

#### APPLICATION OF PROPER ORTHOGONAL DECOMPOSITION FOR THE IDENTIFICATION OF WET MODES OF MARINE STRUCTURES

D. Dessi, R. Mariani

#### Dept. of Vibration and Noise Italian Ship Research Center, Rome, Italy



![](_page_1_Picture_0.jpeg)

## Summary

- This presentation concerns with the use of Proper Orthogonal Decomposition (POD) to obtain the "wet operational modes" of ships / floating marine structures
- The data analysed with POD are obtained with tests on a physical scaled model of a real – ship
- The convergence of Proper Orthogonal Modes (POMs) to Linear Normal Modes is addressed
- These modes constitute a basis to obtain a reduced order model

![](_page_2_Picture_0.jpeg)

Bifurcation and Model Reduction Techniques for Large Multidisciplinary Systems - Univ. of Liverpool 26-27 June

## Multi disciplinary features of marine structures

![](_page_2_Figure_3.jpeg)

![](_page_2_Figure_4.jpeg)

![](_page_2_Figure_5.jpeg)

![](_page_3_Picture_0.jpeg)

#### Nature of wet modes

![](_page_3_Figure_3.jpeg)

![](_page_4_Picture_0.jpeg)

# Motivation for dry / wet modes identification

#### From design to construction

• Marine structures are in general huge and topologically complex. Uncertainties in finite element models of the "dry" structure may be relevant.

#### Full-scale marine structures

Elastic modes in water may be significantly different. Frequency reduction and damping increase are usually important. Added damping is difficult to predict for elastic modes.

#### Full-scale marine structures in actual service / operational conditions

- Lack of physical modeling of the dependence of vibration modes on
  - ship speed
  - waves added damping
  - strong nonlinear interactions (i.e., water exit / slamming events)
- Damage identification related to changes in modal properties

![](_page_5_Picture_0.jpeg)

### Motivation for dry / wet modes identification

#### Scaled model of marine structures for testing

- Experimental Fluid-Structure Interaction demands for feasible exp. set-up, that is physical simplification of the more complex problem to retain only the sought after behaviour
- On the other hand, hydroelastic scaling accordingly to Froude similarity must be assessed and verified. This may be done as in the present case on the basis of modal correspondence
- Thus, experimental reduced order scaled physical models to reproduce full-scale dynamics of ships:
  - ship bending behavior with 1-D beam model
  - continuous fluid loading through a limited set of forces

![](_page_6_Picture_0.jpeg)

### Model reduction

![](_page_6_Figure_3.jpeg)

![](_page_7_Picture_0.jpeg)

# Governing equations

Equivalent beam Structure (Euler beam for sake of simplicity)

![](_page_7_Figure_4.jpeg)

Strip-theory for loads

Governing model: Lighthill equation based on mass conservation)

![](_page_7_Figure_7.jpeg)

 $D/Dt(.) = \partial/\partial t + U \partial/\partial x$  is the material derivative

![](_page_8_Picture_0.jpeg)

## Identification of scaled ship wet - modes

#### Experiment virtual reconstruction

![](_page_8_Picture_4.jpeg)

The aims of the present analysis are:

• validate reduced – order physical test model with head waves excitation on the basis of displayed modes and associate frequencies

• explore the possibility to identify damping for the bending vibration modes

#### Sea-keeping test in model basin

![](_page_9_Picture_0.jpeg)

# Elastic model concept for vibration analysis

Full scale tests on ships, though necessary for final validation, present some drawbacks that still motivate <u>extensive measures in laboratory</u> (even if quite large like a model basin).

![](_page_9_Figure_4.jpeg)

![](_page_10_Picture_0.jpeg)

#### Segmented – model response

![](_page_10_Figure_3.jpeg)

![](_page_11_Picture_0.jpeg)

#### How to "measure" wet-modes?

• Ships may be huge structure not easy to be excited, particularly when they are floating

 Also at model scale tests, input / output techniques like FRF technique did not demonstrated to be nor easy nor sensitive in providing vibration modes

• Output – only techniques, largely applied in the past in other engineering fields, avoid this difficulty

• Moreover, in the case of marine structures, they exploit the natural source of excitation provided by the waves, benefiting of their intensity and randomness.

![](_page_12_Picture_0.jpeg)

# Acceleration analysis

The ambient (noise) excitation exploits the natural random excitation to which the structures may be subjected, like in this case the random wave excitation

![](_page_12_Figure_4.jpeg)

If the ambient noise has a broad-band frequency representation (white noise), it is possible to determine the modal properties without measuring the excitation input.

![](_page_13_Picture_0.jpeg)

## From frequency domain to time domain...

• <u>Output – only analysis has been developed in the field of civil engineer</u> to provide operational modes for bridges, wind-turbines, buildings and so on.

• <u>The work on operational modal analysis, promoted by Brincker et al. [2000]</u> <u>using frequency domain methods</u> as that shown in the previous slides, has then meet the interests of a community of scientists and engineers as recent participations to IOMAC demonstrates.

 Nevertheless, <u>a different approach (and a research community) is moving on a</u> <u>different path</u>, combining output – only approach with a time – domain technique, i.e., the proper orthogonal decomposition.

• Starting from the original intuition of Lumley [1993], the works of Feeney [1998,...], Kirshen [2002,...] and their colleagues <u>the proper orthogonal</u> <u>decomposition has been applied, interpreted and shown to be useful for the modal analysis of linear responding structures</u>.

• Very recently, due to Chelidze et al. [2006], <u>a variant of the POD, called smooth</u> <u>orthogonal decomposition (SOD)</u>, has been proposed to overcome some limitations.

