf Q%j]‘ ){ﬁr&H{e i adel with transonic effects
subrcritical to supercritic

Comparison  between
Compured and Measured LOQ amplitudes

: THH ; . LE] _| 0.0,
e i o /A4 S
|E_.........E.._|._..J L Tl _. -\'.:l'_-
- - - -___
E '\\ Stable
T PRS- f_\n'[E.F,ﬁUfC I.'I.'Ll..-l
R * -
3 3
o 1al +—__Cumpl
E -
2 R
= = Turningspoint
= 10 = GO =
§ :ooeril a
2 40 ! i SpE 8
E i
s b - Unstable
[} Bl o H
& i b i :
gl i eS—measured ! i ;
: : Loeribieal \
L Cn L Speed ; Stable ‘ stable
2 M R L ! 0 il l Unsldh!(.
e { e =
0 i 1 i 1 _|_|. 0
0.5 15 2
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Physical Sources of Structural Nonlinearities in the Fixed

Wing Model

- Freeplay in the control surfaces - bilinear stiffness ~ ®  Nonlinear structural stifiness arising from large
due to loosely connected structural components displacement gradients (Lee, B.H.K., etal.,
(Conner et al., 1997) 1989)

| ]

~_/
/ £

o

Wing-Fold Hinge

Quter Wing Rotation

« Approximation with
Polinomial Nonlinearities

M, = ciaa + e300 + c5a0° . ..
Mg = Clgﬁ + 635/83 + 655/65 e

- 8 states variables (aerodynamic ones included) x = f(x, i)
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Nonlinear Analysis: 3 order v.s. 5 order NF
using p=0

M(a)=a-c,a’

003 T T T T

No 3 order NF analysis is not able to describe —_

the special kind of bifurcation R

a0l b 2d GFHEP-. - 5-th Order

The NF-method has to be extended to fifth-
order to capture at least the qualitative
behavior of the aeroelastic LCO in the case of = ' e

‘knee’ bifurcations. e

002 e

LZS Plung= Amplitud=
o

003 L 1 1 1
454 4543 4355 4553 456 4583
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Nonlinear Analysis: 5° order NL using p>0

M(a)=a-c,a’

« 2> To improve the accuracy, more equations and terms have to be added.
Including the near-resonant terms, an extended (in the sense of Center-Manifold)
NF-method is implemented

013 T T T T T T T T
0.14 T i Normal Form, N=6,P = 0.04
L+t + 012 H ' )
L + Mormal Form, N=6.p = 0.04
odz | . +t 7 :
Shooting + +* !
q LA 011 ff =
R =——— Normal Form = i
o1 | ide C.M. . S " =60~
_pd:Pd- {Extended Qutside ) E 0 Normal Form, N=6.p = 0.07 Runge-Kutta -
hy g .
£
ks <
0.08 |- i .
= ¥ 009 7
E
Normal Form = = )
005 - {(Center Manifold) ] 0 008 T
O
- Normal Form, N=2,P = 10E6
D.o4 b 0.07 - Mormal Form, N=4,P = 10E6 7
ooz - B 0.06 =
o 1 1 N 1 1 1 0.05 1 1 1 1 1 1 1
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A detail on this analysis:

bifurcation curve

M(a)=a+ca’

« Third order and fifth order
normal form (CM) provide a
satisfactory approximation

LCO, IC<a,

0.015

g

Time History (o)

-0.01

3rd order approximation
*  5th order approximation |,
exact

-0.015
0
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0.035
s+ F
0.03| exact §
Normal 5th order &
*  Normal 3rd order £
0.025
exact o
° Normal 5th order o
S 0.02 *  Normal 3rd order o
E— exact B
g 0,015 *  Normal 5th order B
g * Normal 3rd order B
*
st
0.01f S eeseSscos et 1
0.005 |- N
0 | | LCO IC>aLL,‘ | |
0.02 2 = -2 3 4 -5 e
0.015 i
0.011
0.005 -
0 |
>
[}
0
'O'C?S | 3rd order approximation
.E 5th order approximation
-0.01 *  numerical
-0.015 U U v U *
-0.02 > ® ® ® ! L draeroppronmaTor h
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As sub-product of this analysis:
Identified a parameter moving the system from
Hopf to knee-Bifurcation

M(a)=a-c,a’

