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Models of Homogeneous & Catalytic Reactors

Packed-Bed Catalytic Reactor

%%,

@76’
L(m) 1 103 10
t(s) 10-103 1 - 10°

Gas-Liquid Tank Reactor

LIQUID

Homogeneous
Tank Reactor

Detailed Model:
C%U—F(x u,vVu,V?u,p); xin Q,t>0
.C..T'(x,u,Vu,p)=0in Q,t=0
B.C.:B(x,u,Vu,p)=0in 0Q,t >0

Ideal CSTR Model:
(Bodenstein & Wolgast, 1908)
OI—Czi(c. —C)-R(C); t>0
d =

1.C.:C(t=0)=Co

Objective: Develop accurate low-dimensional models (in terms of
average/measurable quantities) without losing any important physics at

small length/time scales.



Bottom-up Approach

Approaches to Averaging/Dimension Reduction
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Averaging/Dimension Reduction Techniques

(i)
(if)
(iii)
(iv)
(v)
(vi)

Plus

Method of Multiple Scales

(multiple length/time scales involving a small parameter)
The Krylov-Bogoliubov Technique

(averaging method for periodically forced systems)
Method of Moments (Aris, 1956; Brenner,1994)

(uses spatial moments/theory of Brownian motion)
Volume Averaging using Divergence/Transport Theorems

(Slattery,1969; Whitaker,1967; Anderson & Jackson,1967)
Long-Wave (Lubrication) Method

(used extensively in the fluid mechanics literature)
Center & Invariant Manifold Theories

(Carr, 1981; Roberts, 1990; Balakotaiah & Chang, 1995)

Elimination of slave modes by asymptotic expansion

around a steady-state (or trivial state)

Many others (e.g. Reynolds’ averaging, Renormalization, POD,
Inertial Manifolds, etc.)

New Spatial Averaging Method

Liapunov-Schmidt Technique
(Balakotaiah & Chang, 2003; Balakotaiah &Chakraborty, 2002)
perturbation expansion around zero eigenvalue (s)



The Liapunov-Schmidt (L-S) Method for Local Bifurcations

Golubitsky and Schaeffer (1985); Balakotaiah et. al (1985)

F(u 4):R"xR? - R"

F(0,0) =0 F:OS{EF(XYO+W%)=0 = w=W(XY,,A)
L = D,F(0,0) (I-BE)F(xy, +w,2)=0
dim(kerL) =1 Branching Equation:
g(x,2) = (Vo , (1 =E)F(x Yo + W(xy,, 2),4)) =0
Ly,=0
L'V, =0; (Y,,V,) =1
U=XYy,+w



The Liapunov-Schmidt (L-S) Method for Spatial Averaging
of Convection-Diffusion-Reaction (CDR) Models

Balakotaiah and Chakraborty; Chem. Eng. Sci.,57,2545-2564 (2002)
Balakotaiah & Chang; SIAM J. Appl. Math., 63,1231-1258 (2003)

Observations:

= Diffusion is dominant at small length scales

= Local Diffusion operator of the CDR equation (with a periodic/ Neumann

& Robin BCs has a zero eigenvalue with a constant eigenfunction.

= Spatial degrees of freedom (small length scales) can be eliminated near
the zero eigenvalue (small parameter).

Procedure:

= Write the detailed (microscopic) model
= |dentify the smallest length/time scale (expressed in terms of a small
parameter, say p)
= Express all other parameters (1;) as A; = o, p", where o; is O(1) & n=1,0, -1, ...
= Apply the L-S reduction (eliminate spatial degrees of freedom)

The LL-S procedure is equivalent to a Taylor series expansion of the detailed model



Cross-sectional Averaging by the L-S method (Details)
F(c,p)= V¢ - p f&vy,ztc A =0
J/

- \
. . Y
Local Diffusion Large Scale Mixing/Diffusion,
Operator Convection & Reaction

1. Split the state variable into orthogonal components:
c&, Y,z t\=< )€t y,+C € Y,2t,

where (c —ch(yzt _dxdy; & ¢' L{c).

