

Prediction of Bifurcation Onset of Large Order Aeroelastic Models

K.J.Badcock and M.A. Woodgate CFD Laboratory, University of Liverpool, UK

www.cfd4aircraft.com

Marie Curie Excellence Team

Enabling Certification by Analysis

Mach Number

Dynamic Pressure

Woodgate, M. Badcock, K.J. Rampurawala, A.M. Richards, B.E. Nardini D. and Henshaw M. Aeroelastic calculations for the Hawk aircraft using the Euler equations, Journal of Aircraft, 42(4), 2005, 1005-1012.

Denley, C.J., Eccles, T.A., Cross, A.G.T., Practical Unsteady CFD Application to Aircraft Flutter and Limit Cycle Oscillation, **RTO-AVT-152**, Loen, May, 2008

 $\begin{bmatrix} A_{ff} & A_{fs} \\ A_{sf} & A_{ss} \end{bmatrix} \mathbf{p} = \lambda \mathbf{p}$

$$\begin{bmatrix} A_{ff} & A_{fs} \\ A_{sf} & A_{ss} \end{bmatrix} \mathbf{p} = \lambda \mathbf{p}$$

- Badcock et al, J Aircraft, 42(3), 731-737, 2005
- solved an augmented system for the critical eigenvalue
- Assumptions/Limitations
 - good initial guess at flutter frequency
 - Symmetric problem
 - Sequential calculation

Badcock et al, AIAA J, 45(6), 1370-1381,2007

- Aeroelastic eigenvalues using the Inverse Power Method
- Assumptions/Limitations
 - Sequential calculation
 - Mode tracking

$$\begin{bmatrix} A_{ff} & A_{fs} \\ A_{sf} & A_{ss} \end{bmatrix} \mathbf{p} = \lambda \mathbf{p}$$

- Badcock et al, J Aircraft, 42(3), 731-737, 2005
- solved an augmented system for the critical eigenvalue
- Assumptions/Limitations
 - good initial guess at flutter frequency
 - Symmetric problem
 - Sequential calculation

Badcock et al, AIAA J, 45(6), 1370-1381,2007

Aeroelastic eigenvalues using the Inverse Power Method

Inverse Power Method
$$Z_k = \begin{bmatrix} A_{ff} - \lambda_0 I & A_{fs} \\ A_{sf} & A_{ss} - \lambda_0 I \end{bmatrix}^{-1} X_{k-1}$$

- good shift needed for convergence
 - Better shift iteration matrix becomes more singular
- Iterative solvers thrown at solving this problem in parallel
 - good methods available but none has really done the job

Inverse Power Method
$$Z_k = \begin{bmatrix} A_{ff} - \lambda_0 I & A_{fs} \\ A_{sf} & A_{ss} - \lambda_0 I \end{bmatrix}^{-1} X_{k-1}$$

New thinking needed

- good shift needed for convergence
 - Better shift iteration matrix becomes more singular
- Iterative solvers thrown at solving this problem in parallel
 - good methods available but none has really done the job

 $\begin{bmatrix} A_{ff} & A_{fs} \\ A_{sf} & A_{ss} \end{bmatrix} \begin{bmatrix} p_f \\ p_s \end{bmatrix} = \lambda \begin{bmatrix} p_f \\ p_s \end{bmatrix}$

 $\begin{vmatrix} A_{ff} & A_{fs} \\ A_{sf} & A_{ss} \end{vmatrix} \begin{vmatrix} p_f \\ p_s \end{vmatrix} = \lambda \begin{vmatrix} p_f \\ p_s \end{vmatrix}$

Schur complement version

(Bekas and Saad, SIAM Journal of Scientific Computing 27(2) 458, 2005)

$$S(\lambda) = A_{ss} - A_{sf} (A_{ff} - \lambda I)^{-1} A_{fs}$$

 λ Not an eigenvalue of A_{ff}

 $S(\lambda)p_{a} = \lambda p_{a}$

Schur complement version

(Bekas and Saad, SIAM Journal of Scientific Computing 27(2) 458, 2005)

> Good! Small order nonlinear eigenvalue problem

 $\begin{vmatrix} A_{ff} & A_{fs} \\ A_{sf} & A_{ss} \end{vmatrix} \begin{vmatrix} p_f \\ p_s \end{vmatrix} = \lambda \begin{vmatrix} p_f \\ p_s \end{vmatrix}$

Schur complement version (Bekas and Saad, SIAM Journal of Scientific Computing 27(2) 458, 2005) Good! – solves ill conditioning problem $S(\lambda) p_s = \lambda p_s$ $S(\lambda) = A_{cc} - A_{cf} (A_{ff} - \lambda I)^{-1} A_{fs}$ λ Not an eigenvalue of A_{ff}

