

Interrogative Simulation and Uncertainty Quantification of Multi-Disciplinary Systems

Ali H. Nayfeh and Muhammad R. Hajj Department of Engineering Science and Mechanics Virginia Polytechnic Institute and State University Blacksburg, VA 24061

Bifurcation and Model Reduction Techniques for Large Multi-Disciplinary Systems University of Liverpool 26-27 June, 2008

Background

- Simulation, testing and prediction of the responses of multidisciplinary systems are extremely difficult
	- Nonlinear competing mechanisms (e.g. aeroelastic phenomena)
	- Multiple coexisting attractors, supercritical and subcritical bifurcations , limit cycles, etc.

Global Metrics

- Flutter speed, LCO amplitude
- Lift and drag forces on bluff bodies
- Pull-in voltage and displacement of MEMS
- Dependence on physical parameters is not straightforward.

Motivation

- Difficult and expensive to use brute- force computations to relate global response metrics to system parameters
- Need for reduced-order models
	- Reproduce results of high-fidelity simulations or experiments
	- Relate global metrics to system parameters
	- Quantify system response uncertainties
	- Implement control strategies (flow control)
- Physically motivated models
	- Make use of scientific principles, feasible for certain systems (simple structures, …)
- Black-box models
	- No clear relation between physics and system (networks, ...)
	- Match the behavior with that of a mathematical model

Objective

Interrogative Testing/Simulation and Uncertainty Quantification of Multi-Disciplinary Systems

- Approach Design the experiment/simulation to
- Exploit specific behavior
- Draw more information from data
- Relate model features to system dynamics
- Examples
- System identification
- Global metrics
- Uncertainty quantification
- Control (flow control)

System Identification HSCT – FSM

Virginia

Tech

System Identification HSCT – FSM

Response is different in subsonic, transonic and supersonic flow regimes.

Exploitation of specific behavior in different regimes

Exploitation of Nonlinearities

Nonlinear Response

Structure Vibrations, Ship Motions, Lift and Drag on Cylinders

Virginia

lech

System Identification F-15 tail Assembly Model

Model

- 1/16 dynamically scaled model
- 0.355 *m* x 0.28 *m* x 0.482 *m*
- Series of aluminum channels, brass rings, composite plates, metal masses,...
- **Excitation**

-

- Mounted on a 250-lb shaker
- Exploit parametric resonance to maximize influence of nonlinearities
- **Indentification Procedure**
	- Series of experiments
	- Combination of approximate solutions for governing equations and data analysis
- Control and effects of uncertainties

System Identification Governing Equations

Virgin

$$
\ddot{u}_1 + \omega_1^2 u_1 + 2\mu_1 \dot{u}_1 + \alpha_1 u_1^3 + \mu_3 \dot{u}_1 |\dot{u}_1| - k \cdot \cdot \cdot \cdot \cdot \cdot = u_1 \cdot \eta_1 F \cos \cdot \cdot \cdot + \tau_1
$$
\n
$$
\ddot{u}_2 + \omega_2^2 u_2 + 2\mu_2 \dot{u}_2 + \alpha_2 u_2^3 + \mu_4 \dot{u}_2 |\dot{u}_2| - k \cdot \cdot \cdot \cdot \cdot = u_2 \cdot \eta_2 F \cos \cdot \cdot \cdot + \tau_2
$$

Linear Identification: Frequency Response Functions

 u_1, u_2 : modal coordinates (micro strains (μs))

: linear damping coefficients (*radian / s*)

 $:$ aerodynamic damping coefficients. $(I/\mu s)$

 $_1$, $_2$: coefficients of cubic nonlinearity ($1/\mu s^2$ ^{*}s^{^2})

 ω_1 , ω_2 : natural frequencies (*radian* / *s*)

: transmissibility terms (*1/g*s^2*)

k : coupling term. $(1/s^2)$

*f*1*, f*2 : 9.135 Hz, 9.05 Hz damping ratios: 0.014 and 0.019 - will also be identified from parametric excitation experiments