Ly =—uyin Q,
with Viyy-n=01in 0Q.

range L*
2. Project the governing equation(s) onto complementary function spaces:

(I-E)F=0 EF=0
l Global / Averaged equation l Local equation
< f (C>w0 +C' :w0> =0 Lc'= pf €c)y, +C':— p<f v, +C':W0>Wo




Averaging Procedure (Contd.)

3. Solve the reaction-diffusion equation at the local scale by perturbation expansion:

0 i Le,=f (C>Wo :_<f (C>Wo :Wo>§”o; <C1>:O’
C= Z PC wp |c_pr (c>w0:cl—<DCf (c>r,//0:cl,gu0>guo; (c,)=0,...

i=1
where D, f and DZ f are Fre'chet derivative s of f.

4. Averaged Model (single equation representation):

<f <C>’//o ;Wo>+ p<DCf (C>W0 :Cl’l//0>+ p’ |:<Dcf <C>’//o 202’W0>+%<D2Wf <C>Wo:‘;1’C1:W0>:|+O¢)3::O

5. Write the averaged model Two-Mode/Multi-mode form (in terms of physical variables:

Global Equation: = _ 3 =
G(<C>’Cm):<f ‘;/’Wo> Cn=(C&.y, 2L L& Y )

Local Equation: C. (,t:—<C>¢,t:= <U C'1Wo>

6. If necessary, regularize the averaged model (to expand the range of validity)




Averaged Model in Two-mode and Multi-mode Form

cy,zt =(c)€t +c'&y,zt, suchthat ¢'L(c).

[ Project the CDR equation (i.e. F) on two complementary function spaces. ]

l Global Equation Solve for ¢ at the local scale,

~ through perturbation expansion
G{c).c, =0

C,, =(c)+{uc’) \Vzc': pfdc)+c', with ¢'= e
i=1

Cyy Is the mixing - cup conc

Local Equation

Spatially Averaged / Two-Mode Models.
Two Modes: C,, and <C>




Low-Dimensional Models for Diffusion-
Convection-Reaction Problems
using the L-S Method

Examples:

1. Transient Heat Conduction Problem

2. Dispersion and Transfer Coefficients

3. Low-D Models for Homogeneous Reactors

4. Low-D models for real time simulation of TWCs




Averaging by L-S Method
1. Transient Heat Conduction in a Slab

00 _ %
ot ox°

8c1: 22(0.t)=0
OX

B O<x<lt>0

BC2: %(1,t)+ Bio(Lt)=0
IC: 8(x,0)= f(x)

~—+

a’? a(ec,)

D — L
[k/(pc,)] h
t= t—'; T= t—
L [

Bl =

~+

D .
’
E

te

t=Bir

0’0 (00
—=Bi] —-6()f(X) [0<x<1t>0
o (at 0 ())

BC1: %(O,t)zO
OX

BC2: 2—9(1,t)+ BiO(Lt) =0
X




Averaging by L-S Method
(Transient Heat Conduction in a Slab)

0’0 (00
—— =Bl —=0(1t)f(X) [0<x<1t>0
o [& 0 ()j

BC1: @(O,t) =0
OX

BC2: 2—8(1,t)+ Bi O(L,t) =0
X

/

Global Equation
Bi{E —SM)f + 6?(1,t)} =0

do

do
— — 9Lt
i Lt)

0(0) = f




Averaging by L-S Method
(Transient Heat Conduction in a Slab)

Global Equation Local Equation

(jj_? 0.(0) =8 O,(t) = i_ E;j 0+ E?; f5(t)+Bis(t)[g — g(1)]+O(Bi®)
6(0)=T 9(x) = [ [ (7)dnde
For f(x)=1, =
do _ —5{1— Bl , 4 gj2 +O(Bi3)}
dt 3 45
1

O(t = 0) =1— — Bi? + O(Bi®
(t=0) 10 (Bi*)

Bi=1 = 6=0.978exp[-0.756t]
Exact solution: 6 = 0.986exp[—0.740t]+ 6 = 0.0124exp[-11.74t]+..