Plunge Bifurcation Diagrams
for different elastic axis
positions a

LCO Plunge Amplituds

Fisically: the elastic axis positio
evealed to havea clear influe
of bifurcation, subcritical knee-like bif. or supercritical pitchfork bif.
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NF METHODOLOGY/APPROACH

- The nonlinear analysis for gust-excited problem

Dessi, D., Mastroddi, F. , “A nonlinear analysis of stability and gust response of
aeroelastic systems, Journal of Fluids and Structures, 24 (3), p.436-445, Apr 2008

Bifurc. and Model Reduction Tech.
for Large Multi-Disc. Systems
Liverpool 26-27 June 2008
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CASE A:

 |nitial conditions >'(=A(U)x+f(x)+g><

THIS IS THE CASE PRESENTED BEFORE!

AIRLINES

AUSTRIAN 1 s 0 0 88

1 o .Q....’.r!""'— 3
=
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CASE B: APPLICATION #3

 No Initial conditions
o “discrete”
(=time Impulsive) gust excitation

X=AU)Xx+f(X)+g(z;U)
{X(O):O

AIRLINES
YRR REE
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CASE B: Gust excitation with no IC

In the case of the gust problem, the system dynamics is excited only by the “discrete” gust

profile with zero initial conditions

X=AU)X+f(X)+g(r;U)
X(0) =0

Itis assumed a discrete gust of the wave form

W, (7)_ %{1— Cos ﬂ}

T
where:
* Gust intensity :
« Gust gradient

-0.005 =
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Gust analysis

()
_ _ é 0.04
* Fix the gust gradient 7  to a value @ 2
5 0
= c
£ 8
. o @ 0.02-E
 Define a region in the plane of the 3 T
parameters and consider a matrix of = 8
numerical simulations for each value of 5
the grid nodes N e
4.925 4.93 4.935 '
Speed
. . (max) (max)
* Introduce the logarthmic damping n log ) =X (%)
.. . . n+l=
coefficient between consecutive peaks in s} Tnit ~ Tn

the amplitude modulated periodic solution

0.0004

0.0002

E |

-0.0002 [~
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Gust analysis

* For each run, consider the logarithmic damping 7 for n= N, and obtain the
response surface 7, =7, U ,W,;7;

* The level curve 5 =0 can be determined by interpolation between the grid nodes

* It represents the set of parameters (gust intensity for a given flight speed) that
leads the state-vector to be very close to a stable or unstable periodic solution
(LCO) \é/

Undamped oscillations

Line of critical ¢

The level curve _ O
does not depend -
on the final time step

Damped 058

Secondary critical speed
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Basin of attraction: critical gust intensity

- The branch of the curve 7, =177, U ,Ws,;rG “for which 817, / oW, >0 across it,
represents the critical gust intensity Wy =w§°’(u ) characterized by the property that

w, >w.*) = the solution is undamped
w, <W,*) = the solution is damped

0.05 —

Upper basin of attraction of stable LCO

o
o
i

T

o

o

@
T

Lower basin of attraction of stable LCO

o
o
N

T

Gust intensity

o

o

=2
T

Basin of attraction of fixed point solution

ol ¢ vy
2.926 4.928 4.93 4.932 4.934 4936 4.938

Speed

* Thus, a basin of attraction for the solution has been identified in the space of
physical parameters.

*This analysis has to be repeated for several gust gradients T g
Bifurc. and Model Reduction Tech.

for Large Multi-Disc. Systems
Liverpool 26-27 June 2008

A Singular Perturbation Approach in

Nonlinear Aeroelasticity for LCOs




... and what happens if the nonlinearities
are not polynomials?....

For example: How is important to correctly model
the discontinuity of a freeplay? (i.e., avoiding
polynomials)
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APPLICATION #5: physically more realistic modeling
for Freeplay/Hysteresis Nonlinearity

« DOMAIN SUB-DIVISION: Zone 1 & | | /
Zone 3 10 | i /
Mggq + K?QUTq - fleft/'r'éght E E /
i 0 - L i zone2 |
0 5 zone 1 ,/i ¢ Preload | zone 3
= 0 1 1
0 E yan i
4 0 g : !
fleft/right - :F[O M 0] %cla(csf{‘ - 53) -5 // E E
T2 0y 5 (85 — 6P) / : :
0 10/ i i
0 i < >
hysteresis B - i EOC'B 5045
1 lc 0}
o B, -3 2 1 0 1 2 3 4
/ displacement/rotation
0 zone 2 // e Zone 2 & Zone 4
/ . IN
= ° /\LAmpl. d Mg.@'q + Kgg q= fup/down
£ zone 1 5?,';('3"0—&"' zone 3 ) )
s 0 0
P 7 0
5 . Zonhe 0
/ 0
/ fup/down = :F[O M 0} i?g_ load + litud
-10 / . S]22(30?"6 oa amplitude)
g8 gaB THU%Q (preload £+ amplitude)
15 ¢ 0 0
-4 3 2 1 0 1 2 3 4
displacement/rotation 0
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frequency (Hz)
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60+
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a0t
30+
20+
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5