1 , 2

1 $, 2$

 $3, 4$

June 2008 **A. H. Nayfeh & M. R. Hajj** 9

System Identification Nonlinear Identification

$$
\ddot{u}_1 + \omega_1^2 u_1 + 2\mu_1 \dot{u}_1 + \alpha_1 u_1^3 + \mu_3 \dot{u}_1 |\dot{u}_1| - k \cdot \cdot \cdot u_1 = u_1 \cdot \eta_1 F \cos \cdot \cdot (t + \tau_1)
$$
\n
$$
\ddot{u}_2 + \omega_2^2 u_2 + 2\mu_2 \dot{u}_2 + \alpha_2 u_2^3 + \mu_4 \dot{u}_2 |\dot{u}_2| - k \cdot \cdot \cdot u_2 = u_2 \cdot \eta_2 F \cos \cdot \cdot (t + \tau_2)
$$

Uncoupled experiments – one tail fixed *(k=0*); $\Omega = 2\omega_1 + \varepsilon \sigma_1$

 $i\omega_1 t$ **c** Ω **i i** *n* **i** *n* **i** *n* **i** *n* **i** *n* **i** ents – one tail fixed (*k*=0); $\Omega = 2\omega_1 + \varepsilon \sigma_1$
 $u_1 = A_1(\varepsilon t)e^{i\omega_1 t} + \varepsilon (.....) + + cc \qquad A_1 = \frac{1}{2}ae$ 1 $\mathcal{L}_1 = A_1(\varepsilon t)e^{i\omega_1 t} + \varepsilon (.....) +.....+cc$ A_1 Multiple scales

$$
a = -\mu_1 a - \frac{4\mu_3}{3\pi} \omega_1 a^2 + \frac{\eta_1 Fa}{4\omega_1} \sin \gamma
$$

\n
$$
a\beta = \frac{3\alpha_1}{8\omega_1} a^3 - \frac{\eta_1 Fa}{4\omega_1} \cos \gamma
$$

\n
$$
\gamma = \sigma_1 T_1 - 2\beta + \tau_1
$$

\nSteady state solution
\n
$$
a_1 = -3.675 \times 10^{-2} \frac{1}{s^2 \mu \epsilon^2}, \quad \eta_1 = 16154 \frac{1}{gs^2}
$$

\n
$$
c_2 = 0.01856, \quad \mu_4 = 1.9588 \times 10^{-4} \mu \epsilon^{-1},
$$

\n
$$
a_3 = -2.977 \times 10^{-3} \frac{1}{1 \cdot \epsilon}, \quad n_4 = 2.7512 \frac{1}{1 \cdot \epsilon}
$$

 $\frac{2}{10^{2}}$, $\frac{1}{2}$ $\frac{2}{12}$ $\frac{2}{10^{2}}$ 3 2 2.977×10⁻³ $\frac{1}{s^2 \mu s^2}$, $\eta_2 = 275.12$ *g s ,* $\eta_2 = 275$. $\frac{1}{s^2\mu\varepsilon^2}$, η_2 $\alpha_2 = -2.5$

<u>Virginia</u>

ech

 $a' = 0$ and $\gamma' = 0$

June 2008 **10** A. H. Nayfeh & M. R. Hajj 10

System Identification Nonlinear Identification

$$
\ddot{u}_1 + \omega_1^2 u_1 + 2\mu_1 \dot{u}_1 + \alpha_1 u_1^3 + \mu_3 \dot{u}_1 |\dot{u}_1| - k \cdot (u_2 - u_1) = u_1 \cdot \eta_1 F \cos(2 t + \tau_1)
$$

$$
\ddot{u}_2 + \omega_2^2 u_2 + 2\mu_2 \dot{u}_2 + \alpha_2 u_2^3 + \mu_4 \dot{u}_2 |\dot{u}_2| - k \cdot (u_1 - u_2) = u_2 \cdot \eta_2 F \cos(2 t + \tau_2)
$$