2. Dispersion and Transfer Coefficients

(A) Transfer Coefficient Concept
Film Model for Heat Transfer (W. K. Lewis, 1916)
Film Model for Mass Transfer (W. G. Whitman, 1923)

Boundary Layer Concept (Prandtl, 1904; von Karman, 1934)

(B) Eddy Diffusion/Dispersion Coefficient Concept

B1: Eddy Diffusion Coefficient
Eddy viscosity (J. Boussinesq, 1877)

Turbulent diffusivity/Conductivity (Prandtl,1910)

B2: Dispersion Coefficient
Taylor dispersion coefficient (Taylor,1953;Aris,1956)

These concepts

(i) Eliminate local spatial degrees of freedom (small scales) and coarse-grain the governing equations to obtain
averaged/low-dimensional models.

(if) Express the detailed information contained in the governing equations in terms of a single coefficient
(data compression)



Averaging / Coarse-graining (Heat/Mass Transfer Coefficient Concept)

A A
T, I I
Q
T
x=0

BC.&IC.:T¢=0r =T, T¢r=a =T,.

1
Jl—
I O I I
v R e
2
o) 1-7 oT _ k, ;a(raT]; 0<x<L;
a°)Jox pCror or 0<r<a;
L/a>>1.

Local heat transfer coefficient;

I
or

h& =

r=a

Tm T TW

T, =cup-mixingtemperature

- E]'anu(j'((,r:dr/ "32 <”x>:

Coarse - grained / Low - dimensiona | Model

dT _ N
<ux>prpf d—)(m = a‘Vq’ V\/lth Tm ‘( = O/: TO’ <~

q:h‘(]w_Tm:

<—— ocal Equation| h,, 2a

Global Equation (a,=2/a)




Averaging / Coarse-graining (Dispersion Coefficient Concept)

— (B Db —

x=L

Inert Tracer diffusion in laminar flow In a tube

2 2 2
$+2<ux> l—r—2 $:Dm£a(racj+lzag+ag : - 00 < x < 00;
ot a“ ) ox ror\ or r° op~ OX 0<r<a
1.C.& BCs.:C &,1,9,t =0 =C,(X, r,qo);%—c(r =a)=0
r
Taylor (1953), Taylor-Aris dispersion (Aris, 1956)
Coarse - grained / Low - dimensiona | Model Generalizations:
, Finite systems: O<x<L
5<C> 8<C> _n @ <C> turbulent flows,
+(Uy) =D,—1,
ot OX OX packed-beds,
<ux>2a2 bubble columns,

. . Reacting flows, etc
48D,



Some Conceptual Difficulties with the
Taylor Dispersion Coefficient Concept

*Upstream diffusion even in convection dominated systems
Diffusion is symmetric (Gaussian) about mean flow
Infinite speed of propagation of signals even in convection

dominated systems
\/alidity of downstream BC, especially for large axial Pe
*Dependence of dispersion coefficient on kinetics
|Inability to describe systems whose RTD curve

has long tails associated with stagnant (zero velocity)

regions and/or bypass behavior,

or near segregated flow limit, etc

Key Observations: (i) single concentration is used
(i) transfer between scales is represented in terms of gradient based on
large scale (in contrast to gradient across eliminated length scale)
(i1) Transfer/exchange between scales is not necessarily local



Taylor Dispersion Theory (Revised)

” COxr. . Ordrde Local Eqn.:
(C)=20 = spatial ave. conc. » +~'(C)
H rdrde Cm_<C>:le7/i o
2ﬂ‘u(r)C(x, r,p,t)rdrde
C 8o _ cup- mixing conc. Truncated Local Egn.
[ Ju(ryrdrde @<C>
. Cm_<C>z(D/8t "1:

Averaged model (single mode form):

(with transfer/exchange time) Truncated Averaged model
(two-mode form with transfer coefficient)

2
5Cm <U> aCm <U>tD 0 Cm =0:t>0,x>0 @Hu}ac =0; Global Eqgn.
ot OX oxot ot OX
|.C:C (X t=0)= CmO(X) %zkcaV b —<C>Z Local Eqn.;
B.C:C (X Ot) len() avzg; kC=24Dm
a a

= local transfer/ exchange time

Averaged model is hyperbolic! to = 4§



The Liapunov-Schmidt (L-S) Method for Exact Spatial Averaging

of the Convective-Diffusion Equation
[SIAM J. Appl. Math., 63,1231-1258 (2003); Chem. Eng. Sci.,57,2545-2564 (2002)]

L-S method:
(i) Spatial degrees of freedom (small length scales) can be eliminated near
zero eigenvalues (small parameter)
(ii) The L-S method is equivalent to (exact) Taylor expansion of the detailed
model in terms of the small parameter (in the function space)
(iii) Easily applied to linear as well as nonlinear models

e.g. classical Taylor problem Converggnce criterion
a
Averaged model to all orders I = 48—D; (o =(Uty
8(C y
Q +(u) Cp _ 0; Global Eqgn. tyo, <0.858
ot OX

. SC 1.C:C,(xt=0)=C,,&;
C, —(C)=> 7 G fﬁ; Local Eqn. B.C:C,(x=0,t)=C,,
i=1

ot




Comparison of Parabolic and Hyperbolic Models

Taylor’s model Hyperbolic model
2/ \ 2
Co ()L _p, %n;p, - 2 1) Co ()% 4 uty, ZCn
ot OX OX 48D, ot OX D axot
Taylor-Aris Parabolic Model Leading Order Appromixation
2Cy , 3 Ca _p OCo. o(C) :_<u>@; (c)=C
ot +<U> OX e aXZ ! 81: 8)( "
2/00\ 2 D, = 2t
N0 = D, =(u)’t,
48D,

+ 2 BCs for finite domains Hyperbolic models

2 A2 2
oc, aCm+<u>a 0°Cy _p 9°C,

ot ) ox 48D oxot " ox?

Hyperbolic model is a
Cauchy Problem while

oC. , ,oC, ’c, . [ a D
~ +(u) p~ +(ujt 0; tD_(48Dm+

Parabolic one Is a BVP




Dispersion curves predicted
Comparison of Parabolic and Hyperbolic Models P P

by the hyperbolic model
Hyperbolic Model y
oC_. oC 0°C t,(u) Ll
ny_m4p_—N_Q; P=g8p="21L ; _
ot oz ozot AP=—1 | P=0.05
1.C:C,(z,t=0)=C,, € E) ot | % 0.1
BC:C,(z=0,)=C,,, G 08 et
Parabolic Model Mg
) 0.
L /
8C+8C: ! 6(2:;0<z<1;Pe:—<u> ok '
ot 0z Peoz D, 5
BCs:i§=C—Cm(t)atz:O; §:O atz=1
Pe 0z z
IC :C(z,=0)=C,(2) 05k

. 0.4f
Observations:

EM) " ™

. Both models predict the same dispersion curves for Pe>>1 (P<<1) "
. For parabolic model the variance is bounded in 0 (PFR) and 1 (CSTR) 4|
while the hyperbolic model has a much larger range of validity

. Hyperbolic model is easier to solve (IVP) compared to Parabolic (BVP) %
. Hyperbolic model has no physical inconsistencies and is qualitatively
correct even in the limit of P—ce




Other Thermal/Solutal Dispersion Problems:

Heat and Mass transfer coefficients in ducts
Thermal Dispersion in Packed Beds
(Universal scaling for disparate capacitances)