![](_page_14_Picture_0.jpeg)

# Proper Orthogonal Decomposition

Consider a random scalar field of zero mean (e.g., w is displacement)

$$w(x,t) = \sum_{l=1}^{\infty} w_l(x) \psi_l(x)$$
 Basis functions

satisfying the PDE where L is the structural operator,  $\rho$  is mass density, f load

 $\rho(x,t)\ddot{w}(x,t) + Lw(x,t) = f(x,t)$ 

The POD provides the approximate representation of the field *w* that accounts for more energy than any other orthogonal function representation

$$\left(\int_{0}^{\ell} w(x,t)\psi(x)\,dx\right)^{2} = \max \quad \text{with} \quad \int_{0}^{\ell} \rho(x)\psi^{2}(x)\,dx = 1$$

$$\int_{0}^{\ell} \rho(y)R(x,y)\psi(y)\,dy = \lambda\psi(x) \quad \text{with} \quad R(x,y) = \frac{1}{T}\int_{0}^{T} w(x,t)\,w(y,t)\,dt$$

![](_page_15_Picture_0.jpeg)

М

# **Proper Orthogonal Decomposition**

The discretization of the integral eigenvalue problem leads to

$$\sum_{j=1}^{m} c_j \rho(y_j) R(x_i, y_j) \psi(y_j) = \lambda \psi(x_i), \quad i = 1, \dots, M$$

where the correlation matrix is

$$R(x_i, y_j) = 1/N \sum_{n=1}^{N} w(x_i, t_n) w(x_j, t_n) = 1/N \mathbf{w}^{(i)} \cdot \mathbf{w}^{(j)}$$

With  $\mathbf{W}^{(i)}$  the vector of *N* time samples of the *i* dof. By defining  $\mathbf{W} = [\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, ..., \mathbf{w}^{(M)}]$  and using lumped masses, the discrete form of the eigenvalue problem becomes:

 $1/N[\mathbf{W}^T \cdot \mathbf{W}] \cdot \mathbf{M} \mathbf{z} = \lambda \mathbf{z}$ 

where z are the POMs, **M** is the mass matrix obtained by condensation of the mass distribution and the POC are given by

$$\mathbf{A} = \mathbf{W} \cdot \mathbf{Z}$$

![](_page_16_Picture_0.jpeg)

## **Proper Orthogonal Decomposition**

![](_page_16_Figure_3.jpeg)

![](_page_17_Picture_0.jpeg)

# Application of POD to experimental data

Several aspects may be of concern in the application of classical POD to data obtained with measurements:

- The number of measuring points may be quite small limiting the number of observable POMs
- If convergence to LNM need to be assessed, the mass matrix need to be known
- But, even the mass matrix is known but the measuring point are few, the projection mass matrix may be roughly approximated thus limiting this convergence

![](_page_18_Picture_0.jpeg)

## **Displacement analysis**

![](_page_18_Figure_3.jpeg)

<u>INSEAN</u>

# Sensitivity of the POD to the mass input (dry case)

![](_page_19_Figure_3.jpeg)

![](_page_19_Figure_4.jpeg)

![](_page_20_Picture_0.jpeg)

### Variation of the wet modes with speed

Sea spectrum characteristics:  $H_{1/3}=2m$ ,  $T_1=7.5s$ Forward speed  $V_s$ : 0, 10, 20, 30, 40 kn

![](_page_20_Figure_4.jpeg)

<u>Remark</u>: the excitation band of the sea spectrum is enlarged up to the low-freq. mode bending modes range via the nonlinear load transfer function

![](_page_20_Figure_6.jpeg)

![](_page_20_Figure_7.jpeg)

![](_page_20_Figure_8.jpeg)

![](_page_21_Picture_0.jpeg)

### Dependency on ship forward speed

![](_page_21_Figure_3.jpeg)

#### **Observations**

- Frequency and damping ratio grow as long as speed is increased.
- They seem to depend on the amplitude of the excitation (possible nonlinear effects).
- The dramatic increase for the damping is strictly related to the segmented hull configuration as well (increase of model structural damping).

![](_page_22_Picture_0.jpeg)

# Avoiding the mass input

If the aim is to obtain operational modes as close as possible to the linear normal modes, a modification of the original technique exploits band pass filtering in case of well-spaced frequencies.

![](_page_22_Figure_4.jpeg)

![](_page_23_Picture_0.jpeg)

#### SVD – FDD technique

![](_page_23_Figure_3.jpeg)

### Comparison between SVD-FDD and POD modes

![](_page_24_Figure_3.jpeg)

![](_page_25_Picture_0.jpeg)

# **Final remarks**

• The POD has been applied to the extraction of the operational modes of a floating beam-like structure representing the hydroelastic behaviour of a true ship in usual conditions.

 The results seem encouraging also for the present application, because convergence to LNM has been demonstrated with use of SVD-FDD

• The POD can be used to reduce the model of a true ship (full-scale trials) in order to design the scaled elastic model or to verify the correspondence with a theoretical model

![](_page_26_Picture_0.jpeg)

## Final remarks

• The advantage of POD is that for the study of nonlinear behaviour the signal processing tool remain the same

![](_page_26_Picture_4.jpeg)

#### Sequence of a slamming impact during a regular wave test.

![](_page_26_Picture_6.jpeg)

![](_page_26_Picture_7.jpeg)

![](_page_26_Picture_8.jpeg)

![](_page_27_Picture_0.jpeg)

# Other challenging problems under investigation 1/2

Provide a reduced order model of the systems of moored pontoons (simulations & experiments

![](_page_27_Picture_4.jpeg)

![](_page_27_Figure_5.jpeg)

![](_page_28_Picture_0.jpeg)

• Hull stiffness deterioration due to collisions, grounding or aging (damage detection or localization seems still far to be practicable).