 $\begin{vmatrix} A_{ff} & A_{fs} \\ A_{sf} & A_{ss} \end{vmatrix} \begin{vmatrix} p_{f} \\ p_{s} \end{vmatrix} = \lambda \begin{vmatrix} p_{f} \\ p_{s} \end{vmatrix}$

Schur complement version

(Bekas and Saad, SIAM Journal of Scientific Computing 27(2) 458, 2005)

$$S(\lambda) p_{s} = \lambda p_{s}$$

$$S(\lambda) = A_{ss} - A_{f} (A_{ff} - \lambda I)^{-1} A_{fs}$$

$$\lambda \text{ Not an eigenvalue of } A_{ff}$$

Bad! - re-evaluate S at every nonlinear step

But

$$(A_{ff} - \lambda I)^{-1} \approx A_{ff}^{-1} + \lambda A_{ff}^{-1} A_{ff}^{-1}$$

 $\begin{vmatrix} A_{ff} & A_{fs} \\ A_{sf} & A_{ss} \end{vmatrix} \begin{vmatrix} p_f \\ p_s \end{vmatrix} = \lambda \begin{vmatrix} p_f \\ p_s \end{vmatrix}$

Schur complement version (Bekas and Saad, SIAM Journal of Scientific Computing 27(2) 458, 2005) $S(\lambda) = A_{ss} - A_{f} (A_{ff} - \lambda I)^{-1} A_{fs}$ λ Not an eigenvalue of A_{ff}

Method

To track an aeroelastic eigenvalue

1. Choose normal mode frequency as a shift

$$S(\lambda) = (A_{ss} - \lambda_0 I) - A_{sf} (A_{ff} - \lambda I - \lambda_0 I)^{-1} A_{fs}$$

2. Precompute

$$A_{sf} (A_{ff} - \lambda_0 I)^{-1} A_{fs} \qquad A_{sf} (A_{ff} - \lambda_0 I)^{-2} A_{fs}$$

- 3. Solve nonlinear eigenvalue problem by Newton's method
 - Use series approximation to generate function (very cheap)
 - Use full evaluation to generate function (more expensive)
 - In both cases use series approximation for LHS
- 4. Change Altitude and repeat step 3

Comments

- Series expansion to drive convergence
 - Full evaluation for function
 - Can account for aerostatic effects if needed
- Linear system
 - complex variable, block Jacobi BILU preconditioner
- Mode tracking
 - Cheap solution of nonlinear eigenvalue problems
 - small steps can be taken
- Highly parallel
 - Each mode can be tracked independently

1p - 4% thick circular arc

236k points

Mach 0.92

1.72 Hz

3.05 Hz

9.18 Hz

11.10 Hz

0.2

0.

Altitude (feet) 20000

30000

Mach 0.97

2916e

30000

Altitude (feet) 20000

-0.0

-0.06

Mach 0.92

Altitude (feet)

30000

40000

0.2

0.1

Altitude (feet)

20000

30000

8 processors

- Steady state in 11 minutes
- 4 modes generate S 134 minutes
- Full solution (8) 202 minutes
- series and full identical results
- Total cost series method -13.5 steady state solves

234k points

Mach 0.90

Mach 0.96

Mach 0.99

8 processors

- Per Mach number
 - Steady state in 14 minutes
 - Generate S matrix 9 minutes
 - Full function evaluation (8) 49 minutes (23 nonlinear steps)
- series and full solutions identical
- Total cost series method for 6 Mach nos 11.5 times steady state

Mach 0.85

8 processors

- Steady state in 22 minutes
- for 8 modes generate S total time 95 minutes
- Full function evaluation each mode took 72 minutes
- series and full solutions identical
- Total cost series method for 8 modes 5 times steady state

Mach 0.85

32 processors

- Steady state in 15 minutes
- For each mode generate S 45 minutes
- -Total cost series method for 10 modes 30 times steady state

Conclusions

- New method proposed
 - mode tracking (robust for all tests)
 - parallel linear solution
 - 100-220 iterations for all cases shown
- Application to 4 contrasting test cases
 - Series solution works well in all cases
 - Costs per Mach number
 - 5-30 times steady state cost
 - Information about mechanisms provided
 - Detailed and familiar

Future Work

- ROM to predict LCO
 - Based on critical eigenvector
- Demonstrated for Goland wing
- · Can now develop a parallel version of this approach
 - Application to aircraft LCO