Balakotaiah & Chang; SIAM J. Appl. Math., 63,1231-1258 (2003)
Thermal/Solutal dispersion with diffusion into the wall

— 8 Hyperbolic model
....................... I can give rise to large

d I il
7 Second moment (long tail)
0

X= x=L
oC oC 0°C
Fm+<u>a—xm+<u>tD 6)@;‘ =0; t>>ty; X>> 0, (=(uty)

a’| 1 2 H 2
tD:D—m 4—85(65 —16€+11)+§€(4€—€ —3—2|n(€))

£ = porosity; u = %



3. Spatial Averaged Two-mode Models for Homogeneous Tubular Reactors

rTX_, I I e N 1 { o=

L
L S

. 2 2
CDR Egn.: 10 éac +1282: ac p28§+u(:@+Dar(C)
EoE\ o) &7 Op ot Pe” 0z 0Z
- —/ — 7
Y —~
e Macro-scale
Local / Small-scale Diffusion Accumulation-Diffusion-Convection-Reaction

B.Cs&I.C:

p oc — oc oc
—=u —C. z=0;, —=0@1z=1, —=0 =1; ¢ =C(p+2nn)c(t=0)=c,(¢,z
S ¢}-c. o ~-oe@ P @¢ () =c(p+2rm) c(t =0)=c,(&,2)
. . 2— — ™ 2
a‘u t ua LR T Pe
Dlmen3|onl?ss - _bh opgUa C: 7 pe-rPer
Parameters: LD, =, ) DC, t, p
Transverse/Local Radial Peclet Number Damkohler Number Axial Peclet Number
Peclet Number

Spatial averaging is possible when p<<1,Da~O0(1), &
(a) Pe,~ O(1/p) or (b) Pe,~ O(1) or (c) Pe,~ O(p)



Two-Mode Models for Homogeneous Tubular Reactors

fl pe2r Case (a) Pe, = O(1/p)
[ Jeu® 2sdpde
C _ ¢=0 ¢=0 E=1 p=2rx
m F=1 _ =
27zju(§)2§d§ (c) = §J;¢_.;C2§dq)d§
Cup- mlxmg Average

Averaged/R educed Model ( to order p)

oc,, Averaged Model can be
8’[ ﬁl < >) =0 Global Eqn. | \iritien in terms of a single
1 Concentration (c,,) but this leads
. to transport coefficients
_m =(C)—C,, | -
pip 07 < > n 5B 48 Local Egn. dependent on Kinetics.

BCand I.C: ¢, =c_;,(t), @z=0;
Special cases

(c)=(c)@) @ t=0

. p=0 = plug flow model (zeroth order)
. Steady state and Pe, >>1 = two-mode homogeneous tubular reactor model

dc, €,-(c) - PFR
R = ¢, €=0 =c__ ADM
dz B.p m ¢ — min X CSTR

c, —{c)=p,pDar((c)) Da >




Two-Mode Models for Homogeneous Tubular Reactors
Case (b) Pe, = O(2)

Reduced Model ( to order p)
oy |, OC, o°c p 9°(c)

a o AP e Pe?

oc
PP

Hyperbolic Model
+Dar((c))=0  Global Egn.

=(c)—c, ;B = 4i8 Local Egn.

BCsandI.C:Pi?:c ~Coin» @ 2=0; @:O,@z:l; (c)=(c,)@ t=0

Special cases
. p=0 = plug flow model (zeroth order)
. Steady state two-mode model

dc p d*(c) dc
m C)) = - (C)—C,. = + above BCs
dz c) Pe? dz’ (€)= Cn =$1P
. No reaction case p . 0°C . .
—(B.p+—==)—" [Taylor - Aris ParabolicModel]
5 Pe/" oz
oc,, a P o%c p/('9<c;> B
1 2 2
81: azgt Pe @Z (Bp+ loz)—(3 o [Hyperbolic Model]
/ L Pe?’ azo