Freeplay Results: direct numerlcal Integration

Amplitude of LCOs increases
with flow speed and activated
between the two linear stability
limit

characteristic frequency
T T

.
o ®
. ®
.
o ®
o ®
.
o ®
.
o ®
°°
.
o ®
o ®
oo ®

First frequency max PSD
Second Frequency max PSD

Il Il Il Il
10 15 20 25 30
speed flow (m/s)
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LCO amplitude

Bifurcation graphic

0.03
0.02
T e
0
S XX SO
-0.02
003 15 20 25 :)
Jéi flow speed (m/s) i'
(linear) Flutter (linear) Flutter
speed flap speed flap
disconnected connected

« Second Frequency
characteristic 3
times the first
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How to apply Normal Form in this case? (1)

Approximation

0:2 /
. o1 \ — freeplay \ /
*  Freeplay must be approximated by _ e [
a polinomial nonlinearity in order to < "
perform the NF analysis—> T 7//
«ww.mwm w\w
o NI w AL - imati i
- The cubic approximations give
M N e satisfactory results for the amplitude
01— and the frequency of LCOs. However
e 700 700.1 700.2 700.3 700.4 7:();))5 700.6 700.7 700.8 700.9 701 .02 - freeplay
+ All the polynomial modeling for the & | coceemmremene T
freeplay discontinuity works locally & °| i
well for LCO (around bifurcation point)  °* B

flow speed (m/s)
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How to apply Normal Form in this case? (2)

« = all the equations must be used (p<4) to obtain a
correct approximation for LCO

x10° Approximation via Normal Form
5 T H‘k T
Sr \ 7§ f\‘\ ﬁ \ locus of A-points
al | | ' I I T B
B I » { | i I
O O A 1 5
| 1] 1] | [ r
stmT I (Y
TR P R TR A e .
J A R A R IR A R I
T ]
| | | ‘\ | | | 2k
SR W
J‘T “\ \‘ a/“e \‘ ‘J ‘ ‘g \ % *  cubic approximation Z 4
@ or ‘ J ‘\ ‘ \‘ ‘\‘ %f ‘J \ ‘ Normal Form 5th order £
| | | | | | ‘\‘ T T @
S )
L Jf ‘\ | ‘ % || \
| | | | |
LT LT f :
| | |
0w W |
B U |l er
‘\ | “‘ 0‘ [ ‘\ | \‘ |
ab | || \ c" \% “ % g
| |+ | | ¥ 8 B
| / ‘ | \// Real part
S e ! ! ! * 1
432 4325 433 4335 434 43.45 43.5 4355 436
t(s)
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CONCLUDING REMARKS 1/2 (from ourown experience

In nonlinear aeroelasticity)

* Once a system can be mathematically modeled by
nonlinear first order differential equation with polynmial
nonlinearities (many aeroelastic systems can be modelled
so0), NF approach may represent a local powerfull tool

O

O

To obtain the analytic solution around a Hopf bif.

To reduce the system size to a restricted set equations
(Center Manifold theorem)

To study the LCO stabllity in precritical condition (with a
higher order analysis (basin of attraction defined with I.C.
or with suitable input)

To find a nonlinear feedback to “tame” linear and
nonlinear oscillations

To identify the nonlinear contributions responsible of
chaotic behavior
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CONCLUDING REMARKS 2/2

 If system nonlinearities are not in a polynomial form (it is
the case of the freeplay modeling)

o A polynomial approximation of the nonlinearity could
be used and the NF approach can efficiently capture the

nonlinear behavior of the system if near-resonace terms
are included

o An extension of the NF theory should be developed

(something is existing like Lie Transformation) in this
case

Comment

The freeplays nonlinearities can be trivially identified but not so easily
analyzable by NF approach

Polynomial nonlinearity are (not so-trivially) analyzable by NF
approach but are not identifieable by actual measurements at all
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