June 2008 **11** A. H. Nayfeh & M. R. Hajj 11

Virginia

Tech

Three-beam Frame

$$
\ddot{u} + \omega^2 u + 2\varepsilon^2 \mu_1 \dot{u} + \varepsilon^2 \mu_2 \dot{u} \, |\dot{u}|
$$

\n
$$
\varepsilon \alpha_2 u^2 + \varepsilon^2 \alpha_3 u^3 + \varepsilon^2 \delta \dot{u}^2 u =
$$

\n
$$
\varepsilon \eta_1 f \cos(\Omega t + \tau_e) + \varepsilon^2 \eta_2 f u \cos(\Omega t + \tau_e)
$$

Virginia

Tech

Roll Instabilities in Ship Motions

- □ Data Source: Large-Amplitude-Motions Program (LAMP)
- Nonlinear Model: 3 DOF: heave, pitch, roll
- Approximate Solution: Method of Multiple Scales
- \Box Higher-order spectral analysis: spectral parameters and in particular phase measurement
- \Box Account for multiple phase quantities

Roll Instabilities in Ship Motions

Virginia

ech

Data Source: Numerical simulation

Approximate Solution: Method of Multiple Scales

□ Higher-order spectral analysis (trispectrum): spectral parameters and in particular phase measurement

Lift on Stationary Circular Cylinders

 \Box Rayleigh Equation

$$
\ddot{l} + \omega_s^2 l - \mu_r \dot{l} + \alpha_r \dot{l}^3 = 0
$$

\n
$$
l = a \cos(\omega_s t + \beta) + \frac{\alpha_r \omega_s}{32} a^3 \cos(3\omega_s t + 3\beta - \frac{1}{2}\pi)
$$

\n
$$
\phi(3\omega_s) - 3\phi(\omega_s) = -\pi/2
$$

□ van der Pol Equation

 $\ddot{l} + \omega_s^2 l - \mu_v \dot{l} + \alpha_v l^2 \dot{l} = 0$ $\ddot{l} + \omega^2 l - \mu \dot{l} + \alpha l^2 \dot{l}$

$$
l = a\cos(\omega_s t + \beta) + \frac{\alpha_v}{32\omega_s} a^3 \cos(3\omega_s t + 3\beta + \frac{1}{2}\pi)
$$

$$
\phi(3\omega_s) - 3\phi(\omega_s) = \pi/2
$$

Virginia

ľech

F16 flight testing

Relate global metrics to system parameters

June 2008 **A. H. Nayfeh & M. R. Hajj**

Virginia

lech

Goland wing with Store Virginia Flutter Speed

ľech

Goland wing with Store

Flutter speed variations with uncertainties in damping

$$
M\ddot{q}(t) + \frac{UL}{\tau}(D + k_1D_1 + k_2D_2)\dot{q}(t) + (K_s + K_eU^2)q = 0
$$

\n
$$
U = U_f + \epsilon U_1
$$

\n
$$
q(t; \epsilon) = q_1(T_0, T_1) + \epsilon q_2(T_0, T_1) + \cdots
$$

\n
$$
q_1 = A(T_1)v_f e^{i\omega_f T_0} + \bar{A}(T_1)\bar{v}_f e^{-i\omega_f T_0}
$$

\n
$$
A(T_1) = \frac{1}{2}r(T_1)e^{i\beta(T_1)}
$$

\n
$$
\frac{d\ r}{d\ t} = [0.00190782(U - U_f) - 0.00218554k_1 + 0.00218554k_2]r
$$

\n
$$
\frac{d\ \beta}{d\ t} = [0.0376153(U - U_f) - 0.00104746k_1 + 0.0013755k_2]
$$

Variations in flutter speed due to uncertainties in the damping parameters *k¹* and $k₂$ $U_1 = U - U_f = 1.14558k_1 - 0.345961k_2$