dlsoersmnterms



Two-mode Models for Homogeneous Reactors

(c) Pe=0(p)
Micro-Scale reduction : Meso-Micro coupling

g

'i

f

Micro/Continuum c
scale i
exchange to other cells
11L '.n CDR eguation
* e reactor | 5o
e ‘-._a‘Ql outlet —'+Ui((,y,ZEVCi
— Q — :
reactor ! ' =V.QOVC, FRC,
inlet 0Q"*, A/ _,
exéﬁéﬁggfrom (.)Cfﬁ"e‘f'"c fis  Mesof ICe“
SCale

n-interacting cells
l<n<ow

lth ree mode meso-scale equation

exchange between

the cells

3 ¢

j=Lj#i

o(C))

_gce
ot qu im_

]
i

CCc

Jit7jm

!

Chn—

im

+R (Ci>j = qimcii,rr]n - qieCie,m +

Xi cii;] _C:m F Zin cfm _Cic,m

j=1,j#i

iji cj:m - Cic,m

j=1,j=i

c)- P{

. ~
o, ci'?n -C° +

m _«

Cin—

im

c)- P[




Two-Mode Model for Homogeneous Tank Reactors

Meso-Macro Coupling

~

) GIv

i=1

n

Cm :qucim
i=1

Zv

Zq?

Cinr::iqlmcm Zq
i=1

3n equations Two-mode reactor scale model
o~ L
I d(C ~len_g o
//\/{ /\&\ < >+R<C>”=_¢:nn_c
FRT , dt T
R (SF’\_Q - 1 in
o w Cn _<C>:_ <TiX'2Cm _tmix'lcm

tmix,1=TE<“e—B]nV‘!E }in—ﬁ jy0!y0>+7d (‘le €e—Pe, Y, YO> (BPe.Yy, YO

m

tmix,2_7E<‘!e—B]nV“E Eclinaincin—ﬁ]}’o’YO>+Td(<ae €e—Pe, Dm YO> < ,nBPecC y0>]

macromixing effect

7, =1/D
=V/Q
T =VI/q

micromixing effect

A

A

t ., =f o g, €eed distribution, reactor geometry + f(_]
tixy = T ; plm g, Ceed distribution&composition, reactor geometry

For premixed feed t,; = triys

N

g, €eed distribution, reactor geometry

| o " -
+ f % g, €eed distribution &composition, reactor geometry




Exit Conversion (%)

(]
=)

Effect of feeding on Bimolecular 2" Order Reaction

Stoichiometric feed
80F gaCa" = qgCg™

....... premixed
—— unmixed

~l1
—
| ]

=2
—

n
=

o
—

n
=

10

¢

9. C,T : \gIB’ C;%n
[ e
DO
[ |
@ o

tmix 2 1S higher for
concentrated species

7./lt =01, 7,/t=01

P93} Y Palesiusdun)

a./0s |tA Iz |tS |t lT|td

mix, 1 mix, 1 mix,2

premixed 0.1 0.1 0.1 0.1

1:1 0.1028 | 0.1028 | 0.1417 | 0.0833

1:4 0.1090 | 0.1090 | 0.2350 | 0.0775

1:9 0.1160 | 0.1160 | 0.4800 | 0.0756

1:19 0.1203 | 0.1203 | 0.9775 | 0.0751




4. Low-D Models for Three-Way Converters(TWCs) & Lean NOx
Traps(LNTSs)

Reductant Pulsing

Flow Rate

Reductant

Time (sec)

LEAN NOx TRAP —— Clean
Exhaust

TWC - Challenges

| NT . I\/Iax?m?ze NOXx conversion |

« Maximize reductant conversion
« Minimize fuel penalty

« Minimize deactivation

« Achieve robust control



Catalytic Monolith Converter

Washcoat
(Aluminum or
Cerium Oxides)

Ceramicor
Metallic support

Length Scales:

T IR ) | Cramelbianetr(dy - 05-2mm
h] - VY- —
Washcoat Thickness: 10-50 um —__

/ \ Support Thickness: 100 - 180 um \\_J
- Washcoat (Pore Diameter): 10 — 50 A \J




Low-dimensional Model for a Catalytic Monolith Reactor

Shape Normalized

Lengths
A A
R‘Ql — Ql ‘QZ a QZ
PQ PQ
fluid washcoat
: interfacial couplin
Steady State Balance Equations DS N
\ Boundary Conditions
oC 0C 0°C n.D V.C,=n.DV.C
S/ P f _ 2 f Py m f e s
—r+uk',y' —-=D_ | V.C, + ,(x',y')e oy
ot yjﬁz' [ AP ] x',y")eL, C, =C. , (x',y")e 09,
Y — ~
convection diffusion n.DV.C. =0, (x',y') oL,
oC ~_ oC
aC - 82 |Dm_f: ¢, r]:‘ ~-C, (1) & s =), r—(
s +RCS/= De(Vsz+ f.; ], (x',yr)e.QZ oz’ UK )Y Ny (t) oz’ @z
ot H—l < az ., aCf — aCs =0, @z'=L
reaction e Y. oz’ oz’
diffusion

Coupled PDEs in €',y ,z"



Low-Dimensional Model fora TWC

Species conservation

aC fmj aC fm 2kce, . ~
( > ot - GXJ_ Rjtfmj_ P
0Cuc), kg ]
el € - (G, +ZVu R €Cy ). (Cyc),{Coc) s
kCE,j tfmj _Csj /: kci,j (:Sj _< Wc>j ) kce'j _ Szesm,j kci,j :%
Q w

=1,2....S (species); N reactions

+ 1C + BCs
Energy balance

oT

atf =—up¢cC f__h(al(f -T )
2
awpwcpw%=5wkwaax—T;+h(:(f —Ts)acz R; (cm)l,(cwc)z,...(CWC)S,TS)(AHJ-)
j=1

P Cpf

T =Tn(1)@x=0; Tg(X,t=0)=Tso(x); T

oT,
=0@x=0,L
™ @



Comparison of Accuracy of Low-D Model for Linear Kinetics, Single
Reaction and Isothermal Case:

Low-D Model Solution
P C — — Exact Solution

Dimensionless Concentrations
[

1[:,' 1 1 1
0 0.2 0.4 0.6 0.8 1

Dimensionless Reactor Length




Overall reactions in TWC
. CO+ 30, — CO;
2. Hy+ 10, — H,0
3. CH,+ 320y — CO, + £H,0

4 NO+CO — CO,+ N,

- 1.4 5-0.3 5-0.13
FL—L‘YC'O‘\ OZ _“1 \"O

T 01T, + kas Xco )?

F(X T.)=T.(1 +ka, Xeco +kasXNge)? (1 + kaz N2 X)L 4+ kay, X:5)
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Monolith Temperature (K) no washcoat diffusion

20 Monolith Temperature (K) with washcoat diffusion
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Transient simulation showing front end ignition (a) monolith temperature without washcoat diffusion (b)
monolith temperature with washcoat diffusion

Table : Cumulative emissions

Washcoat diffusion neglected (g)
With washcoat diffusion (g)

CO 1.0033 0.5646
HC 0.0743 0.0385
NOXx 0.0166 0.0149




Summary/Conclusions

The Liapunov-Schmidt Method is an excellent technique for model
reduction.

 Multi-mode averaged/coarse-grained models developed by the L-S
method describe the system behavior qualitatively and quantitatively.

e Transfer/exchange coefficient concept (hyperbolic) is more
physical than dispersion coefficient (parabolic). Multi-mode form of
the averaged models with transfer coefficient have a larger domain
of validity.

 Convergence of the reduced order models depends on the spatio-
temporal frequencies present in the inlet/initial conditions.

» Whenever the local equation/expansion of the L-S method fails to
converge, patterned solutions with fine scale structure exist.
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