June 2008 **19** A. H. Nayfeh & M. R. Hajj 19

Virginia

 $k_2 = 0$

390

380

370

360

350

340

330

0

 0.2

 0.4

 U_f (ft/s)

 -0.2

lech

Goland wing with Store

Nonlinear parameter uncertainty

Variations in the flutter speed due to uncertainties in other parameters

$$
U_1 = U - U_f = \Gamma_1 k_1 - \Gamma_2 k_2 + \Gamma_3 \delta M_s + \Gamma_4 \delta D_x + \Gamma_5 \delta D_y
$$

Parameters Uncertainty and Effects on Global Measures – Nonlinear analysis $M\ddot{q}(t) + \frac{UL}{\tau}(D + k_1D_1 + k_2D_2)\dot{q}(t) + (K_s + K_eU^2)q = N_s(q) + N_{store}(q) + N_{aero}(q)$

$$
v_f^*(2i\omega_f M + \frac{U_f L}{\tau}D)v_f A' + v_f^* \left(\frac{i\omega_f L}{\tau}D + 2U_f K_e\right)v_f U_1 A
$$

$$
+ \frac{i\omega_f U_f L}{\tau} v_f^*(k_1 D_1 + k_2 D_2)v_f A = (\Lambda_s + \Lambda_{store} + \Lambda_{aero})A^2 \bar{A}
$$

$$
\frac{d\ r}{d\tau} = -\left[\kappa_1(U - U_f) + \gamma_{11}k_1 + \gamma_{12}k_2\right]r - \alpha r^3
$$

$$
\frac{d}{dt} \frac{d}{dt} = -\left[\kappa_2(U - U_f) + \gamma_{21}k_1 + \gamma_{22}k_2\right] + \chi r^2
$$

June 2008 **A. H. Nayfeh & M. R. Hajj** 20

ROM of the Velocity Field

Virgin lech.

-1

 Project Navier-Stokes equation onto the POD modes

ROM (*M* =10, Re=100)

- Ordinary-differential equations
- Nonlinear system

Linear stability – eigenvalues

- Pair in right-half plane
- Hopf bifurcation

$$
\beta = \mathcal{B}^{NL} + \frac{1}{\text{Re}_D} \mathcal{B}^{L}
$$

\n
$$
\dot{q}_k(t) = \underbrace{\mathcal{A}_k}_{m=1} + \sum_{m=1}^{M} \underbrace{\mathcal{B}_{km}}_{q_m(t)} q_m(t) + \sum_{m=1}^{M} \underbrace{\sum_{n=1}^{M} \mathcal{C}_{kmn}}_{q_n(t)q_m(t)} q_m(t) + \underbrace{\mathcal{B} = \mathcal{B}^{NL} + \frac{1}{\text{Re}_D} \mathcal{B}^{L}}_{q_k(t)q_m(t)} + \underbrace{\mathcal{B} = \mathcal{B}^{NL} + \frac{1}{\text{Re}_D} \mathcal{B}^{L}}_{q_k(t)q_m(t)} + \underbrace{\mathcal{B} = \mathcal{B}^{NL} + \frac{1}{\text{Re}_D} \mathcal{B}^{L}}_{q_k(t)q_m(t)q_m(t)} + \underbrace{\mathcal{B} = \mathcal{B}^{NL} + \frac{1}{\text{Re}_D} \mathcal{B}^{L}}_{q_k(t)q_m(t)q_m(t)q_m(t)}
$$

Actuators Placement

Control of vortex shedding Virginia

Summary

- System characterization and ROM development through exploitation of physical behavior
- Flight testing: Combination of understanding of physical behavior and data analysis to develop a model with parameters that depend on system variables and system characterization

Goland wing + store

- \Box Modeling stages
- Uncertainty quantification framework
- Use of ROM derived physical characteristics to control vortex shedding